譚婭 李亮 雷宇航 黃志洋 趙春萍 張靜 張正群 齊婧 朱礪 史開志
摘要:【目的】篩選出高肌內(nèi)脂肪(Intramuscular fat,IMF)沉積的關(guān)鍵基因并進行表達驗證,為揭示豬肌內(nèi)脂肪沉積的分子調(diào)控機制提供理論依據(jù)?!痉椒ā扛鶕?jù)NCBI-GEO數(shù)據(jù)庫中高、低肌內(nèi)脂肪巴克夏群體的轉(zhuǎn)錄組數(shù)據(jù),利用DESeq2進行差異表達基因篩選(|log2 Fold Change|≥1,F(xiàn)DR<0.05),采用Metascape對差異表達基因進行功能富集分析,通過MCODE篩選及鑒定出高肌內(nèi)脂沉積的關(guān)鍵基因,并采用實時熒光定量PCR在地方豬(柯樂豬)和外種豬(杜長大豬)上進行關(guān)鍵基因表達量驗證。【結(jié)果】從高、低肌內(nèi)脂肪巴克夏群體6個文庫中共鑒定出7661個基因,高肌內(nèi)脂肪群體樣本的脂質(zhì)代謝相關(guān)基因總表達量顯著高于低肌內(nèi)脂肪群體樣本(P<0.05,下同),其中差異表達基因有133個[110個上調(diào)(在高肌內(nèi)脂肪群體高表達),23個下調(diào)(在低肌內(nèi)脂肪群體高表達)]。上調(diào)差異表達基因主要富集于膠原蛋白綁定、細胞外基質(zhì)組裝、脂肪酰輔酶A 生物合成過程、固醇代謝過程和脂質(zhì)代謝調(diào)控過程等GO功能條目,以及脂肪乙酰輔酶A生物合成、ChREBP激活代謝基因、脂肪酸代謝等信號通路上;下調(diào)基因主要富集于線粒體組裝、多細胞生物學過程、輔酶綁定和缺氧反應等GO功能條目,以及基于NFKB的TNFA信號、白細胞介素4和白細胞介素13信號和干擾素信號等信號通路上。通過MCODE分析共篩選獲得5個關(guān)鍵基因,分別是SLC25A5、FN1、FASN、ACACA和PRKDC基因;挑選SCD、FASN和ACACA基因進行表達量驗證,結(jié)果發(fā)現(xiàn)這3個基因的相對表達量均表現(xiàn)為柯樂豬高于杜長大豬,其差異達顯著或極顯著(P<0.01)水平,進一步佐證SCD、FASN和ACACA基因在高肌內(nèi)脂肪豬群體中高表達?!窘Y(jié)論】在巴克夏豬高肌內(nèi)脂肪群體中高表達的SCD、FASN和ACACA基因,在高肌內(nèi)脂肪的柯樂豬中也呈顯著或極顯著高表達,因此這3個關(guān)鍵基因有望作為篩選和培育高肌內(nèi)脂肪豬品種的分子標記,同時為研究肌內(nèi)脂肪沉積的分子調(diào)控機制提供技術(shù)支撐。
關(guān)鍵詞: 豬;肌內(nèi)脂肪;背最長肌;差異表達基因;脂肪沉積
中圖分類號: S828.1? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼: A 文章編號:2095-1191(2022)04-0899-09
Expression difference analysis of hub genes between high and low intramuscular fat content in longissimus dorsi of pigs
TAN Ya1,2,3, LI Liang1,2, LEI Yu-hang2, HUANG Zhi-yang2, ZHAO Chun-ping1,3,? ZHANG Jing1,3, ZHANG Zheng-qun1, QI Jing1,3, ZHU Li2, SHI Kai-zhi1,3*
(1Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou? 550005, China; 2College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan? 611130, China;
3Guizhou Engineering Research Center of Local Pig Protection and Breeding, Guiyang, Guizhou? 550005, China)
Abstract:【Objective】To screen the hub genes of high intramuscular fat (IMF) deposition and to verify their expression, so as to provide a theoretical basis for revealing the molecular regulation mechanism of IMF deposition in pigs.【Method】Based on the transcriptome data of Berkshire pigs with high and low IMF in NCBI-GEO database, the differentially expressed genes (DEGs) were screened by DESeq2 (|log2 Fold Change|≥1, FDR< 0.05), the functional enrichment of DEGs were analyzed by Metascape. Meanwhile, MCODE were used to identify the key genes of high IMF deposition, real-time fluorescence quantitative PCR (qRT-PCR) was used to verify the expression of hub genes in indigenous pigs (Kole) and foreign pigs (DLY pigs). 【Result】7661 genes were identified from six libraries of Berkshire pigs with high and low IMF. The total expression of genes related to lipid metabolism in high IMF group was significantly higher than that in low IMF group (P<0.05, the same below). Additionally, the total number of DEGs in two groups was 133 [110 were up-regulated (high expression in high IMF) and 23 were down-regulated (high expression in low IMF)]. The up-regulated DEGs were mainly enriched in GO items such as collagen binding, extracellular matrix assembly, fatty acetyl-coA biosynthesis, sterol metabolism and lipid metabolism regulation, and in signaling pathways such as fatty acetyl-coA biosynthesis, CHREBP activated metabolic genes and fatty acid metabolism. Meanwhile, the down-regulated genes were mainly enriched in GO items such as mitochondrial assembly, multi-multicellular biological processes, coenzyme bin-ding and hypoxia response, and in signaling pathways such as TNFA signaling via NFKB, interleukin-4 and interleukin-13 signaling and signaling by interleukins. Five hub genes, SLC25A5, FN1, FASN, ACACA and PRKDC, were identified by MCODE analysis, and then SCD, FASN and ACACA were selected for expression verification. The results showed that the relative expression of these three genes were significantly higher in Kole pigs than that in DLY pigs (P<0.01), and it was further proved that SCD, FASN and ACACA were highly expressed in high IMF pigs. 【Conclusion】SCD, FASN and ACACA genes that highly expressed in the high IMF group of Berkshire pigs are also significantly or extremely highly expressed in Kole pigs with the high IMF. Therefore, these three hub genes may be used as molecular markers for selecting and breeding pigs with high IMF, and provide technical support for studying the molecular regulation mechanism of IMF deposition.
