羅蘭德?豪塞爾
Outline of Database Semantics (DBS)
Roland HAUSSER
(Universitt Erlangen-Nürnberg, Bavaria, Germany)
Abstract: Database Semantics (DBS) models the cycle of natural language communication as a transition from the hear to the think to the speak and back to the hear mode (turn taking). In contradistinction to the substitution-driven sign-based approaches of truth-conditional semantics and phrase structure grammar, DBS is data-driven and agent-based. The purpose is a theory of semantics for an autonomous robot with language. Propositions are content in DBS, instead of denoting truth values (Sects. 1-3). Content is built from the semantic kinds of referent, property, and relation, which are concatenated by the classical semantic relations of structure, i.e. functor-argument and coordination. To enable reference as an agent-internal cognitive process, language and nonlanguage contents use the same computational data structure and operation kinds, and differ mostly in the presence vs. absence of language-dependent surface values. DBS consists of (i) an interface, (ii) a memory, and (iii) an operation component①.The interface component mediates between the agent’s cognition and its external and internal environment, represented as raw data provided by sensors and activators (Sects. 4-7). The data of the agent’s moment by moment monitoring are stored at the memory’s now front. As part of the on-board control unit, the now front is the location for performing the procedures of the operation component, resulting in content.
Keywords: data structure; data base schema; pattern matching; turn taking; type-token; grounding; sensory and processing media and modalities; reference
摘 要:數(shù)據(jù)庫語義學(xué)(Database Semantics,DBS)將自然語言交流的周期構(gòu)建為從聽覺過渡到思維再過渡到說話,然后從說話返回到聽覺的模式(這是一個(gè)循環(huán)模式)。與真值條件語義學(xué)和短語結(jié)構(gòu)語法使用的替換驅(qū)動(dòng)和基于符號的方法不同,數(shù)據(jù)庫語義學(xué)是數(shù)據(jù)驅(qū)動(dòng)的和基于智能代理的。其目的是為具有語言能力的自主機(jī)器人提供一種語義學(xué)理論。在數(shù)據(jù)庫語義學(xué)中,命題是表示內(nèi)容的,而不是表示真值的(第1—3節(jié))。內(nèi)容由指稱、屬性和關(guān)系等語義類建立起來,它們由經(jīng)典的結(jié)構(gòu)語義關(guān)系,即函子論元和協(xié)調(diào)關(guān)系串聯(lián)而成。為了使指稱成為一個(gè)智能代理內(nèi)部的認(rèn)知過程,語言和非語言的內(nèi)容都使用了相同的計(jì)算數(shù)據(jù)結(jié)構(gòu)和操作種類,而它們之間的主要區(qū)別在于是否存在與語言相關(guān)的表面值。數(shù)據(jù)庫語義學(xué)包括三部分:(i)一個(gè)交互界面,(ii)一個(gè)存儲器,(iii)一個(gè)操作組件。交互界面部分在智能的認(rèn)知與其外部和內(nèi)部環(huán)境之間進(jìn)行協(xié)調(diào),表示為由傳感器和激活器提供的原始數(shù)據(jù)(第4—7節(jié))。智能代理每時(shí)每刻的監(jiān)測數(shù)據(jù)都被存儲在存儲器的前端。作為智能代理控制單元的一部分,存儲器的這個(gè)前端就是執(zhí)行操作組件程序的位置所在,它是在內(nèi)容中產(chǎn)生的。
關(guān)鍵詞:數(shù)據(jù)結(jié)構(gòu);數(shù)據(jù)庫圖式;模式匹配;循環(huán)模式;類符-形符;基礎(chǔ);感覺、處理媒體和情態(tài);指稱
中圖分類號:H08;H030;TP392? 文獻(xiàn)標(biāo)識碼:A? DOI:10.12339/j.issn.1673-8578.2022.03.002
收稿日期:2022-04-24? 修回日期:2022-05-18
Bibliography
[1] NEUMANN J V. First Draft of a Report on the EDVAC[J]. IEEE Annals of the History of Computing, 1945: 27-75.
[2] PEIRCE C S. The Collected Papers of Charles Sanders Peirce [C]. HARTSHORNE C, WEISS P (eds.). Cambridge, MA: Harvard Univ. Press, 1931—1935, 4:537.
