国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

能量代謝紊亂在高原心臟病發(fā)生過(guò)程中的作用*

2022-07-06 02:00:26韓藝瑋張致英郝美莉張曉英
中國(guó)病理生理雜志 2022年6期
關(guān)鍵詞:糖酵解重塑高原

韓藝瑋, 張致英, 郝美莉, 張曉英

能量代謝紊亂在高原心臟病發(fā)生過(guò)程中的作用*

韓藝瑋, 張致英, 郝美莉, 張曉英△

(西藏民族大學(xué)醫(yī)學(xué)院,西藏民族大學(xué)藏藥檢測(cè)技術(shù)教育部工程研究中心,陜西 咸陽(yáng) 712082)

高原心臟??;動(dòng)脈型肺動(dòng)脈高壓;右心室肥厚;能量代謝紊亂;缺氧誘導(dǎo)因子1α;過(guò)氧化物酶體增殖物激活受體

高原地區(qū)具有海拔高(≥3 000 m以上)、氣壓低、氧分壓低的特點(diǎn),易導(dǎo)致機(jī)體缺氧從而引發(fā)一系列急、慢性高原病,如急性肺水腫、高原紅細(xì)胞增多癥、缺氧性腦水腫、急慢性高原心臟?。╤igh-altitude heart disease, HAHD)等,給高原地區(qū)居民人們的身心健康帶來(lái)嚴(yán)重危害。其中慢性HAHD發(fā)病率高,危害大,不易逆轉(zhuǎn),預(yù)后差。更重要的是HAHD還會(huì)導(dǎo)致心臟、大腦和腎臟的衰竭,從而嚴(yán)重縮短壽命,是高海拔地區(qū)居民和平原移居人群必須重視的健康問(wèn)題。

本文從動(dòng)脈型肺動(dòng)脈高壓(pulmonary arterial hypertension, PAH)和右心室肥大(right ventricular hypertrophy, RVH)兩個(gè)方面重點(diǎn)綜述了能量代謝紊亂及其相關(guān)信號(hào)分子在HAHD發(fā)生、發(fā)展中的作用,旨在為HAHD發(fā)病機(jī)制的研究、疾病預(yù)防和治療提供參考資料。

1 HAHD概述

HAHD是指正常人移居高原后,在長(zhǎng)期低壓、缺氧環(huán)境下,引起肺小動(dòng)脈功能性和器質(zhì)性改變,出現(xiàn)缺血性PAH和負(fù)荷性RVH,最后導(dǎo)致右心功能不全,至晚期則可出現(xiàn)左室肥厚擴(kuò)大、全心衰以及心律失常等癥狀。據(jù)西藏醫(yī)學(xué)研究所在4 500~4 700 m高原的調(diào)查顯示,大約24.9%高原居民患有缺氧性RVH,明顯RVH者如不能盡快干預(yù)最終會(huì)發(fā)展為HAHD[1]。

1.1PAHPAH是HAHD發(fā)生的主要因素,其血流動(dòng)力學(xué)標(biāo)準(zhǔn)為:靜息狀態(tài)下,在海平面右心導(dǎo)管測(cè)量平均肺動(dòng)脈壓≥25 mmHg (1 mmHg=0.133 kPa)[2]。肺泡通氣不足是PAH發(fā)生的始動(dòng)因素。低壓低氧的環(huán)境會(huì)導(dǎo)致肺泡過(guò)度通氣,逐漸轉(zhuǎn)變?yōu)橄鄬?duì)低通氣和肺泡通氣不足,通氣血流比值失調(diào),導(dǎo)致肺泡和動(dòng)脈血氧分壓降低,進(jìn)而造成缺氧通氣反應(yīng)[3]和缺氧性肺血管收縮[4]。研究顯示,海拔越高,吸入氣氧分壓下降越顯著,PAH的程度也越明顯[5]。其次,慢性持續(xù)低氧可導(dǎo)致高原紅細(xì)胞增多癥,血液粘滯性增加,肺血容量增多,進(jìn)一步加劇PAH的形成。

在PAH發(fā)生、發(fā)展中發(fā)揮決定性因素的是肺血管重構(gòu)[6],即表現(xiàn)為:血管內(nèi)皮損傷、中膜增厚、周?chē)艿募±w維化和細(xì)胞外基質(zhì)增多等,進(jìn)而引起肺血管管腔狹窄、血管壁增厚等構(gòu)象改變,甚至出現(xiàn)閉塞性病變[4, 6]。有報(bào)道指出,高原居民表現(xiàn)出RVH及肺血管壓力增高,大多因?yàn)殚L(zhǎng)期缺氧引起不可逆轉(zhuǎn)的肺血管重構(gòu)[7]。相似的結(jié)果也出現(xiàn)在動(dòng)物模型中:高海拔低氧牛模型中肺血管表現(xiàn)出廣泛的膠原沉積和血管中膜增厚重構(gòu)[8];PAH小鼠模型出現(xiàn)明顯的肺動(dòng)脈肌化增加、血管閉塞和血管重塑等改變[9-10]。因此肺血管重構(gòu)是PAH發(fā)生、發(fā)展的關(guān)鍵因素,導(dǎo)致RVH及右心功能進(jìn)行性衰竭。