Key words: pig; intramuscular fat; longissimus dorsi; differentially expressed genes (DEGs); fat deposition
Foundation items: Guizhou Department of Science and Technology Plan Project (QKHZC〔2019〕2278, QKHFQ〔2018〕4007, QKHCG〔2020〕1Y027); Guizhou Academy of Agricultural Sciences and Technology Achievements Transformation Guidance Fund Project (QNKYKJCX〔2022〕01)
0 引言
【研究意義】脂肪是動物體內(nèi)存儲能量的重要組織,脂質(zhì)合成及沉積與動物體內(nèi)營養(yǎng)物質(zhì)的消化、吸收、代謝和能量周轉(zhuǎn)存在密切聯(lián)系(Yun et al.,2018)。脂肪沉積是豬生長的重要生物學過程,其中肌內(nèi)脂肪(Intramuscular fat,IMF)是指位于肌纖維與肌束間的脂肪,其含量差異可促使肌肉呈現(xiàn)出不同程度的大理石花紋,同時影響肌肉的嫩度、多汁性、風味及脂肪酸含量等品質(zhì)性狀(Damian et al.,2016;陳靜等,2021)。因此,肌內(nèi)脂肪是評價肉品質(zhì)的重要指標,解析其遺傳機制對科學開展肉質(zhì)調(diào)控具有重要意義?!厩叭搜芯窟M展】隨著對西方豬種(杜洛克、大白豬及長白豬等)瘦肉率的高強度持續(xù)選育,外種豬的肌內(nèi)脂肪已低于2%,但我國地方豬的肌內(nèi)脂肪一般都高于3%(熊遠著,2000;李鵬和斯日吉楞,2010;張雄等,2019)。長期以來,通過提高肌內(nèi)脂肪含量以改善豬肉品質(zhì)是生豬產(chǎn)業(yè)面臨的著要問題之一,其分子調(diào)控機制也受到廣泛關(guān)注。肌內(nèi)脂肪沉積同時受到動物遺傳背景、飼料、年齡等因素的影響(Katsumata,2011;Bosch et al.,2012;Pena et al.,2016;Malgwi et al.,2022),如通過蛋氨酸和賴氨酸限飼可顯著提高育肥豬的肌內(nèi)脂肪含量(Palma-Granados et al.,2019;Wu et al.,2019),在飼糧中添加共軛亞油酸可有效提高肌內(nèi)脂肪含量(Wang et al.,2021),但這些調(diào)節(jié)因子功能的發(fā)揮均是通過影響脂肪生成及脂肪分解過程中的關(guān)鍵基因來實現(xiàn)。目前,有關(guān)肌內(nèi)脂肪沉積相關(guān)基因的研究報道較少。Cho等(2019)對西方豬種和韓國本地豬種背最長肌的肌內(nèi)脂肪進行比較,鑒定出豬12號染色體上的MYH3基因是影響肌內(nèi)脂肪沉積的因果基因,可通過啟動子上6-bp缺失的結(jié)構(gòu)變異而抑制肌源性調(diào)節(jié)因子結(jié)合,進而促進肌內(nèi)脂肪沉積。Huang等(2021)在我國地方豬、西方豬種及其雜交豬種上進行驗證,得出的研究結(jié)果均不支持 MYH3基因6-bp缺失與肌內(nèi)脂肪間的因果關(guān)系,提示12號染色體上QTL的因果突變有待進一步探究。由于肌內(nèi)脂肪屬于中等偏低的遺傳力性狀(h2=0.2),因此可通過合理的品種選育得到明顯改善與提高。【本研究切入點】分子標記輔助選擇(Marker-assisted selection,MAS)的誕生可實現(xiàn)從分子水平上快速準確地分析個體遺傳組成,從而實現(xiàn)對基因型的直接選擇,極大提高育種效率,最終加快對目的性狀的遺傳選擇進展。雖然目前關(guān)于豬肌內(nèi)脂肪沉積的機制研究較多,但對于外種豬和地方豬的肌內(nèi)脂肪沉積機制是否具有一致性尚無定論?!緮M解決的關(guān)鍵問題】利用現(xiàn)有的NCBI-GEO數(shù)據(jù)庫資源,挖掘高肌內(nèi)脂肪豬與低肌內(nèi)脂肪豬的轉(zhuǎn)錄組差異,明確高、低肌內(nèi)脂肪沉積的功能基因差異,篩選出高肌內(nèi)脂肪沉積的關(guān)鍵基因并進行表達驗證,以期為揭示豬肌內(nèi)脂肪沉積的分子調(diào)控機制提供理論依據(jù)。
1 材料與方法
1. 1 試驗動物及樣本采集
供試的地方豬(柯樂豬)和外種豬(杜長大)樣本分別來自貴州優(yōu)農(nóng)谷生態(tài)產(chǎn)業(yè)有限公司柯樂豬原種場和四川省某規(guī)?;i場,各6頭,所有供試豬均按NY/T 65—2004《豬飼養(yǎng)標準》進行飼喂,飼喂至360日齡左右進行屠宰,采集背最長?。ㄗ詈罄吖翘帲?,液氮保存?zhèn)溆谩?/p>
1. 2 轉(zhuǎn)錄組數(shù)據(jù)來源
轉(zhuǎn)錄組數(shù)據(jù)來源于GEO數(shù)據(jù)庫(登錄號GSE86086),豬品種為巴克夏,共6個樣本,高肌內(nèi)脂肪群體(n=3)的肌內(nèi)脂肪含量為(3.80±0.03)%,低肌內(nèi)脂肪群體(n=3)的含量為(0.47±0.04)%(Lim et al.,2017)。
1. 3 數(shù)據(jù)分析
