焦萱,趙蘭浩,王正中,邱勇
?灌溉水源與輸配水系統(tǒng)?
實測堰流精度效應(yīng)影響下的泄流計算方法研究
焦萱1,4,趙蘭浩1*,王正中2,3,邱勇4
(1.河海大學(xué) 水利水電學(xué)院,南京 210024;2.西北農(nóng)林科技大學(xué) 旱區(qū)寒區(qū)水工程安全研究中心旱區(qū)農(nóng)業(yè)水土工程教育部重點實驗室,西安712000;3.中國科學(xué)院 寒區(qū)旱區(qū)環(huán)境與工程研究所凍土工程國家重點實驗室,蘭州 730000;4.云南農(nóng)業(yè)大學(xué) 水利水電學(xué)院,昆明 650201)
明確直角堰在不同結(jié)構(gòu)布置選型下的超泄特性與其大小關(guān)系。針對簡化綜合流量系數(shù)假設(shè)下,基本堰流關(guān)系模型率定中的短系列多元回歸處理范式使用局限問題,由試驗統(tǒng)計特征下的不同實測堰流精度率定結(jié)果發(fā)現(xiàn)了短系列因果映射關(guān)系中的實測堰流精度統(tǒng)計效應(yīng),進而建立了多維可變堰流特征變量模糊概率關(guān)聯(lián)分布識別和實測堰流精度效應(yīng)下的一致性泄流響應(yīng)機制。超泄特征變量前后堰寬比、側(cè)堰長度和展寬比參與的多元短系列泄流計算是一種區(qū)別于傳統(tǒng)直線型斷面因果映射關(guān)系模型的多維可變模糊概率關(guān)聯(lián)分布響應(yīng);從算法機理的角度揭示了相同堰頂水頭下,前后堰寬比、側(cè)堰長度和展寬比對于指標(biāo)測流量[cr]的表征貢獻無先后大小之分,具有同等顯著地位。綜合現(xiàn)有文獻成果中不同短系列實測堰流精度樣本的應(yīng)用率定與驗證表明,方法計算結(jié)果和試驗統(tǒng)計結(jié)果一致性較好,研究成果可為相關(guān)工程的復(fù)核設(shè)計提供參考。
直角堰型;試驗統(tǒng)計;基本堰流關(guān)系模型;實測堰流精度;泄流計算方法
【研究意義】溢流堰作為溢洪道中一種用途廣泛的泄流防洪設(shè)施,其流量施測及控制不僅是水流邊界近似的基本條件,也是加強水資源合理分配及雨洪高效利用的重要保障。近年來,隨著極端氣候出現(xiàn)頻率的加快及人類活動建設(shè)需要,可能最大洪水PMF或最大降水PMP的工程設(shè)計理念已不能滿足全球普遍提高的泄水建筑物洪水標(biāo)準(zhǔn)要求,甚至還要考慮潰壩等極端致災(zāi)因子影響下的未來不確定超泄復(fù)核問題[1-3]。相比短期增加溢洪道或改變溢洪道尺寸的除險加固思路限制,尋找一種區(qū)別于常見直線式擋水泄流,即能解決傳統(tǒng)泄流型式與地形、生態(tài)間日漸凸顯的矛盾,又能用于已建工程升級改造的結(jié)構(gòu)布置型式格外迫切。
【研究進展】直角堰型整體構(gòu)造簡潔,溢流前緣長,環(huán)境適應(yīng)性強,在當(dāng)前泄流寬度有限又想提高作用水頭泄流能力的工程實際下是一種相對經(jīng)濟可靠的新選擇[4]。作為結(jié)構(gòu)布置選型的關(guān)鍵,首先要明確不同物理情境下的超泄特性及其大小,主要是以概化水工模型試驗研究為主,張靖等[5]、Zhang等[6]率先基于直線堰型的參數(shù)化改變方案對比,得出了試驗綜合流量系數(shù)估算公式及相應(yīng)流量擴大倍數(shù);李慶梅等[7]通過不同側(cè)堰長度變化下的泄流擬合分析,提出了直角堰型泄流能力大小并不受側(cè)堰長度變化影響的結(jié)論;邱勇等[8]利用側(cè)堰平面位置對前堰長度的影響,發(fā)現(xiàn)了前堰長度與泄流能力大小呈非線性變化的特性;周鑫宇等[9]融合前堰和側(cè)堰協(xié)調(diào)作用變化的考量,明確了側(cè)堰在泄流能力大小差異化表達中的次要影響;王尚金等[10]在對比觀察實際過堰水流流態(tài)演變時,指出了以往部分組合變量研究的片面性,并在文獻[5]的變量選擇基礎(chǔ)上進一步證明了多結(jié)構(gòu)特征變量下的直接非線性溢流前緣長度變化;綜合上述研究多為短系列試驗回歸系數(shù)的實測精度控制近似結(jié)果,受制于短系列多元非線性回歸處理范式使用的局限問題,相比泄流量與堰頂水頭呈穩(wěn)定回歸系數(shù)相關(guān)的直線型斷面,直角堰流伴結(jié)構(gòu)耦合運動慣性及側(cè)堰隱性非恒定輸入影響客觀存在,但尚未見到相關(guān)內(nèi)容的文獻資料報道。