1.2RVH及右心功能不全RVH或右心功能不全作為HAHD的主要特征,同時(shí)也是PAH導(dǎo)致心臟后負(fù)荷增加的結(jié)果,具體表現(xiàn)為:右心室擴(kuò)張,室間隔增厚,且隨著右心房壓力的不斷增加,下腔靜脈擴(kuò)張,失去吸氣性塌陷,會(huì)伴發(fā)一定程度的三尖瓣返流[9]。但也有研究顯示,在HAHD發(fā)生的過(guò)程中,只出現(xiàn)RVH,并未存在擴(kuò)張[10],導(dǎo)致不同的結(jié)果可能是由于采用的實(shí)驗(yàn)?zāi)P鸵约叭毖醯某潭群统掷m(xù)時(shí)間存在差異,特別是高海拔環(huán)境中的混雜因素所致。此外,需要重點(diǎn)關(guān)注的是PAH后負(fù)荷的長(zhǎng)期存在,促使慢性RVH逐漸發(fā)展為心力衰竭[11]。其中氧化應(yīng)激、炎癥反應(yīng)、心肌纖維化、凋亡、能量代謝紊亂等多種復(fù)雜的機(jī)制參與其中[12-13],而近年來(lái)能量代謝紊亂在HAHD發(fā)生過(guò)程中的作用逐漸受到重視。

2 能量代謝紊亂促進(jìn)HAHD向心衰的發(fā)生

底物利用轉(zhuǎn)變和線粒體功能障礙可促進(jìn)肺動(dòng)脈內(nèi)皮細(xì)胞(pulmonary artery endothelial cells, PAECs)功能障礙和肺動(dòng)脈平滑肌細(xì)胞(pulmonary artery smooth muscle cells, PASMCs)過(guò)度增殖,從而引發(fā)肺血管重構(gòu),導(dǎo)致PAH的發(fā)生,進(jìn)而導(dǎo)致RVH及右心功能不全,而心肌細(xì)胞脂肪酸氧化能力的下降進(jìn)一步加速了HAHD向心衰的進(jìn)程。

2.1能量代謝紊亂促進(jìn)PAH的發(fā)生發(fā)展肺血管重構(gòu)作為PAH發(fā)生、發(fā)展的關(guān)鍵因素,與PAECs功能障礙、PASMCs過(guò)度增殖和凋亡失衡、炎癥、血管過(guò)度收縮等密切相關(guān)[14]。其中PAECs功能障礙被認(rèn)為是PAH病理生理學(xué)改變的關(guān)鍵起始因素[15],而PASMCs增殖與凋亡失衡是導(dǎo)致PAH的重要病因。

2.1.1底物利用轉(zhuǎn)變促進(jìn)PAECs增殖并加速PAH的發(fā)展PAECs糖酵解代謝途徑的轉(zhuǎn)變和過(guò)度增殖是PAH發(fā)生、發(fā)展的病理學(xué)基礎(chǔ)。葡萄糖代謝在肺動(dòng)脈高壓PAECs的能量需求中發(fā)揮主要作用,當(dāng)機(jī)體處于持續(xù)缺氧環(huán)境中時(shí),葡萄糖的有氧代謝將逐漸轉(zhuǎn)變?yōu)闊o(wú)氧糖酵解,PAECs中糖酵解速率較正常PAECs高出約3倍以上[16]。同時(shí)伴有丙酮酸脫氫酶激酶(pyruvate dehydrogenase kinases, PDK)的激活,PDK由4種同工酶(PDK1~PDK4)組成,可使線粒體葡萄糖氧化的關(guān)鍵酶丙酮酸脫氫酶(pyruvate dehydrogenase, PDH)磷酸化失活[17-18],促使新陳代謝從氧化磷酸化轉(zhuǎn)向糖酵解[14]。

研究顯示,PAECs中的葡萄糖轉(zhuǎn)運(yùn)蛋白1上調(diào)[19],6-磷酸果糖-2-激酶/果糖-2,6-二磷酸酶3(6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, PFKFB3)升高[20],乳酸積累,從而導(dǎo)致PAECs功能障礙,進(jìn)而損傷肺組織的結(jié)構(gòu)和功能[21]。過(guò)表達(dá)的亦可使患有PAH的嚙齒動(dòng)物和人群肺血管內(nèi)皮中生長(zhǎng)因子和促炎因子分泌增加,這將進(jìn)一步促進(jìn)PAECs的過(guò)度增殖。

2.1.2活性氧簇(reactive oxygen species, ROS)和PASMCs在PAH形成過(guò)程中的影響ROS是一種具有潛在毒性的超氧化物,線粒體復(fù)合物I和III是其產(chǎn)生的重要位點(diǎn)[22]。ROS可被超氧化物歧化酶2(superoxide dismutase-2, SOD-2;一種僅存在于線粒體中的酶)轉(zhuǎn)化為可擴(kuò)散的第二信使過(guò)氧化氫(hydrogen peroxide, H2O2)。而H2O2參與氧敏感的電壓門(mén)控K+通道(voltage-gated potassium channels, Kv;例如Kv1.5和Kv2.1)的激活和表達(dá)[23-24]。

PASMCs是構(gòu)成肺動(dòng)脈壁的主要細(xì)胞[25]。在PAH患者和缺氧條件下培養(yǎng)PASMCs,線粒體細(xì)胞中ROS的釋放和積累導(dǎo)致高海拔大鼠PASMCs中線粒體膜Kv通道的功能降低[14]和線粒體膜電位去極化,這不僅使細(xì)胞內(nèi)K+濃度升高,抑制促凋亡的胱天蛋白酶,抑制細(xì)胞凋亡,而且導(dǎo)致電壓門(mén)控L型鈣通道激活,大量的鈣內(nèi)流促進(jìn)細(xì)胞增殖[23-24, 26]。此外,ROS還可導(dǎo)致細(xì)胞色素C氧化酶和SOD水平降低,從而破壞線粒體代謝功能和酶動(dòng)力學(xué)活性,加速PASMCs增殖并抑制細(xì)胞凋亡[27]。這種線粒體細(xì)胞內(nèi)ROS的積累導(dǎo)致PASMCs的增殖與凋亡失衡可能與PAECs線粒體ROS產(chǎn)生激活存在一致性,協(xié)同促進(jìn)了PAH的發(fā)生發(fā)展。