采用CPM(Counts per million)法校正基因表達水平,轉(zhuǎn)錄本表達量統(tǒng)計采用edgeR(Robinson et al.,2010),并根據(jù) CPM 值分析樣本間的相關(guān)性。使用DESeq2篩選差異表達基因(Differentially expressed genes,DEGs)(Love et al.,2014;孫瑞萍等,2020),篩選標準為FDR<0.05 且|log2 Fold Change|>1。然后采用Metascape(https://metascape.org/gp/index.html#/main/step1)對差異表達基因進行功能注釋分析,并以超幾何分布(P<0.05)在分子特征數(shù)據(jù)庫(MSigDB)的KEGG、Reactome、GO和Hallmark等4個數(shù)據(jù)庫中進行信號通路富集分析。
1. 4 關(guān)鍵基因篩選
通過STRING構(gòu)建差異表達基因編碼蛋白的相互作用網(wǎng)絡(Protein-protein interaction network,PPI),導入Cytoscape 3.9.0進行網(wǎng)絡可視化處理和子模塊篩選,再利用MCODE篩選及鑒定出關(guān)鍵基因(張斌等,2021)。
1. 5 基因表達驗證
采用實時熒光定量PCR驗證關(guān)鍵基因在地方豬和外種豬背最長肌中的表達情況。在NCBI中搜索關(guān)鍵基因的mRNA序列,通過Primer Premier 6.0設計實時熒光定量PCR擴增引物(表1),并以β-actin為內(nèi)參基因。采用TRIzol法提取樣本總RNA,通過PrimeScriptTM RT reagent Kit with gDNA Eraser試劑盒(TaKaRa)反轉(zhuǎn)錄合成cDNA后,參照TB Green? PrimeScript? RT-PCR(TaKaRa)說明在CFX-96熒光定量 PCR 儀上進行實時熒光定量PCR檢測,擴增程序:95 ℃預變性 1 min;95 ℃ 5 s,退火30 s,72 ℃ 1 min,進行40個循環(huán)。每個樣本設3個重復,通過2-△△Ct法換算目的基因相對表達量。
1. 6 統(tǒng)計分析
采用Excel 2017和GraphPad Prism 7進行統(tǒng)計分析,并以雙尾非配對t檢驗進行差異顯著性分析。
2 結(jié)果與分析
2. 1 轉(zhuǎn)錄組數(shù)據(jù)特征分析結(jié)果
利用edgeR對基因的原始表達量進行CPM值計算,篩選出至少在1個文庫中CPM值大于0.5的基因進行分析,6個文庫共鑒定出7661個基因。對6個樣本[高肌內(nèi)脂肪樣本(H1、H2和H3),低肌內(nèi)脂肪樣本(L1、L2和L3)]的基因表達量進行相關(guān)分析,結(jié)果發(fā)現(xiàn)各生物學重復樣本間的相關(guān)性均高于不同組間的樣本(圖1-A)。同時,對表達量排名前1000的基因進行聚類分析,結(jié)果發(fā)現(xiàn)每個組內(nèi)的3個生物學重復樣本均聚為一支(圖1-B)。
2. 2 脂質(zhì)代謝相關(guān)基因表達分析結(jié)果
脂質(zhì)代謝相關(guān)基因集來自MSigDB(https://www. gsea-msigdb.org/gsea/msigdb/index.jsp)的REACTOME_ metabolism of lipids(739個脂質(zhì)代謝基因)和KEGG_fatty acid metabolism(39個脂肪酸酸代謝基因),共發(fā)現(xiàn)有199個脂質(zhì)代謝相關(guān)基因在6個樣本中表達(圖2),其表達模式表現(xiàn)為高肌內(nèi)脂肪群體樣本的脂質(zhì)代謝相關(guān)基因總表達量顯著高于低肌內(nèi)脂肪群體樣本(P<0.05,下同)。
2. 3 差異表達基因分析結(jié)果
利用DESeq2進行差異表達基因篩選(|log2 Fold Change|≥1,F(xiàn)DR<0.05),共篩選得到133個差異表達基因,其中110個上調(diào)、23個下調(diào)(圖3-A)。排名前5的上調(diào)差異表達基因分別是硬脂酸乙酰輔酶A去飽和酶(Stearoyl-coA desaturase)編碼基因(SCD)、脂肪酸合酶(Fatty acid synthase)編碼基因(FASN)、圍脂滴蛋白1(Perilipin 1)編碼基因(PLIN1)、CGMP依賴性蛋白激酶1(Protein kinase CGMP-dependent 1)編碼基因(PRKG1)和細胞死亡誘導DFFA樣效應蛋白C(Cell death inducing DFFA like effector C)編碼基因(CIDEC);排名前5的下調(diào)差異表達基因分別是NCAPD3(Non-SMC condensin II complex subunit D3)基因、ENSSSCG00000014565、C-C基序趨化因子配體2(C-C motif chemokine ligand 2)編碼基因(CCL2)、去乙?;?(Sirtuin 3)編碼基因(SIRT3)和U3小核仁RNA相關(guān)蛋白25(UTP25 small subunit processor component)編碼基因(UTP25)。