【切入點】最新文獻[11]中嘗試將智能黑箱算法用于求解多結(jié)構(gòu)特征變量下的直角堰型泄流能力大小并取得一定成效,但無推理映射關(guān)系所需的大樣本容量及數(shù)值計算精度卻是有限工程實踐難以滿足且適用的?!緮M解決的關(guān)鍵問題】參考文獻[12-14]中系統(tǒng)隨機變量綜合作用下的數(shù)值結(jié)果,由輸出結(jié)果圍繞概率守恒分布均值線作隨機游走的現(xiàn)象學(xué)本質(zhì),本文擬在水工模型試驗比照及統(tǒng)計結(jié)果響應(yīng)概率可靠一致的理論分析基礎(chǔ)上,通過試驗統(tǒng)計特征下的實測堰流精度率定結(jié)果分析,得到短系列因果映射關(guān)系中的實測堰流精度效應(yīng),進而在隨機點尺度量測下,建立實測堰流精度效應(yīng)影響下的直角堰流計算方法,以期對多元非線性映射系統(tǒng)中由多結(jié)構(gòu)特征變量不確定性影響導(dǎo)致的數(shù)值響應(yīng)分布差異進行較為全面的描述。
直角堰型的過堰水流屬于縱向泄流和橫向分散流的混合形態(tài),存水宮室后堰流途經(jīng)橫向側(cè)堰后轉(zhuǎn)為縱向下泄水流,進而與泄水前堰流高低交互混摻,流場空間向量運動復(fù)雜,具有典型的三維結(jié)構(gòu)相依特征(圖1(a))[10]??紤]到防洪、取水及緩解沖折水流對下游渠道沖刷等要求,其幾何結(jié)構(gòu)布置主要包括垂直于泄水方向軸線的前堰和后堰,以及平行于對稱面軸線的側(cè)堰3部分(圖1(b))。
注a為前堰寬度;b為側(cè)堰長度;c為后堰寬度;d為堰體厚度;W為渠道寬
由圖1可知,一定渠道寬度、相同堰頂水頭下,直角堰型相比直線式擋水泄流布置明顯增加了溢流前緣長度擴展的可能并有助于提高有限流域超泄能力的產(chǎn)生。基于結(jié)構(gòu)尺寸斷面概化,考慮波的傳播擴散及近似摩阻對沿程水流輸運的影響,可由傳統(tǒng)非恒定流Saint Venant’s方程組對相應(yīng)堰流推導(dǎo)量的定變分離集數(shù)組成進行校正歸一并引入擬Lipschit等價變換得其基本堰流關(guān)系模型為:
故對于同一客觀物理實際過程,由于實測樣本變量自身選擇的不確定,存在簡化綜合流量系數(shù)假設(shè)下的基本堰流關(guān)系模型可能表達形式多樣化:
1)張靖等[5]、Zhang等[6]的泄流關(guān)系模型,回歸系數(shù)=0.951。為了研究直角堰型的泄流能力大小,張靖團隊以基本直線型堰流模型為基礎(chǔ),對參數(shù)化水工模型試驗數(shù)值影響表現(xiàn)采用綜合流量系數(shù)假設(shè)進行簡化擬合率定,進而得到了等效直線堰寬作用下的渠道寬度泄流表達形式為:
該式說明,直角堰型的泄流能力大小由已知結(jié)構(gòu)幾何參數(shù)賦予,其作用特征變量可能包括堰頂水頭(m)、堰高(m)、前堰寬(m)、后堰寬(m)、渠道寬(m)和等效直線堰寬(m)6種。上述變量影響的回歸處理表現(xiàn)為堰頂水頭與堰高比、展寬比和前后堰寬比分別與綜合流量系數(shù)m呈正相關(guān),且直接影響相應(yīng)泄流能力的數(shù)值表達。