2.2能量代謝紊亂促進(jìn)RVH及右心功能不全心臟作為高耗能、高耗氧器官,對(duì)能量的需求遠(yuǎn)高于一般組織器官,而心肌細(xì)胞能量代謝紊亂直接或間接促進(jìn)了HAHD中RVH的發(fā)生。

2.2.1能量代謝重構(gòu)促進(jìn)HAHD心臟的肥大和衰竭在高原低壓、低氧環(huán)境下,機(jī)體除了利用增加紅細(xì)胞的數(shù)量來(lái)增加氧氣輸送外,還通過(guò)代謝調(diào)節(jié)來(lái)提高組織對(duì)氧氣的利用率,如降低心臟磷酸肌酸與三磷酸腺苷(adenosine triphosphate, ATP)比率,抑制脂肪酸氧化和增加心臟葡萄糖攝取利用[28]。但是氧氣利用率的提高并不能完全滿足機(jī)體對(duì)氧氣的需求,尤其在高原持續(xù)低氧暴露下,PDK1在右心室表達(dá)明顯增加[29],進(jìn)一步抑制丙酮酸進(jìn)入三羧酸循環(huán),從而使代謝向生成乳酸的糖酵解方向進(jìn)行[30]。而這種長(zhǎng)期以糖酵解為主要供能機(jī)制的代謝紊亂,使心肌細(xì)胞不得不為了維持泵血而進(jìn)行結(jié)構(gòu)和功能的慢性重塑,最終發(fā)展為HAHD。

2.2.2高原低氧通過(guò)抑制過(guò)氧化物酶體增殖物激活受體α(peroxisome proliferator-activated receptor α, PPARα)、激活PPARγ促進(jìn)心肌細(xì)胞代謝轉(zhuǎn)變正常情況下,脂肪酸氧化產(chǎn)生的ATP占心臟ATP含量的70%[31]。PPARα是調(diào)節(jié)細(xì)胞能量代謝、脂質(zhì)代謝和維持心肌能量代謝穩(wěn)態(tài)的關(guān)鍵因子,其轉(zhuǎn)錄調(diào)控與高原缺氧的心臟功能存在聯(lián)系[32]。缺氧環(huán)境會(huì)明顯抑制心肌中PPARα的表達(dá)[33],導(dǎo)致心肌細(xì)胞中脂肪酸攝取和β氧化減少。Murray等[28]和Horscroft等[34]在對(duì)喜馬拉雅夏爾巴人和藏族高海拔居住人群的研究中觀察到了類似的結(jié)果,下調(diào)表達(dá)可以降低脂肪酸氧化能力,進(jìn)而增加氧氣的利用率。但是高原缺氧環(huán)境下PPARα持續(xù)減少,心臟長(zhǎng)期處于應(yīng)對(duì)低氧的高負(fù)荷狀態(tài),脂肪酸到糖酵解的代謝轉(zhuǎn)換可能不足以維持心肌正常的能量代謝和高能磷酸鹽(Ca2+)含量,導(dǎo)致心臟無(wú)法維持高收縮性能和射血功能,進(jìn)而造成心肌細(xì)胞的超負(fù)荷工作,引起高原性心臟肥大和衰竭[35],更有甚者心肌出現(xiàn)病理性纖維化的表型[36],形成不可逆的HAHD。

研究表明,PPARγ雖是脂肪生成所必需的,但也存在于心血管系統(tǒng)中[37],是高海拔適應(yīng)的候選因子[38]。Krishnan等[39]和Yu等[40]觀察到缺氧以及肥厚型心肌病的人和小鼠的心室活檢樣本中缺氧誘導(dǎo)因子1α(hypoxia-inducible factor 1α, HIF-1α)和PPARγ的表達(dá)都是增加的。

總之,高原心臟中PPARα減少引起的脂肪酸氧化能力降低伴隨著PPARγ的激活,在血流動(dòng)力學(xué)超負(fù)荷期間,心臟功能更容易受到損傷和器質(zhì)性重構(gòu)[28, 35],逐漸向肥大和衰竭發(fā)展。

3 能量代謝信號(hào)通路促進(jìn)HAHD

能量代謝改變是HAHD發(fā)生的重要原因之一,而HIF-1α、PPARα和PDK與HAHD的能量代謝調(diào)節(jié)存在聯(lián)系,因此對(duì)相關(guān)能量代謝信號(hào)通路在HAHD發(fā)生發(fā)展過(guò)程中潛在機(jī)制的闡述具有重要意義。

3.1HIF-1α促進(jìn)PAH的發(fā)生發(fā)展HIF-1α作為應(yīng)對(duì)缺氧的關(guān)鍵調(diào)節(jié)因子,其激活會(huì)增加HAHD中PAECs和PASMCs增殖和肺血管重塑,促進(jìn)PAH的發(fā)生發(fā)展。