2. 4 基因功能富集分析結(jié)果
利用Metascape對差異表達基因進行功能富集分析,結(jié)果顯示133個差異基因共富集到406條功能條目上。其中,上調(diào)差異表達基因(在高肌內(nèi)脂肪群體高表達)主要富集于膠原蛋白綁定(Collagen bin-ding,P=3.98E-10)、細胞外基質(zhì)組裝(Extracellular matrix organization,P=3.16E-09)、脂肪酰輔酶A生物合成過程(Fatty-acyl-CoA biosynthetic process,P=1.26E-08)、固醇代謝過程(Steroid metabolic process,P=1.58E-06)和脂質(zhì)代謝調(diào)控過程(Regulation of lipid metabolic process,P=1.00E-05)等GO功能條目(圖4-A),以及脂肪乙酰輔酶A生物合成(Fatty acyl-CoA biosynthesis,P=3.16E-08)、ChREBP激活代謝基因(ChREBP activates metabolic gene expression,P=7.94E-07)、脂肪酸代謝(Fatty acid metabolism,P=6.31E-06)等信號通路(圖4-B)上;下調(diào)差異表達基因(在低肌內(nèi)脂肪群體高表達)主要富集于線粒體組裝(Mitochondrion organization,P=2.51E-04)、多細胞生物學過程(Multi-multicellular organism process,P=2.51E-04)、輔酶綁定(Coenzyme binding,P=6.31E-04)和缺氧反應(Response to hypoxia,P=1.00E-03)等GO功能條目(圖4-A),以及基于NFKB的TNFA信號(HALLMARK TNFA SIGNALING VIA NFKB,P=3.98E-06)、白細胞介素4和白細胞介素13信號(Interleukin-4 and interleukin-13 signaling,P=3.16E-05)和干擾素信號(Signaling by interleukins,P=1.99E-03)等信號通路(圖4-B)上。
利用MCODE進行關(guān)鍵基因分析,共篩選獲得5個關(guān)鍵基因(圖5),分別是溶質(zhì)載體家族25成員5(Solute carrier family 25 member 5,SLC25A5)、纖連蛋白1(Fibronectin 1)編碼基因(FN1)、脂肪酸合成酶(Fatty acid synthase)編碼基因(FASN)、乙酰輔酶A羧化酶α(Acetyl-CoA carboxylase alpha)編碼基因(ACACA)和DNA依賴性蛋白激酶催化亞基(Protein kinase,DNA-activated,catalytic subunit,PRKDC)。除SLC25A5基因呈下調(diào)表達外,其余4個關(guān)鍵基因均呈上調(diào)表達。
2. 5 關(guān)鍵基因表達驗證結(jié)果
綜合Gallardo等(2009)、Yang等(2013)、Crespo-Piazuelo等(2020)的研究結(jié)果,且收錄在豬QTLdb與肌內(nèi)脂肪含量相關(guān)的基因數(shù)據(jù)庫中,挑選出FASN和ACACA基因進行實時熒光定量PCR驗證。此外,由于SCD基因的上調(diào)表達倍數(shù)變化最大,且其參與脂質(zhì)代謝調(diào)控已在畜禽的相關(guān)研究中得到證實(Uemoto et al.,2012;Yokota et al.,2012;Henriquez-Rodriguez et al.,2016),故本研究選取SCD、FASN和ACACA基因進行表達驗證。背最長肌的肌內(nèi)脂肪表型觀察結(jié)果(圖6-A)表明,柯樂豬的肌內(nèi)脂肪含量顯著高于杜長大豬(8.46% vs 1.19%);實時熒光定量PCR驗證結(jié)果(圖6-C)顯示,SCD、FASN和ACACA基因的相對表達量均表現(xiàn)為柯樂豬高于杜長大豬,其差異達顯著或極顯著(P<0.01,下同)水平,與RNA-Seq測序結(jié)果(圖6-B)基本一致,即在背最長肌肌內(nèi)脂肪表型差異明顯的柯樂豬與杜長大豬上SCD、FASN和ACACA基因表達差異極顯著。
3 討論
肌內(nèi)脂肪是衡量豬肉質(zhì)性狀的重要指標之一,其含量直接影響肉色、嫩度、大理石紋及滴水損失等,對豬肉的食用價值和營養(yǎng)價值有直接貢獻(Hocquette et al.,2010;Liu et al.,2021)。本研究對高、低肌內(nèi)脂肪含量巴克夏豬的差異表達基因分析發(fā)現(xiàn),上調(diào)基因Top5(在高肌內(nèi)脂肪組中高表達排名前5)分別為SCD、FASN、PLIN1、PRKG1和CIDEC,其中,SCD和FASN基因在脂肪酸組成中的重要作用已被多項研究證實(Yokota et al.,2012;Maharani et al.,2013)。本研究通過MCODE其挖掘出5個關(guān)鍵基因,分別是SLC25A5、FN1、FASN、ACACA和PRKDC基因,綜合前人的相關(guān)研究結(jié)果(Gallardo et al.,2009;Yang et al.,2013;Crespo-Piazuelo et al.,2020),以及差異表達基因的RNA-Seq測序結(jié)果,重點討論SCD、FASN和ACACA基因與豬肉品質(zhì)的調(diào)控關(guān)系。