2)王尚今等[10]的泄流關(guān)系模型,回歸系數(shù)=0.990。王尚今等[10]直接以結(jié)構(gòu)幾何參數(shù)非線性作用變量對比試驗為基礎(chǔ),通過觀察實際水流-結(jié)構(gòu)的耦合交互形態(tài)差異,進一步分析得到了考慮溢流前緣長度變化下的等效直線堰寬流量系數(shù)L為:
式中:a1、a2、b1、b2、c1、c2分別為與結(jié)構(gòu)參數(shù)有關(guān)的函數(shù)回歸型參數(shù)表達[8]。
式中:分別為堰頂水頭、測流量統(tǒng)計序列變化值,其中為自然變數(shù)。
圖2 模型計算值與實測數(shù)值比照結(jié)果
由圖2可知,當(dāng)以文獻[17]中的確定可靠相對量測誤差8%記,且充分考慮各堰流計算模型的應(yīng)用條件及試驗水流表面張力影響,將統(tǒng)計對比變化序列參考閥值取0 L/s時,各泄流關(guān)系模型計算點據(jù)與實測分布一致性較差,但有效區(qū)間內(nèi)的數(shù)值單調(diào)性滿足式(1)中的直角堰型基本確定性函數(shù)關(guān)系性質(zhì),現(xiàn)引入橫縱指標(biāo)變量倚變連系定義得其在確定函數(shù)關(guān)系下的統(tǒng)計形變保持判斷為:
排除理想大樣本假設(shè)下的形變漸進穩(wěn)定條件,當(dāng)考慮有限實測隨機環(huán)境精度變化量測作為基于多種直角堰流特征變量組合作用的某種不確定性而建立的某種特殊概率期模糊反饋度量時,在涉及不同確定實測精度回歸參變的情況下,由形變函數(shù)理論可證,式(5)存在局部概率單向形變滿足適應(yīng),且反量替換表達不足的情況:
同時綜合當(dāng)前等效直線堰寬下綜合流量系數(shù)多元非線性回歸選配函數(shù)性質(zhì)的相似性,受制于多元非線性回歸處理范式的有限,存在變量實測樣本容量的無指標(biāo)確定缺陷使得相應(yīng)函數(shù)的數(shù)形表達屬于欠或過擬合證明的可能。相比泄流量與堰頂水頭呈穩(wěn)定線性系數(shù)相關(guān)的直線型斷面,不同試驗方案下的直角堰流屬于伴多種結(jié)構(gòu)尺寸耦合作用的慣性運動,側(cè)堰隱性非恒定輸入影響的客觀存在,使得短系列因果映射關(guān)系在重積分概念下分解為:
式中:(,)為直角堰型反饋度量表征;(,)為不同維度直角堰型模糊邊緣表征;(h,q)為直角堰型多變量邊緣表征。
即隨機點尺度量測下,直角堰型多元短系列堰流計算模型通常難以確定性構(gòu)建表達且更傾向于一種區(qū)別于傳統(tǒng)短系列因果映射關(guān)系的多維可變模糊概率關(guān)聯(lián)分布響應(yīng)機制,稱為實測堰流精度效應(yīng)影響。
2.1.1 可變堰流特征變量邊緣子集序列概率標(biāo)定
式中:Δ為恒同關(guān)系。
式中:為集合元素;(X=x)為集合元素點概率;()為概率分布密度函數(shù)。
其中參考影響分布選擇表達的定性參數(shù)組成及集合元素序列長短需要,決定輔助采用Maximum Likelihood法進行循跡定量確定:
同時基于隨機自然分布F(X)和經(jīng)驗精度概率累積表達F(X)構(gòu)造的改進Kolmogorov-smimov檢驗識別量D表示為:
式中:D為單元素集合最大偏差;D為區(qū)間元素集合極大偏差。
2.1.2 多維堰流特征變量關(guān)聯(lián)分布識別擴張
式中:、分別為被、標(biāo)記的不同變量子集元素值;為kendall’s秩形系數(shù);為線性型系數(shù)。
由此參考Sklan定理對分離表示成邊緣分布與條件分布之積的多元隨機變量關(guān)聯(lián)分布進行耦合維度轉(zhuǎn)換得:
(1,2,3… x)=[1(1),2(2),3(3)…T(x),(14)
式中:(1,2,3x)為多元聯(lián)合分布;為連接函數(shù);T(x)為標(biāo)定邊緣子集特征變量分布。
其中令的不同連接函數(shù)型選擇為[19]:
最終采用Inference of Function for Margins法分析推得其關(guān)聯(lián)分布識別擴張的誘導(dǎo)度量d組成為:
進而以標(biāo)定邊緣子集特征變量分布的拓?fù)浼軜?gòu)擴張連接函數(shù)關(guān)系為基礎(chǔ)進行多維分布一致的有界性檢驗識別決策[20]:
式中:、分別為信息準(zhǔn)則值;為變量參數(shù)個數(shù);為樣本數(shù)量。
2.2.1 隨機多元輸入尺度下的變量一致性響應(yīng)輸出
以上述直角堰流特征變量的先驗多維概率關(guān)聯(lián)分布識別擴張f()為輸入源建立輸出響應(yīng)機制,并根據(jù)實際工程運行需要設(shè)置若干臨界數(shù)值分類區(qū)間以防止響應(yīng)輸出抵界失效,堰流區(qū)間內(nèi)的基本堰流模型響應(yīng)關(guān)系如下:
=(), (18)
式中:為輸入測流量(L/s);()為模型一致性推理學(xué)習(xí)響應(yīng)面。
式中:為判斷函數(shù)。
考慮到組合方程積分的復(fù)雜性,依據(jù)代數(shù)序結(jié)構(gòu)中變量延拓與幾何維度變化無關(guān)的性質(zhì)[18],采用Levy-Lindberg中心極限定理進行概率轉(zhuǎn)換服從,則由Monte Carlo模擬仿真計算得到的數(shù)值發(fā)生概率為:
2.2.2 PSO-LSSVM一致性推理學(xué)習(xí)響應(yīng)面
參考客觀流動介質(zhì)輸運的時間序列震蕩、空間分布不均和采樣結(jié)果不重復(fù)特征刻畫,選擇LSSVM向量機學(xué)習(xí)并構(gòu)建泄流量與堰流特征變量邊緣子集間的多維模糊概率關(guān)聯(lián)分布的一致性推理學(xué)習(xí)響應(yīng)面:
其中,影響LSSVM向量機推理效率的相關(guān)參數(shù)優(yōu)化由加權(quán)減量的改進PSO算法進行初始化搜索迭代更新,以可能避免傳統(tǒng)試錯或經(jīng)驗達成所導(dǎo)致的模型性能不可靠或不穩(wěn)定問題,繼而以廣義均方誤差為目標(biāo)函數(shù)條件對相應(yīng)數(shù)值變化求解的速率和位置進行確定:
參考最新水工建筑物泄水及灌溉標(biāo)準(zhǔn)[21],由Dirichlet邊界流量試驗工況假設(shè),排除過堰水躍回流淹沒對局部堰頂水頭的影響,分別對現(xiàn)有文獻成果特征變量取值下的不同案例樣本序列進行有效來源半徑篩選,最終得到187組原始標(biāo)定邊緣子集變量的短系列實測堰流精度樣本行為統(tǒng)計描述(圖3)。
原始標(biāo)定邊緣子集變量統(tǒng)計序列(>40)在置信性水平取0.010的條件下,當(dāng)改進檢驗識別量值D≤187,99%時,差異不確定概率分布下的累積選擇表達成立,反之[22]。當(dāng)存在多個累積表達選擇時,參考夾逼優(yōu)選原則[19],對不同檢驗識別量D進行自然排序匹配得到各標(biāo)定邊緣子集變量的最優(yōu)先驗行為分布算子(表1)。
圖3 實測堰流精度樣本行為統(tǒng)計描述(以堰頂水頭H為例)
表1 標(biāo)定邊緣子集最優(yōu)先驗行為分布算子
表2 標(biāo)定邊緣子集分布維度指標(biāo)依賴性分析
表3 多維關(guān)聯(lián)分布識別擴張一致有界性統(tǒng)計決策分析
對比選用表3中分析值偏離統(tǒng)計有界原點的最小程度作為決策依據(jù),在相關(guān)誘導(dǎo)度量設(shè)置下的多維堰流特征變量分布完備化識別擴張表達為:
(G,G,G,G)=1.289×107[T1(G),
T1(G), T1(G), T1(G)], (23)
式中:,1.289×107三階完備化空間度量表達;T1為單因素度量表達逆函數(shù)。
F(H,Q,) =(, H,Q), (24)
式中:(R,R,R)。