3.1.1HIF-1α參與HAHD中PAECs的糖酵解慢性缺氧刺激下,HIF-1α作為應(yīng)對(duì)缺氧的關(guān)鍵調(diào)節(jié)因子被激活[41],其激活會(huì)增加許多糖酵解酶以及PDK的表達(dá),促使氧化代謝不斷向糖酵解轉(zhuǎn)換[42],導(dǎo)致HAHD中PAECs的過(guò)度增殖。具體機(jī)制為:HIF-1α不僅通過(guò)激活PDK表達(dá),損害氧化代謝,促進(jìn)糖酵解代謝,而且還可誘導(dǎo)PFKFB3的mRNA和蛋白表達(dá),促進(jìn)PAECs的糖酵解和過(guò)度增殖[43]。

此外,PAECs中白細(xì)胞介素33(interleukin-33, IL-33)及其受體ST2的免疫反應(yīng)性的顯著增加可能會(huì)導(dǎo)致PAH。缺氧會(huì)誘導(dǎo)PAECs的IL-33/ST2表達(dá)升高,激活HIF1α/血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor, VEGF)軸,誘導(dǎo)PAECs的血管生成和增殖,從而導(dǎo)致PAH[44],并可能為PASMCs重塑的啟動(dòng)提供基礎(chǔ)[45]。這表明炎癥進(jìn)一步促進(jìn)了PAECs的過(guò)度增殖。

3.1.2HIF-1α促進(jìn)HAHD中PASMCs的增殖和肺血管重塑在HAHD發(fā)病過(guò)程中,缺氧導(dǎo)致的HIF-1α激活決定了PASMCs的增殖和肺血管重塑[46]。其中缺氧環(huán)境下ROS的積累和釋放以及第二信使H2O2的減少,會(huì)導(dǎo)致HIF-1α激活,抑制氧敏感Kv通道的表達(dá),促進(jìn)PASMCs的增殖與凋亡失衡,導(dǎo)致PAH的發(fā)生[14]。線粒體在缺氧性PAH的產(chǎn)生中仍起著關(guān)鍵作用。其具體機(jī)制為:NADH脫氫酶(泛醌)1α亞復(fù)合物4樣2[NADH dehydrogenase (ubiquinone) 1α subcomplex 4 like 2, NDUFA4L2]作為電子傳遞鏈復(fù)合物I亞基的一部分,通過(guò)調(diào)節(jié)上游HIF-1α和下游p38-5-脂氧合酶(5-lipoxygenase, 5-LO)信號(hào)促進(jìn)PASMCs的增殖,從而促進(jìn)肺血管重塑,誘導(dǎo)PAH[47]。

另有研究報(bào)道,黏附受體CD146和HIF-1α交叉調(diào)節(jié)是血管重塑和PAH發(fā)病的關(guān)鍵因素,PASMCs中CD146-HIF-1α軸的破壞會(huì)削弱肺血管重塑,這揭示了血管重塑過(guò)程中的缺氧重編程[48]。

3.2PPARα和PDK調(diào)節(jié)HAHD心臟的能量代謝PPARα和PDK作為調(diào)節(jié)HAHD心臟能量代謝的關(guān)鍵受體和激酶,二者的異常均可引發(fā)能量代謝紊亂,從而加速HAHD的發(fā)生發(fā)展。

3.2.1PPARα介導(dǎo)HAHD心臟能量代謝轉(zhuǎn)換Narravula等[49]報(bào)道,缺氧心肌細(xì)胞的調(diào)控與PPARα和PPARγ有關(guān),PPARα的下調(diào)可能是心肌細(xì)胞缺氧期間的適應(yīng)性反應(yīng)。反之,PPARγ的激活促進(jìn)了缺氧大鼠心臟心房鈉尿肽的分泌[40, 50],并將能量代謝的途徑向糖酵解的方向進(jìn)行重編程[51],而其中PPARα可能是HAHD發(fā)生發(fā)展的核心受體。

研究表明,微小RNA(microRNA, miRNA, miR)、Krüppel樣因子5(Krüppel-like factor 5, KLF5)等可通過(guò)抑制PPARα發(fā)揮調(diào)控心臟能量代謝的作用[52]。miR-148a與miR-17-5p協(xié)同抑制PPARα,降低脂肪酸代謝[53]。miR-21也能有效降低的表達(dá),抑制脂肪酸氧化[54],導(dǎo)致代謝轉(zhuǎn)換至糖酵解,促進(jìn)心肌細(xì)胞結(jié)構(gòu)和功能的慢性重塑,最終發(fā)展為HAHD。此外,Drosatos等[31]報(bào)道,KLF5是心臟的正轉(zhuǎn)錄調(diào)節(jié)因子,其抑制導(dǎo)致心臟脂肪酸氧化減少和甘油三酯積累增加,從而導(dǎo)致心臟功能障礙。

SIRT3是一種定位于線粒體的NAD+依賴性蛋白質(zhì)賴氨酸脫乙酰酶,在高海拔地區(qū)因線粒體功能變化而降低,進(jìn)而降低三羧酸循環(huán)和ATP的生成[55-56]。SIRT3和PPARα都是HAHD線粒體穩(wěn)態(tài)的關(guān)鍵調(diào)節(jié)因子。體內(nèi)和體外研究表明,PPARα是SIRT3的上游轉(zhuǎn)錄調(diào)控因子[57]。Zong等[58]通過(guò)染色質(zhì)免疫沉淀和螢光素酶實(shí)驗(yàn)也進(jìn)一步證明了SIRT3是PPARα的直接下游靶點(diǎn)??傊琍PARα可能通過(guò)SIRT3進(jìn)一步促進(jìn)了HAHD心臟的能量代謝轉(zhuǎn)換。