SCD 基因編碼的硬脂酰輔酶A去飽和酶是一種內(nèi)質(zhì)網(wǎng)酶,在將飽和脂肪酸(Saturated fatty acids,SFA)轉(zhuǎn)化為單不飽和脂肪酸(Monounsaturated fatty acids,MUFA)的過程中發(fā)揮關(guān)鍵作用(Maharani et al.,2013)。MUFA被認為是對人類健康有益的一類脂肪酸,有助于降低低密度脂蛋白膽固醇含量。此外,SCD基因在脂肪組織和骨骼肌中高表達(Voss et al.,2005),是位于豬14號染色體上的脂肪沉積候選基因,其多態(tài)性研究已有較多報道。Uemoto等(2012)在SCD基因啟動子區(qū)鑒定出2個SNPs(g.-353C>T和g.-233T>C),并證實其單倍型與杜洛克豬群體的脂肪酸組成及脂肪熔點間存在顯著相關(guān)性。Maharani等(2013)為了評價SCD基因與950個韓國本地豬×長白豬F2雜交群體脂肪酸組成的關(guān)聯(lián)性,對SCD基因的6個SNPs(啟動子區(qū)的g.-353T>C和g.-233T>C;外顯子區(qū)的g.817C>T;3'-UTR區(qū)的g.13311C>G、g.14384g>A和g.14424C>T)進行基因型分析,結(jié)果發(fā)現(xiàn)F2雜交群體SCD基因與脂肪酸組成存在很強的關(guān)聯(lián)性。Lim等(2015)對巴克夏豬的研究表明,SCD基因3'-UTR區(qū)的c*2041T>C多態(tài)性會影響脂肪酸組成、脂肪沉積和大理石紋。Henriquez-Rodriguez等(2016)研究表明,對SCD基因T基因型(g.2228T>C)和LEPR基因C基因型(g.1987C>T)的聯(lián)合選擇可有效提高杜洛克豬MUFA/SFA比例。
FASN基因編碼脂肪酸合酶,其主要功能是在NADPH存在下催化乙酰輔酶A和丙二酰輔酶A合成棕櫚酸酯(C16:0)和硬脂酸酯(C18:0),進而生成長鏈飽和脂肪酸(Jensen-Urstad and Semenkovich,2012)。Grzes等(2016)研究發(fā)現(xiàn),F(xiàn)ASN基因有4個SNPs(c.-2908G>A、c.-2335C>T、c.*42_43insCCCCA和c.*264A>G)與背膘厚相關(guān),其中c.-2335C>T多態(tài)性還影響杜洛克胸最長肌膽固醇水平和皮特蘭皮下脂肪組織多不飽和脂肪酸(PUFA)含量。Renaville等(2015)研究證實,F(xiàn)ASN基因多態(tài)性顯著影響意大利系大豬的肉品質(zhì)。Zappaterra等(2019)研究報道,F(xiàn)ASN基因的c.265T>C多態(tài)性能顯著改變意大利系大白豬胸最長肌中硬脂酸、花生四烯酸、γ-亞麻酸和花生四烯酸的含量。PLIN1基因也與脂質(zhì)功能相關(guān),其編碼蛋白覆蓋在脂肪細胞中的脂滴上,從而保護脂肪細胞,直至被激素敏感的脂肪酶分解,因而在抑制脂肪分解過程中發(fā)揮重要作用(Beller et al.,2008;Li et al.,2020)。本研究結(jié)果表明,脂質(zhì)代謝相關(guān)基因表達總量表現(xiàn)為高肌內(nèi)脂肪群體樣本顯著高于低肌內(nèi)脂肪群體樣本,且上調(diào)差異表達基因(在高肌內(nèi)脂肪群體高表達)主要富集在脂質(zhì)代謝相關(guān)的GO功能條目及信號通路上;利用MCODE進行關(guān)鍵基因分析,共篩選獲得5個關(guān)鍵基因(SLC25A5、FN1、FASN、ACACA和PRKDC),但至今尚無SLC25A5、FN1和PRKDC基因參與脂質(zhì)代謝的研究報道,因此有待進一步探究其是否在脂質(zhì)代謝過程發(fā)揮重要作用。
ACACA基因編碼的乙酰輔酶A羧化酶α是一種含有生物素的活性酶,能催化乙酰輔酶A羧化成丙二酰輔酶A,是脂肪酸合成的限速酶。Gallardo等(2009)研究表明,豬ACACA基因編碼區(qū)(CDS)存在2個SNPs(c.4899G>A和c.5196T>C),且這2個SNPs與胴體瘦肉含量、肌內(nèi)脂肪含量及血清高密度脂蛋白膽固醇濃度密切相關(guān)。Stachowiak等(2013)對波蘭豬群體ACACA基因的分析結(jié)果表明,3'-UTR區(qū)2個SNPs(c.*99T>A 和 c.*195C>A)的突變會影響背膘厚和瘦肉率。本研究基于巴克夏豬的高、低肌內(nèi)脂肪群體進行肌內(nèi)脂肪數(shù)據(jù)分析,篩選出高肌內(nèi)脂肪的關(guān)鍵基因有SCD、FASN和ACACA;在高肌內(nèi)脂肪的柯樂豬和低肌內(nèi)脂肪的杜長大豬群體內(nèi)也發(fā)現(xiàn)這3個基因的表達趨勢與在外種豬巴克夏體內(nèi)的一致。因此,SCD、FASN和ACACA基因可作為篩選和培育高肌內(nèi)脂肪豬品種的分子標記,同時為研究肌內(nèi)脂肪沉積的分子調(diào)控機制提供技術(shù)支撐。
4 結(jié)論