如圖4所示,對局部置信區(qū)間內(nèi)的曲線族系做外切線約束,然后將不同形變曲線上的計算節(jié)點進行拾取,可以發(fā)現(xiàn)實測精度效應(yīng)影響下同一待測流量對應(yīng)多個堰頂水頭值的非因果映射關(guān)系的事實,說明求解得到的響應(yīng)面可以作為衡量實測堰流精度效應(yīng)影響計算的響應(yīng)機制。
圖4 PSO-LSSVM一致性推理學(xué)習(xí)響應(yīng)面求解結(jié)果
進而對比不同工況下的變比尺實測試驗統(tǒng)計結(jié)果,將臨界測流量cr控制下的區(qū)間劃分為[0,10]、[10,20]、[20,30]、[30,40] 4類,得到臨界測流量cr控制下的區(qū)間數(shù)值響應(yīng)結(jié)果見表4。
表4 臨界測流量Q'cr控制下區(qū)間數(shù)值響應(yīng)對比
由表4臨界測流量cr控制下的分類區(qū)間數(shù)值響應(yīng)對比可知,不同區(qū)間內(nèi)的響應(yīng)面求解值與試驗統(tǒng)計值出現(xiàn)概率一致性較好,且計算得到的區(qū)間均值相對誤差較小,均小于0.1,表明實測堰流精度效應(yīng)影響下的直角堰流計算方法能夠滿足相關(guān)工程復(fù)核設(shè)計精度需要。
考慮短系列試驗樣本中實測堰流精度效應(yīng)影響下的不確定性響應(yīng)機制構(gòu)建表達,圖5分別給出各直角堰流特征變量邊緣子集序列在多維模糊概率關(guān)聯(lián)中的邊緣保留分布求解,從圖5可以直觀看出G,G、G,G或G,G一定的條件下,各邊緣保留倚靠關(guān)系分布值隨構(gòu)成變量的增大而增大,整體分布正態(tài)性較好,無偏度依賴及累積變異值的出現(xiàn),這符合現(xiàn)有試驗成果統(tǒng)計事實,即一定數(shù)值區(qū)間范圍內(nèi),前后堰寬比、側(cè)堰長度和展寬比越接近臨界最值時,其對應(yīng)堰頂水頭和測流量也越趨近臨界值,故能夠?qū)Χ嘣蔷€性系統(tǒng)中由多結(jié)構(gòu)特征變量不確定性影響導(dǎo)致的數(shù)值響應(yīng)分布差異進行較為全面的描述。同時區(qū)別于基本堰流關(guān)系模型在傳統(tǒng)簡化綜合流量系數(shù)假設(shè)下不同實測精度變量選擇控制近似的方法,相同堰頂水頭下,對比前后堰寬比、側(cè)堰長度和展寬比對于指標(biāo)測流量[cr]的表征貢獻顯著性,無先后大小之分,具有同等地位,從算法機理角度揭示了以展寬比為代表的等效直線堰寬及包含多種特征變量的綜合流量系數(shù)0可以被選為傳統(tǒng)因果映射回歸處理方法中固定變量的原因,但相比泄流量與堰頂水頭呈穩(wěn)定回歸系數(shù)相關(guān)的直線型單一特征變量斷面,其主要差異體現(xiàn)在分別以各特征變量邊緣子集保留分布內(nèi)可變概率數(shù)值的出現(xiàn)及可能聯(lián)合模糊概率數(shù)值的產(chǎn)生作為結(jié)構(gòu)耦合作用影響的直接幾何非恒定輸入、輸出,建立了多維可變特征斷面下的堰流一致性響應(yīng)機制,進而解決了有限隨機點尺度量測下確定欠或過擬合函數(shù)形表達的問題,這也側(cè)面印證了作為超泄特征變量和參與的多元短系列泄流計算模型通常難以確定性回歸構(gòu)建表達,實測堰流精度效應(yīng)影響的客觀存在性。研究成果可為類似工程的復(fù)核設(shè)計提供參考。
圖5 多維模糊概率關(guān)聯(lián)中的不同邊緣保留分布
1)實測堰流精度效應(yīng)影響下,超泄特征變量前后堰寬比、側(cè)堰長度和展寬比參與的多元短系列泄流計算模型通常難以確定性構(gòu)建表達且更傾向于一種區(qū)別于傳統(tǒng)直線型斷面因果映射關(guān)系的多維可變模糊概率關(guān)聯(lián)分布響應(yīng)。