3.2.2HIF-1α通過(guò)PDK介導(dǎo)HAHD心衰的發(fā)生發(fā)展心衰是HAHD發(fā)展的最終結(jié)果。右心衰患者HIF-1α直接激活編碼PDK1的基因,促使PDH失活,抑制三羧酸循環(huán)介導(dǎo)心肌代謝向糖酵解轉(zhuǎn)變[59],從而損害右心室功能[60]。但并非所有的結(jié)論存在一致性,Piao等[60]檢測(cè)到心臟亞型PDK2和PDK4的上調(diào),而PDK1和PDK3不變,認(rèn)為轉(zhuǎn)錄因子FOXO1介導(dǎo)了PDK4激活,而抑制PDK可改善右心室功能和運(yùn)動(dòng)能力。最后,我們總結(jié)和梳理了HAHD中與能量代謝紊亂相關(guān)的信號(hào)通路,詳見(jiàn)圖1。

Figure 1. The signaling pathways of energy metabolism disorder in high-altitude heart disease (HAHD). HAHD is characterized by pulmonary arterial hypertension (PAH) and right ventricular hypertrophy (RVH). As the principal cause of PAH, excessive proliferation of pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells (PASMCs) based on hypoxia-inducible factor 1α (HIF-1α) is induced by activation of several signaling pathways, such as interleukin-33 (IL-33)/ST2 (IL-33 receptor)-HIF-1α-vascular endothelial growth factor (VEGF) and reactive oxygen species (ROS)-HIF-1α-voltage-gated potassium channels (Kv). Morover, peroxisome proliferator-activated receptor α (PPARα) inhibition and pyruvate dehydrogenase kinase (PDK) activation promote the development of RVH.

4 HAHD的治療

基于上述對(duì)HAHD發(fā)生發(fā)展的機(jī)制探討,相關(guān)激動(dòng)劑和抑制劑的研究開(kāi)始趨向于通過(guò)調(diào)節(jié)能量代謝來(lái)改善HAHD。

4.1PDK抑制劑二氯乙酸鹽(dichloroacetate, DCA)作為PDK的抑制劑,可激活線粒體酶PDH(葡萄糖氧化的守門(mén)酶),逆轉(zhuǎn)慢性缺氧性PAH,提高線粒體功能。這種表觀遺傳的線粒體代謝途徑是一個(gè)潛在的抗纖維化治療靶點(diǎn)[61]。線粒體異常中的Kv通道功能障礙的逆轉(zhuǎn)也可以通過(guò)PDK抑制劑DCA與肺血管重塑的消退相關(guān)聯(lián)來(lái)實(shí)現(xiàn)[14]。重要的是,DCA可抑制FOXO1誘導(dǎo)的PDK4上調(diào)并恢復(fù)心輸出量,從而減輕PVH[60]。

4.2PPARα/γ激動(dòng)劑PPARα和PPARγ激動(dòng)劑已被宣稱可用于治療代謝性疾病和心血管疾?。?2-63],其中PPARα是治療血脂異常和相關(guān)心血管并發(fā)癥的理想靶點(diǎn)[64]。神奇的是PPARγ激動(dòng)劑吡格列酮的口服治療完全逆轉(zhuǎn)了實(shí)驗(yàn)性大鼠的PAH和血管重塑,有效改善了心室的結(jié)構(gòu)和功能,抑制了右心衰[65]。但是它們對(duì)心肌的直接作用也有可能導(dǎo)致心臟功能惡化[66]。所以研發(fā)比現(xiàn)有PPARα/γ激動(dòng)劑更高激動(dòng)活性和選擇性的激動(dòng)劑,可作為治療HAHD患者的潛在藥物。

5 總結(jié)和展望

綜上所述,HIF-1α通過(guò)增加PDK和PFKFB3的表達(dá)促進(jìn)PAECs的糖酵解和過(guò)度增殖;通過(guò)抑制Kv通道和增加NDUFA4L2的表達(dá)導(dǎo)致PASMCs的增殖與凋亡失衡,進(jìn)一步促進(jìn)PAH的發(fā)生發(fā)展。PPARα作為HAHD發(fā)生發(fā)展的核心受體,可通過(guò)miRNA、KLF5和SIRT3等調(diào)節(jié)因子調(diào)控心臟能量代謝向糖酵解的方向進(jìn)行重編程,而由HIF-1α和FOXO1激活的PDK更是加速了HAHD心衰的發(fā)生。上述研究表明阻斷能量代謝紊亂中的相關(guān)通路可作為開(kāi)發(fā)治療HAHD藥物的重要基石,其中具有高選擇性和敏感性的新型PDK抑制劑和PPARs激動(dòng)劑有可能成為具有前景的治療HAHD的新藥物。

[1] Xie ZZ, Liu FY, Wang SJ, et al. Preventive and therapeutic effects of nitrendipine on hypoxic right ventricular hypertrophy[J]. Acta Pharmacol Sin, 1996, 17(4):337-340.

[2] Soria R, Egger M, Scherrer U, et al. Pulmonary arterial pressure at rest and during exercise in chronic mountain sickness: a meta-analysis[J]. Eur Respir J, 2019, 53(6):1802040.

[3] Wagner PD, Wagner HE, Groves BM, et al. Hemoglobin P50during a simulated ascent of Mt. Everest, Operation Everest II[J]. High Alt Med Biol, 2007, 8(1):32-42.