在巴克夏豬高肌內(nèi)脂肪群體中高表達的SCD、FASN和ACACA基因,在高肌內(nèi)脂肪的柯樂豬中也呈顯著或極顯著高表達,因此這3個關(guān)鍵基因可作為篩選和培育高肌內(nèi)脂肪豬品種的分子標記,同時為研究肌內(nèi)脂肪沉積的分子調(diào)控機制提供技術(shù)支撐。
參考文獻:
陳靜,尤瑞國,劉慧敏,楊國慶. 2021. 檸檬醛對小鼠生長性能、肌內(nèi)脂肪含量及脂肪酸代謝酶的影響[J]. 河南農(nóng)業(yè)大學學報,55(4):721-726. [Chen J,You R G,Liu H M,Yang G Q. 2021. Effects of citral on growth performance,intramuscular fat content and fatty acid metabolizing enzymes in mice[J]. Journal of Henan Agricultural University,55(4):721-726.] doi:10.16445/j.cnki.1000-2340.2021 0531.001.
李鵬,斯日古楞. 2010. 營養(yǎng)調(diào)控影響豬肌內(nèi)脂肪沉積的研究進展[J]. 飼料廣角,(22):34-35. [Li P,Siriguleng. 2010. Research advances on influence of nutrition regulation in porcine intramuscular fat deposition[J]. Feed China,(22):34-35.] doi:10.3969/j.issn.1002-8358.2010.22.012.
孫瑞萍,王峰,晁哲,劉海隆,鄭心力,劉圈煒,黃麗麗,邢漫萍,魏立民. 2020. 1月齡五指山豬與長白豬骨骼肌mi-RNA轉(zhuǎn)錄組比較[J]. 江蘇農(nóng)業(yè)學報,36(3):620-625. [Sun R P,Wang F,Chao Z,Liu H L,Zheng X L,Liu Q W,Huang L L,Xing M P,Wei L M. 2020. Comparative analysis on miRNA transcriptomes of skeletal muscle between one-month-old Wuzhishan pig and Landrace[J]. Jiangsu Journal of Agricultural Sciences,36(3):620-625.] doi:10.3969/j.issn.1000-4440.2020.03.013.
熊遠著. 2000. 瘦肉豬育種的發(fā)展及展望[J]. 中國工程科學,2(9):42-46. [Xiong Y Z. 2000. Development and prospects of lean-type swine breeding[J]. Engineering Science,2(9):42-46.] doi:10.3969/j.issn.1009-1742.2000.09.007
張斌,楊昕霞,袁志輝. 2021. 水稻響應熱脅迫核心基因的篩選與鑒定[J]. 江蘇農(nóng)業(yè)學報,37(4):817-822. [Zhang B,Yang X X,Yuan Z H. 2021. Screening and identification of core genes responding to heat stress in rice[J]. Jiangsu Journal of Agricultural Sciences,37(4):817-822.] doi:10. 3969/j.issn.1000-4440.2021.04.001.
張雄,尚以順,史開志,張勇,黃波,韓雪,王婧. 2019. 從江香豬胴體及肉品質(zhì)性狀研究[J]. 家畜生態(tài)學報,40(1):36-40. [Zhang X,Shang Y S,Shi K Z,Zhang Y,Huang B,Han X,Wang J. 2019. Study on carcass performance and meat quality of Congjiang pigs[J]. Acta Ecologae Animalis Domastici,40(1):36-40.] doi:10.3969/j.issn.1673-1182.2019.01.007.
Beller M,Sztalryd C,Southall N,Bell M,J?ckle H,Auld D S,Oliver B. 2008. COPI complex is a regulator of lipid homeostasis[J]. PLoS Biology,6(11):e292. doi:10.1371/journal.pbio.0060292.
Bosch L,Tor M,Reixach J,Estany J. 2012. Age-related changes in intramuscular and subcutaneous fat content and fatty acid composition in growing pigs using longitudinal data[J]. Meat Science,91(3):358-363. doi:10.1016/j.meatsci.2012.02.019.