2)區(qū)別于基本堰流關(guān)系模型在傳統(tǒng)簡化綜合流量系數(shù)假設(shè)下不同實測精度泄流特征變量選擇控制近似的方法,從算法機理的角度揭示了相同堰頂水頭下,前后堰寬比、側(cè)堰長度和展寬比對于指標(biāo)測流量[cr]的表征貢獻無先后大小之分,具有同等顯著地位。
3)綜合現(xiàn)有文獻成果中不同短系列實測堰流精度樣本的應(yīng)用率定與驗證結(jié)果,由臨界測流量cr控制下的分類區(qū)間數(shù)值響應(yīng)對比可知,方法計算值與試驗統(tǒng)計值出現(xiàn)概率一致性較好,且區(qū)間均值相對誤差均小于0.1,表明實測堰流精度效應(yīng)影響下的直角堰流計算方法能夠為相關(guān)工程的復(fù)核設(shè)計提供參考。
[1] 王兆印, 張晨笛. 西南山區(qū)河流河床結(jié)構(gòu)及消能減災(zāi)機制[J]. 水利學(xué)報, 2019 , 50(1) : 124-134, 154.
WANG Zhaoyin, ZHANG Chendi. River bed structure and energy dissipation and disaster reduction mechanism in Southwest Mountainous Areas[J]. Journal of Hydraulic Engineering, 2019, 50 (1): 124-134, 154.
[2] 王文娥, 廖偉, 陳土成, 等. 堰槽組合設(shè)施測流機制試驗研究[J]. 水科學(xué)進展, 2021, 32(6): 922-932.
WANG Wen’e, LIAO Wei, CHEN Tucheng, et al. Experimental study on flow measurement mechanism of weir trough combined facilities[J]. Advances in Water Science, 2021, 32(6): 922-932.
[3] 盛金保, 厲丹丹, 蔡蕁, 等. 大壩風(fēng)險評估與管理關(guān)鍵技術(shù)研究進展[J].中國科學(xué): 技術(shù)科學(xué), 2018, 48(10): 1 057-1 067.
SHENG Jinbao, LI Dandan, CAI Qian, et al. Research progress on Key Technologies of dam risk assessment and management[J]. Scientia Sinica (Technologica) , 2018 , 48(10): 1 057-1 067.
[4] 教育部科技查新工作站(N12).科技查新報告(201836000N120002)[R]. 昆明: 教育部科技查新工作站(N12), 2018.
Science and technology novelty search workstation of the Ministry of Education (N12). Science and technology novelty search report (201836000n1120002)[R]. Kunming: Science and Technology Novelty Search Workstation of the Ministry of Education (N12), 2018.
[5] 張靖, 常倩, 張慶華, 等. Z形薄壁堰過流能力試驗[J]. 水利水電科技進展, 2017(6): 38-43.
ZHANG Jing, CHANG Qian, ZHANG Qinghua, et al. Overflow capacity test of Z-shaped thin-walled weir[J]. Advances in Science and Technology of Water Resources, 2017 (6): 38-43.