[4] Grünig E, Mereles D, Hildebrandt W, et al. Stress Doppler echocardiography for identification of susceptibility to high altitude pulmonary edema[J]. J Am Coll Cardiol, 2000, 35(4):980-987.

[5] Ma TT, Wang Y, Zhou XL, et al. Research on rat models of hypobaric hypoxia-induced pulmonary hypertension[J]. Eur Rev Med Pharmacol Sci, 2015, 19(19):3723-3730.

[6] Oswald-Mammosser M, Weitzenblum E, Quoix E, et al. Prognostic factors in COPD patients receiving long-term oxygen therapy. Importance of pulmonary artery pressure[J]. Chest, 1995, 107(5):1193-1198.

[7] Hakim TS, Michel RP, Minami H, et al. Site of pulmonary hypoxic vasoconstriction studied with arterial and venous occlusion[J]. J Appl Physiol Respir Environ Exerc Physiol, 1983, 54(5):1298-1302.

[8] Penaloza D, Arias-Stella J. The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness[J]. Circulation, 2007, 115(9):1132-1146.

[9] Naeije R. Physiological adaptation of the cardiovascular system to high altitude[J]. Prog Cardiovasc Dis, 2010, 52(6):456-466.

[10] Pratali L, Allemann Y, Rimoldi SF, et al. RV contractility and exercise-induced pulmonary hypertension in chronic mountain sickness: a stress echocardiographic and tissue Doppler imaging study[J]. JACC Cardiovasc Imaging, 2013, 6(12):1287-1297.

[11] Li X, Zhang Q, Nasser MI, et al. Oxygen homeostasis and cardiovascular disease: a role for HIF?[J]. Biomed Pharmacother, 2020, 128:110338.

[12] Dewachter L, Dewachter C. Inflammation in right ventricular failure: does it matter?[J]. Front Physiol, 2018, 9:1056.

[13] Tham YK, Bernardo BC, Ooi JY, et al. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets[J]. Arch Toxicol, 2015, 89(9):1401-1438.

[14] Bonnet S, Michelakis ED, Porter CJ, et al. An abnormal mitochondrial-hypoxia inducible factor-1α-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension[J]. Circulation, 2006, 113(22):2630-2641.

[15] Eddahibi S, Morrell N, d'Ortho MP, et al. Pathobiology of pulmonary arterial hypertension[J]. Eur Respir J, 2002, 20(6):1559-1572.

[16] Xu W, Koeck T, Lara AR, et al. Alterations of cellular bioenergetics in pulmonary artery endothelial cells[J]. Proc Natl Acad Sci U S A, 2007, 104(4):1342-1347.

[17] Plecitá-Hlavatá L, Tauber J, Li M, et al. Constitutive reprogramming of fibroblast mitochondrial metabolism in pulmonary hypertension[J]. Am J Respir Cell Mol Biol, 2016, 55(1):47-57.

[18] Michelakis ED, Gurtu V, Webster L, et al. Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients[J]. Sci Transl Med, 2017, 9(413):eaao4583.

[19] Marsboom G, Wietholt C, Haney CR, et al. Lung 1?F-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring of pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2012, 185(6):670-679.

[20] Cao Y, Zhang X, Wang L, et al. PFKFB3-mediated endothelial glycolysis promotes pulmonary hypertension[J]. Proc Natl Acad Sci U S A, 2019, 116(27):13394-13403.

[21] Mulukutla BC, Yongky A, Le T, et al. Regulation of glucose metabolism-aperspective from cell bioprocessing[J]. Trends Biotechnol, 2016, 34(8):638-651.

[22] Michelakis ED, Hampl V, Nsair A, et al. Diversity in mitochondrial function explains differences in vascular oxygen sensing[J]. Circ Res, 2002, 90(12):1307-1315.

[23] Archer SL, Wu XC, Thébaud B, et al. Preferential expression and function of voltage-gated, O2-sensitive K+channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells[J]. Circ Res, 2004, 95(3):308-318.

[24] Archer SL, Souil E, Dinh-Xuan AT, et al. Molecular identification of the role of voltage-gated K+channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes[J]. J Clin Invest, 1998, 101(11):2319-2330.

[25] Rabinovitch M. Molecular pathogenesis of pulmonary arterial hypertension[J]. J Clin Invest, 2012, 122(12):4306-4313.

[26] Prathapan A, Varghese MV, Abhilash S, et al. Polyphenol rich ethanolic extract fromL. mitigates angiotensin II induced cardiac hypertrophy and fibrosis in rats[J]. Biomed Pharmacother, 2017, 87:427-436.

[27] Wu D, Dasgupta A, Read AD, et al. Oxygen sensing, mitochondrial biology and experimental therapeutics for pulmonary hypertension and cancer[J]. Free Radic Biol Med, 2021, 170:150-178.

[28] Murray AJ,Montgomery HE, Feelisch M, et al. Metabolic adjustment to high-altitude hypoxia: from genetic signals to physiological implications[J]. Biochem Soc Trans, 2018, 46(3):599-607.

[29] Adrogue JV, Sharma S, Ngumbela K, et al. Acclimatization to chronic hypobaric hypoxia is associated with a differential transcriptional profile between the right and left ventricle[J]. Mol Cell Biochem, 2005, 278(1/2):71-78.

[30] Murray AJ. Energy metabolism and the high-altitude environment[J]. Exp Physiol, 2016, 101(1):23-27.