Cho I C,Park H B,Ahn J S,Han S H,Lee J B,Lim H T,Yoo C K,Jung E J,Kim D H,Sun W S,Ramayo-Caldas Y,Kim S G,Kang Y J,Kim Y K,Shin H S,Seong P N,Hwang I S,Park B Y,Hwang S,Lee S S,Ryu Y C,Lee J H,Ko M S,Lee K,Andersson G,Pérez-Enciso M,Lee J W. 2019. A functional regulatory variant of MYH3 influences muscle fiber-type composition and intramuscular fat content in pigs[J]. PLoS Genetics,15(10):e1008279.? doi:10.1371/journal.pgen.1008279.
Crespo-Piazuelo D,Criado-Mesas L,Revilla M,Castelló A,Noguera J L,F(xiàn)ernández A I,Ballester M,F(xiàn)olch J M. 2020. Identification of strong candidate genes for backfat and intramuscular fatty acid composition in three crosses based on the Iberian pig[J]. Scientific Reports,10(1):13962. doi:10.1038/s41598-020-70894-2.
Damian F,Seon-Tea J,Robyn W. 2016. Consumer acceptability of intramuscular fat[J]. Korean Journal for Food Scien-ce of Animal Resources,36(6):699-708. doi:10.5851/kosfa.2016.36.6.699.
Gallardo D,Quintanilla R,Varona L,Díaz I,Ramírez O,Pena R N,Amills M. 2009. Polymorphism of the pig acetyl-coenzyme A carboxylase alpha gene is associated with fatty acid composition in a Duroc commercial line[J]. Animal Genetics,40(4):410-417. doi:10.1111/j.1365-2052.2009. 01854.x.
Grzes M,Sadkowski S,Rzewuska K,Szydlowski M,Switonski M. 2016. Pig fatness in relation to FASN and INSIG2 genes polymorphism and their transcript level[J]. Mole-cular Biology Reports,43(5):381-389. doi:10.1007/s11033- 016-3969-z.
Henriquez-Rodriguez E,Bosch L,Tor M,Pena R N,Estany J. 2016. The effect of SCD and LEPR genetic polymorphisms on fat content and composition is maintained throughout fattening in Duroc pigs[J]. Meat Science,121:33-39. doi: 10.1016/j.meatsci.2016.05.012.
Hocquette J F,Gondret F,Baéza E,Médale F,Jurie C,Pe-thick D W. 2010. Intramuscular fat content in meat-produ-cing animals:Development,genetic and nutritional control,and identification of putative markers[J]. Animal:An International Journal of Animal Bioscience,4(2):303-319. doi:10.1017/S1751731109991091.
Huang C,Zhong L P,Zou X X,Huang Y Z,Cai L P,Ma J W. 2021. Evidence against the causal relationship between a putative cis-regulatory variant of MYH3 and intramuscular fat content in pigs[J]. Frontiers in Veterinary Science,8:672852. doi:10.3389/fvets.2021.672852.
Jensen-Urstad A P L,Semenkovich C F. 2012. Fatty acid synthase and liver triglyceride metabolism:Housekeeper or messenger[J]. Biochimica et Biophysica Acta,1821(5):747-753. doi:10.1016/j.bbalip.2011.09.017.
Katsumata M. 2011. Promotion of intramuscular fat accumulation in porcine muscle by nutritional regulation[J]. Animal Science Journal,82(1):17-25. doi:10.1111/j.1740-0929.2010.00844.x.
Li S J,Raza S H A,Zhao C P,Cheng G,Zan L S. 2020. Overexpression of PLIN1 promotes lipid metabolism in bovine adipocytes[J]. Animals:An Open Access Journal from MDPI,10(11):E1944. doi:10.3390/ani10111944.
Lim K S,Kim J M,Lee E A,Choe J H,Hong K C. 2015. A candidate single nucleotide polymorphism in the 3' untranslated region of stearoyl-CoA desaturase gene for fatness quality and the gene expression in Berkshire pigs[J]. Asian-Australasian Journal of Animal Sciences,28(2):151-157. doi:10.5713/ajas.14.0529.
Lim K S,Lee K T,Park J E,Chung W H,Jang G W,Choi B H,Hong K C,Kim T H. 2017. Identification of differentially expressed genes in longissimus muscle of pigs with high and low intramuscular fat content using RNA sequen-cing[J]. Animal Genetics,48(2):166-174. doi:10.1111/age.12518.
Liu J Q,Li J,Chen W T,Xie X T,Chu X G,Valencak T G,Wang Y Z,Shan T Z. 2021. Comprehensive evaluation of the metabolic effects of porcine CRTC3 overexpression on subcutaneous adipocytes with metabolomic and transcriptomic analyses[J]. Journal of Animal Science and Biotechnology,12(1):19. doi:10.1186/s40104-021-00546-6.
Love M I,Huber W,Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2[J]. Genome Biology,15(12):550. doi:10.1186/s13059-014-0550-8.
Maharani D,Park H B,Lee J B,Yoo C K,Lim H T,Han S H,Lee S S,Ko M S,Cho I C,Lee J H. 2013. Association of the gene encoding stearoyl-CoA desaturase (SCD) with fatty acid composition in an intercross population between Landrace and Korean native pigs[J]. Molecular Biology Reports,40(1):73-80. doi:10.1007/s11033-012-2014-0.