[6] ZHANG Jing, ZHANG Qian, LI Shuning, et al. Experimental study on discharge coefficient of a gear-shaped weir[J]. Water Science and Engineering, 2018, 11(3): 86-92.
[7] 李慶梅, 邱勇, 王尚今, 等. 側(cè)堰長度變化對直角折線堰過流能力影響研究[J]. 水利與建筑工程學(xué)報, 2019, 17(6): 177-181.
LI Qingmei, QIU Yong, WANG Shangjin, et al. Study on the influence of the length change of side weir on the discharge capacity of right angle broken line weir[J]. Journal of Water Resources and Architectural Engineering, 2019, 17 (6): 177-181.
[8] 邱勇, 陸懷茶, 周鑫宇, 等. 側(cè)堰位置對生態(tài)河道直角折線堰泄流影響分析[J]. 浙江水利水電學(xué)院學(xué)報, 2020, 32(1): 10-14.
QIU Yong, LU Huaicha, ZHOU Xinyu, et al. Impact of side weir position on discharge of rectangular broken line weir in ecological river[J]. Journal of Zhejiang University of Water Resources and Electric Power, 2020, 32 (1): 10-14.
[9] 周鑫宇, 邱勇, 王尚今, 等. 直角折線堰在生態(tài)河道中的應(yīng)用研究[J].水利與建筑工程學(xué)報, 2020, 18(3): 135-138.
ZHOU Xinyu, QIU Yong, WANG Shangjin, et al. Application of right angle broken line weir in ecological river[J]. Journal of Water Resources and Architectural Engineering, 2020, 18 (3): 135-138.
[10] 王尚今, 邱勇, 周鑫宇, 等. 溢流前緣長度變化對直角折線堰過流能力影響研究[J]. 水利規(guī)劃與設(shè)計, 2020, 4(6): 162-167.
WANG Shangjin, QIU Yong, ZHOU Xinyu, et al. Study on the influence of the length change of overflow front on the overflow capacity of right angle broken line weir[J]. Water Resources Planning and Design, 2020, 4 (6): 162-167.
[11] 邱勇, 楊澤文, 周鑫宇, 等. 基于BP神經(jīng)網(wǎng)絡(luò)的直角折線堰過流能力預(yù)測[J]. 水電能源科學(xué), 2021, 39(3): 74-77.
QIU Yong, YANG Zewen, ZHOU Xinyu, et al. Prediction of discharge capacity of rectangular broken line weir based on BP neural network[J]. Water Resources and Power, 2021, 39(3): 74-77.
[12] 葉恩立, 周宜紅. 施工導(dǎo)流堰前水位分布的概率密度演化方法[J]. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報, 2014, 22(2): 209-215.
YE Enli, ZHOU Yihong. Probability density evolution method of water level distribution in front of construction diversion weir[J]. Journal of Basic Science and Engineering, 2014, 22 (2): 209-215.
[13] MORTAZAVI Seyedmortazavi , MOHAMADI Maryam, JOUZDANI J-avid. MTBF evaluation for 2-out-of-3 redundant repairable systems with common cause and cascade failures considering fuzzy rates for failures and repair: a case study of a centrifugal water pumping system[J]. Journal of Industrial Engineering International, 2018(14): 281-291.
[14] 胡志根, 劉全, 賀昌海, 等. 基于Monte-Carlo方法的土石圍堰擋水導(dǎo)流風(fēng)險分析[J]. 水科學(xué)進展, 2002(5): 634-638.
HU Zhigen, LIU Quan, HE Changhai, et al. Risk analysis of water retaining and diversion of earth rock cofferdam based on Monte Carlo method[J]. Advances in Water Science, 2002 (5): 634-638.
[15] 劉善均, 許唯臨, 王韋, 等. 寬淺式水庫庫水位差異對泄水建筑物下泄流量的影響[J]. 四川大學(xué)學(xué)報(工程科學(xué)), 2003(3):18-20.
LIU Shanjun, XU Weilin, WANG Wei, et al. Influence of water level difference of wide shallow reservoir on discharge of discharge structure[J]. Journal of Sichuan University (Engineering Science Edition), 2003 (3): 18-20.