[31] Drosatos K, Pollak NM, Pol CJ, et al. Cardiac myocyte KLF5 regulatesexpression and cardiac function[J]. Circ Res, 2016, 118(2):241-253.

[32] Yang J, Liu C, Jihang Z, et al.genetic variants increase the risk for cardiac pumping function reductions following acute high-altitude exposure: a self-controlled study[J]. Mol Genet Genomic Med, 2019, 7(10):e00919.

[33] Yan J, Song K, Bai Z, et al. WY14643 improves left ventricular myocardial mitochondrial and systolic functions in obese rats under chronic persistent hypoxia via the PPARα pathway[J]. Life Sci, 2021, 266:118888.

[34] Horscroft JA, Kotwica AO, Laner V, et al. Metabolic basis to Sherpa altitude adaptation[J]. Proc Natl Acad Sci U S A, 2017, 114(24):6382-6387.

[35] Luptak I, Balschi JA,Xing Y, et al. Decreased contractile and metabolic reserve in peroxisome proliferator-activated receptor-α-null hearts can be rescued by increasing glucose transport and utilization[J]. Circulation, 2005, 112(15):2339-2346.

[36] Watanabe K, Fujii H, Takahashi T, et al. Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor α associated with age-dependent cardiac toxicity[J]. J Biol Chem, 2000, 275(29):22293-22299.

[37] Duan SZ, Ivashchenko CY, Russell MW, et al. Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-γ both induce cardiac hypertrophy in mice[J]. Circ Res, 2005, 97(4):372-379.

[38] Liu XL, Zhang FL, Zhou ZY, et al. Analysis of two sequence variants in peroxisome proliferator activated receptor γ gene in Tajik population at high altitudes and Han population at low altitudes in China[J]. Mol Biol Rep, 2010, 37(1):179-184.

[39] Krishnan J, Suter M, Windak R, et al. Activation of a HIF1α-PPARγ axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy[J]. Cell Metab, 2009, 9(6):512-524.

[40] Yu L, Li W, Park BM, et al. Hypoxia augments NaHS-induced ANP secretion via KATPchannel, HIF-1α and PPAR-γ pathway[J]. Peptides, 2019, 121:170123.

[41] Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress[J]. Mol Cell, 2010, 40(2):294-309.

[42] Cerychova R, Pavlinkova G. HIF-1, metabolism, and diabetes in the embryonic and adult heart[J]. Front Endocrinol (Lausanne), 2018, 9:460.

[43] Wei L, Zhang L, Yang L, et al. Protective effect of mesenchymal stem cells on isolated islets survival and against hypoxia associated with the HIF-1α/PFKFB3 pathway[J]. Cell Transplant, 2022, 31:9636897211073127.

[44] Liu J, Wang W, Wang L, et al. IL-33 initiates vascular remodelling in hypoxic pulmonary hypertension by up-regulating HIF-1α and VEGF expression in vascular endothelial cells[J]. EBioMedicine, 2018, 33:196-210.

[45] Kumar R, Graham B. IL-33-HIF1α axis inhypoxic pulmonary hypertension[J]. EBioMedicine, 2018, 33:8-9.

[46] Wilkins MR, Ghofrani HA, Weissmann N, et al. Pathophysiology and treatment of high-altitude pulmonary vascular disease[J]. Circulation, 2015, 131(6):582-590.

[47] Liu Y, Nie X, Zhu J, et al. NDUFA4L2 in smooth muscle promotes vascular remodeling in hypoxic pulmonary arterial hypertension[J]. J Cell Mol Med, 2021, 25(2):1221-1237.

[48] Luo Y, Teng X, Zhang L, et al. CD146-HIF-1α hypoxic reprogramming drives vascular remodeling and pulmonary arterial hypertension[J]. Nat Commun, 2019, 10(1):3551.

[49] Narravula S, Colgan S. Hypoxia-inducible factor 1-mediated inhibition of peroxisome proliferator-activated receptor α expression during hypoxia[J]. J Immunol, 2001, 166(12):7543-7548.

[50] Li X, Zhang Y, Zhang B, et al. HIF-1α-L-PGDS-PPARγ regulates hypoxia-induced ANP secretion in beating rat atria[J]. Prostaglandins Other Lipid Mediat, 2018, 134:38-46.

[51] Feng J, Dai W, Mao Y, et al. Simvastatin re-sensitizes hepatocellular carcinoma cells to sorafenib by inhibiting HIF-1α/PPAR-γ/PKM2-mediated glycolysis[J]. J Exp Clin Cancer Res, 2020, 39(1):24.

[52] Madrazo JA, Kelly DP. The PPAR trio: regulators of myocardial energy metabolism in health and disease[J]. J Mol Cell Cardiol, 2008, 44(6):968-975.

[53] Chen Z, Luo J, Sun S, et al. miR-148a and miR-17-5p synergistically regulate milk TAG synthesis viaandin goat mammary epithelial cells[J]. RNA Biol, 2017, 14(3):326-338.

[54] Chung KW, Lee EK, Lee MK, et al. Impairment of PPARα and the fatty acid oxidation pathway aggravates renal fibrosis duringaging[J]. J Am Soc Nephrol, 2018, 29(4):1223-1237.

[55] Murray AJ, Horscroft JA. Mitochondrial function at extreme high altitude[J]. J Physiol, 2016, 594(5):1137-1149.