Malgwi I H,Halas V,Grünvald P,Schiavon S,Jócsák I. 2022. Genes related to fat metabolism in pigs and intramuscular fat content of Pork:A focus on nutrigenetics and nutrigenomics[J]. Animals:An Open Access Journal from MDPI,12(2):150. doi:10.3390/ani12020150.
Palma-Granados P,Seiquer I,Benítez R,óvilo C,Nieto R. 2019. Effects of lysine deficiency on carcass composition and activity and gene expression of lipogenic enzymes in muscles and backfat adipose tissue of fatty and lean piglets[J]. Animal:An International Journal of Animal Bioscience,13(10):2406-2418. doi:10.1017/S17517311190 00673.
Pena R N,Ros-Freixedes R,Tor M,Estany J. 2016. Genetic marker discovery in complex traits:A field example on fat content and composition in pigs[J]. International Journal of Molecular Sciences,17(12):E2100. doi:10.3390/ijms17122100.
Renaville B,Bacciu N,Lanzoni M,Corazzin M,Piasentier E. 2015. Polymorphism of fat metabolism genes as candidate markers for meat quality and production traits in heavy pigs[J]. Meat Science,110:220-223. doi:10.1016/j.meatsci.2015.07.014.
Robinson M D,McCarthy D J,Smyth G K. 2010. edgeR:A Bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics (Oxford,England),26(1):139-140. doi:10.1093/bioinforma-tics/btp616.
Stachowiak M,Nowacka-Woszuk J,Szydlowski M,Switonski M. 2013. The ACACA and SREBF1 genes are promising markers for pig carcass and performance traits, but not for fatty acid content in the longissimus dorsi muscle and adipose tissue[J]. Meat Science,95(1):64-71. doi:10.1016/ j.meatsci.2013.04.021.
Uemoto Y,Nakano H,Kikuchi T,Sato S,Ishida M,Shibata T,Kadowaki H,Kobayashi E,Suzuki K. 2012. Fine mapping of porcine SSC14 QTL and SCD gene effects on fatty acid composition and melting point of fat in a Duroc purebred population[J]. Animal Genetics,43(2):225-228. doi:10.1111/j.1365-2052.2011.02236.x.
Voss M D,Beha A,Tennagels N,Tschank G,Herling A W,Quint M,Gerl M,Metz-Weidmann C,Haun G,Korn M. 2005. Gene expression profiling in skeletal muscle of Zucker diabetic fatty rats:Implications for a role of stea-royl-CoA desaturase 1 in insulin resistance[J]. Diabetologia,48(12):2622-2630. doi:10.1007/s00125-005-0025-2.
Wang L Y,Huang Y Q,Wang Y Z,Shan T Z. 2021. Effects of polyunsaturated fatty acids supplementation on the meat quality of pigs:A meta-analysis[J]. Frontiers in Nutrition,8:746765. doi:10.3389/fnut.2021.746765.
Wu L,Zhang H W,Na L,Zhou X H,Li X,Zhao Y R,Wen Z,He Q H. 2019. Methionine restriction at the post-weanling period promotes muscle fiber transition in piglets and improves intramuscular fat content in growing-fini-shing pigs[J]. Amino Acids,51(10-12):1657-1666. doi:10.1007/s00726-019-02802-6.
Yang B,Zhang W C,Zhang Z Y,F(xiàn)an Y,Xie X H,Ai H S,Ma J W,Xiao S J,Huang L S,Ren J. 2013. Genome-wide association analyses for fatty acid composition in porcine muscle and abdominal fat tissues[J]. PLoS One,8(6):e65554. doi:10.1371/journal.pone.0065554.
Yokota S,Sugita H,Ardiyanti A,Shoji N,Nakajima H,Hosono M,Otomo Y,Suda Y,Katoh K,Suzuki K. 2012. Contributions of FASN and SCD gene polymorphisms on fatty acid composition in muscle from Japanese black cattle[J]. Animal Genetics,43(6):790-792. doi:10.1111/j.1365- 2052.2012.02331.x.
Yun J Y,Jin H G,Cao Y,Zhang L C,Zhao Y M,Jin X,Yu Y S. 2018. RNA-Seq analysis reveals a positive role of HTR2A in adipogenesis in Yan yellow cattle[J]. International Journal of Molecular Sciences,19(6):1760. doi:10.3390/ijms19061760.
Zappaterra M,Luise D,Zambonelli P,Mele M,Serra A,Costa L N,Davoli R. 2019. Association study between backfat fatty acid composition and SNPs in candidate genes highlights the effect of FASN polymorphism in large white pigs[J]. Meat Science 156:75-84. doi:10.1016/j.meatsci.2019.05.013.
收稿日期:2022-02-19
基金項目:貴州省科技計劃項目(黔科合支撐〔2019〕2278號,黔科合服企〔2018〕4007號,黔科合成果〔2020〕1Y027號);貴州省農(nóng)業(yè)科學院科技成果轉(zhuǎn)化引導資金項目(黔農(nóng)科院科技創(chuàng)新〔2022〕01號)
通訊作者:史開志(1981-),http://orcid.org/0000-0001-7255-7180,研究員,主要從事地方豬培育及產(chǎn)業(yè)化發(fā)展研究工作,E-mail:shkzjjp@163.com
第一作者:譚婭(1989-),http://orcid.org/0000-0003-2128-2396,主要從事豬遺傳與分子育種研究工作,E-mail:Tanya_Lee@126.com