[3] ELMASRI R, NAVATHE S B. Fundamentals of Database Systems[M]. 1st ed(1989)—7th ed (2017). Redwood City, CA: Benjamin-Cummings.
[4] HAUSSER R. A Computational Model of Natural Language Communication: Interpretation, Inference, and Production in Database Semantics[M]. Berlin: Springer-Verlag, 2006.
[5] HAUSSER R. Computational Linguistics and Talking Robots: Processing Content in Database Semantics[M]. Berlin: Springer-Verlag, 2011.
[6] MENON V. Developmental cognitive neuroscience of arithmetic: implications for learning and education[J]. ZDM (Zentralblatt für Didaktik der Mathematik). 2011, 42(6):515-525.
[7] DODT E, ZOTTERMAN Y. The Discharge of Specific, Cold Fibres at High Temperatures[J]. Acta Physiologica Scandinavica, 1952, 26(4): 358-365.
[8] MARCUS R B. Modalities and Intensional Languages[J]. Synthese, 1961, 13(4):303-322.
[9] KIEFER F. Two kinds of epistemic modality in Hungarian[C]//GUENTCHVA Z(ed.). Empirical Approaches to Language Typology, 2018, DOI: 10.1515/9783110572261-013.
[10] BENSON D F. The Neurology of Thinking[M]. New York: OUP, 1994, https://doi.org/10.1002/ana.410360535.
[11] REIMER M, MICHAELSON E. Reference[J/OL]. Stanford Encyclopedia of Philosophy Archive, Winter 2014 Edition.http://plato.stanford.edu/archives/win2014/entries/reference.
[12] HAUSSER R. Computational Cognition, Integrated DBS Software Design for Data-Driven Cognitive Processing[M/OL]. 2019: i-xii, 1-237, lagrammar.net.
[13] NEWELL A, SIMON H A. Human Problem Solving[M]. Englewood Cliffs, New Jersey: Prentice-Hall, 1972.
[14] HAUSSER R. Foundations of Computational Linguistics: Human-Computer Communication in Natural Language[M]. 3rd ed. Berlin: Springer-Verlag, 2014.
[15] QUINE W V O. Word and Object[M]. Cambridge, Mass.: MIT Press,1960.
[16] AHO A V, ULLMAN J D. Principles of Compiler Design[M]. Reading, Mass.: Addison-Wesley. 1977: 47.
[17] HAUSSER R. Complexity in Left-Associative Grammar[J]. Theoretical Computer Science, 1992, 106(2):283-308.
[18] BARSALOU W, SIMMONS W K, BARBEY A K, et al. Grounding conceptual knowledge in modality-specific systems[J]. TRENDS in Cognitive Sciences, Elsevier, 2003,7(2):84-91.
[19] STEELS L. The symbol grounding problem has been solved. so what’s next?[C]//DE VEGA M. Symbols and Embodiment: Debates on Meaning and Cognition, Oxford: Oxford University Press, 2008.
[10] SPRANGER M, LOETZSCH M, PAUW S. Open-ended Grounded Semantics[EB/OL]. 2010. https://csl.sony.fr/wp-content/themes/sony/uploads/pdf/spranger-10b.pdf.
[21] ROSCH E. Cognitive representations of semantic categories[J]. J. of Experimental Psychology, 1975, General 104:192-253.
[22] BIEDERMAN I. Recognition-by-components: a theory of human image understanding[J]. Psychological Review, 1987, 94:115-147.
[23] RESCHER N. Many-valued Logic[M]. New York: McGraw-Hill, 1969.
[24] ZADEH L. Fuzzy sets[J]. Information and Control, 1965, 8:338-353.
Author Introduction:
Roland Hausser (1946—),studied computational linguistics at the University of Texas at Austin and graduated with a Ph.D.(1970—1974),taught at the Ludwig-Maximilians University in Munich, and obtained a Dr. phil. habil.(1974—1983), stayed at the Universities of Pittsburgh and Stanford supported by a five year Heisenberg grant (1983—1988). In 1989, Hausser founded the Laboratory of Computational Linguistics at the University Erlangen-Nuernberg (CLUE).? Among his numerous publications is the textbook “Foundations of Computational Linguistics” (FoCL), now in its third edition. For a more detailed vita see lagrammar.net. E-mail: rolandhausser662@gmail.com.