[56] Dikalova AE, Pandey A, Xiao L, et al. Mitochondrial deacetylase Sirt3 reduces vascular dysfunction and hypertension while Sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress[J]. Circ Res, 2020, 126(4):439-452.

[57] Chen X, Wang Q, Shao M, et al. Ginsenoside Rb3 regulates energy metabolism and apoptosis in cardiomyocytes via activating PPARα pathway[J]. Biomed Pharmacother, 2019, 120:109487.

[58] Zong X, Cheng K, Yin G, et al. SIRT3 is a downstream target of PPAR-α implicated in high glucose-induced cardiomyocyte injury in AC16 cells[J]. Exp Ther Med, 2020, 20(2):1261-1268.

[59] Piao L, Fang YH, Cadete VJ, et al. The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle[J]. J Mol Med (Berl), 2010, 88(1):47-60.

[60] Piao L, Sidhu VK, Fang YH, et al. FOXO1-mediated upregulation of pyruvate dehydrogenase kinase-4 (PDK4) decreases glucose oxidation and impairs right ventricular function in pulmonary hypertension: therapeutic benefits of dichloroacetate[J]. J Mol Med (Berl), 2013, 91(3):333-346.

[61] Tian L, Wu D, Dasgupta A, et al. Epigenetic metabolic reprogramming of right ventricular fibroblasts in pulmonary arterial hypertension: a pyruvate dehydrogenase kinase-dependent shift in mitochondrial metabolism promotes right ventricular fibrosis[J]. Circ Res, 2020, 126(12):1723-1745.

[62] Han L, Shen WJ, Bittner S, et al. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-β/δ and PPAR-γ[J]. Future Cardiol, 2017, 13(3):279-296.

[63] Takada I, Makishima M. Peroxisome proliferator-activated receptor agonists and antagonists: a patent review (2014-present)[J]. Expert Opin Ther Pat, 2020, 30(1):1-13.

[64] Han L, Shen WJ, Bittner S, et al. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR-α[J]. Future Cardiol, 2017, 13(3):259-278.

[65] Legchenko E, Chouvarine P, Borchert P, et al. PPARγ agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation[J]. Sci Transl Med, 2018, 10(438):eaao0303.

[66] Son NH, Park TS, Yamashita H, et al. Cardiomyocyte expression of PPARγ leads to cardiac dysfunction in mice[J]. J Clin Invest, 2007, 117(10):2791-2801.

Role of energy metabolism disorder in development of high-altitude heart disease

HAN Yi-wei, ZHANG Zhi-ying, HAO Mei-li, ZHANG Xiao-ying△

(,,,,712082,)

High-altitude heart disease (HAHD) is a chronic progressive disease characterized by pulmonary arterial hypertension (PAH) and right ventricular hypertrophy (RVH) or right heart dysfunction caused by low pressure and hypoxia. As the main pathological feature of HAHD, RVH can be caused by oxidative stress, inflammation, fibrosis, energy metabolism disorder and other mechanisms. Energy metabolism disorder, as one of the pathogenic factors of PAH and RVH, has attracted much attention in recent years. As transcriptional regulatory factors affecting energy metabolism, hypoxia-inducible factor 1α (HIF-1α) and peroxisome proliferator-activated receptor α (PPARα) are involved in the regulation of PDK, PFKFB3, Kv, NDUFA4L2, miRNAs, KLF5, SIRT3, FOXO1 and other factors to promote the development of HAHD. In this paper, we review the research progress of the role of HIF-1α and PPARα/γ in HAHD.

High-altitude heart disease; Pulmonary arterial hypertension; Right ventricular hypertrophy; Energy metabolism disorder; Hypoxia-inducible factor 1α; Peroxisome proliferator-activated receptors

R541.9; R363.2

A

10.3969/j.issn.1000-4718.2022.06.022

1000-4718(2022)06-1135-07

2021-10-29

2022-05-07

西藏自治區(qū)自然科學(xué)基金項(xiàng)目[No. XZ2018ZR G-85(Z)];陜西省教育廳專項(xiàng)科學(xué)研究計(jì)劃(No. 19JK0890);西藏民族大學(xué)重大項(xiàng)目培育計(jì)劃(No. 18MDZ03; No. 20MDT03);西藏自治區(qū)自然科學(xué)基金資助項(xiàng)目(No. XZ202001ZR0089G)

Tel: 029-33755247; E-mail: melani1983@126.com

(責(zé)任編輯:宋延君,羅森)

猜你喜歡
糖酵解重塑高原
非編碼RNA在胃癌糖酵解中作用的研究進(jìn)展
重塑未來(lái)
高原往事
迸射
高原往事
高原往事
糖酵解與動(dòng)脈粥樣硬化進(jìn)展
自動(dòng)化正悄然無(wú)聲地重塑服務(wù)業(yè)
李滄:再造與重塑
商周刊(2018年11期)2018-06-13 03:41:54
放射對(duì)口腔鱗癌細(xì)胞DNA損傷和糖酵解的影響
湖南省| 溆浦县| 太白县| 天津市| 华亭县| 南雄市| 玉田县| 平原县| 和平区| 铜陵市| 湘乡市| 清镇市| 华阴市| 建湖县| 漳平市| 义乌市| 巫山县| 大邑县| 揭西县| 建宁县| 河东区| 二手房| 金昌市| 巫溪县| 泰州市| 子洲县| 辉县市| 潞城市| 从化市| 佛坪县| 库伦旗| 上饶县| 宜宾县| 五原县| 宜黄县| 凯里市| 江城| 科尔| 双桥区| 噶尔县| 江油市|