[16] KNIGHT Donaldw, HAMED Mohammede. Boundary Shear in Symmetrical Compound Channels[J]. Journal of Hydraulic Engineering, 1984, 110(10): 1 412-1 430.
[17] 水電水利工程常規(guī)水工模型試驗規(guī)程. DL/T 5244—2010[S].
[18] KHANJANI Shirazrashed, KHODAYIFAR Salman, PARDALOS Pa-Panosm. Copula theory approach to stochastic geometric program ming[J]. Journal of Global Optimization, 2021(81): 435-468.
[19] APPLEBY Marcus , FLAMMIA Steven , MCCONNELL Gary , et al. SICs and Algebraic Number Theory[J]. Foundations of Physics, 2017, 47(1):1-18.
[20] ALGER Jeffryr, MINHAJUDDIN Abu, SHERRY Adean, et al. Analysis of steady-state carbon tracer experiments using akaike information criteria[J]. Metabolomics, 2021, 17(7): 1-15.
[21] 水利水電工程等級劃分及洪水標(biāo)準(zhǔn). SL 252—2000[S].
[22] MOSLEH Ali. Common cause failures: An analysis methodology and examples[J]. Reliability Engineering System Safety, 1991, 34(3): 249-292.
Calculating Water Flow Rate with Measurement Errors of the Weir Considered
JIAO Xuan1,4, ZHAO Lanhao1*, WANG Zhengzhong2,3, QIU Yong4
(1. College of Water Resources and Hydropower, Hohai University, Nanjing 210024, China; 2. Cold and Arid Regions Water Engineering Safety Research Center, Key Laboratory Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of Education, Northwest A&F University, Xi’an 721000, China;3.Sate Key Laboratory of Frozen Soil Engineering, CAS, Lanzhou 730000, China;4. College of Water Resources and Hydropower, Yunnan Agricultural University, Kunming 650201, China)
Weir is a classical apparatus measuring water flow rate in open channels. Its accuracy and the formula used to calculate flow rate depend on many factors. In this paper, we proposed a new method to calculate flow rate with measurement errors of the Weir taken into account.Considering the limitation of short series in multiple regression for calibrating the basic weir flow using the simplified lumped flow coefficient, the statistical effect of the accuracy of weir-measured flow in short series causal mapping relationship is found from the calibration results of different measured weir flow accuracy under the experimental statistical characteristics. The consistent response mechanism under the effect of multi-dimensional variable weir flow characteristic variable fuzzy probability correlation distribution identification and measured weir flow accuracy is established.The multivariate short series discharge calculation involving the front and rear weir width ratio, the side weir lengthand the expansion ratiois a multidimensional variable fuzzy probability correlation distribution response different from the traditional linear section causal mapping model; From the perspective of algorithm mechanism, it is revealed that under the same weir crest head, the contribution of front and rear weir width ratio, side weir lengthand widening ratioto the characterization of the index measured discharge [cr] is of equal significance.The application calibration and verification of different short series measured weir flow accuracy samples in the existing literature results show that the calculation results of the method are in good agreement with the experimental statistical results, and the research results can provide reference for the design review of similar projects.
right angle weir type; test statistics; basic weir flow model; measured weir flow accuracy; discharge
TV83
A
10.13522/j.cnki.ggps.2021421
焦萱, 趙蘭浩, 王正中, 等. 實測堰流精度效應(yīng)影響下的泄流計算方法研究[J]. 灌溉排水學(xué)報, 2022, 41(6): 105-112, 146.
JIAO Xuan, ZHAO Lanhao, WANG Zhengzhong, et al.Calculating Water Flow Rate with Measurement Errors of the Weir Considered[J]. Journal of Irrigation and Drainage, 2022, 41(6): 105-112, 146.
1672 -3317(2022)06 - 0105 – 09
2021-09-02
云南省教育廳科學(xué)研究基金項目(2018Y068)
焦萱(1994-),男。博士研究生,主要從事流固耦合及水工結(jié)構(gòu)抗震方面研究。E-mail: jiaoxuan@stu.ncwu.edu.cn
趙蘭浩(1980-),男。教授,博士生導(dǎo)師,博士,主要從事流固耦合及水工結(jié)構(gòu)抗震方面研究。E-mail: zhaolanhao@hhu.edu.cn
責(zé)任編輯:白芳芳