国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

黃芪甲苷對棕櫚酸誘導的小鼠RAW264.7細胞鐵死亡的調(diào)控作用*

2022-07-06 02:02張新陳文娜宋囡曹慧敏王俊巖
中國病理生理雜志 2022年6期
關鍵詞:孵育脂質(zhì)熒光

張新, 陳文娜, 宋囡, 曹慧敏, 王俊巖

· 短篇論著 ·

黃芪甲苷對棕櫚酸誘導的小鼠RAW264.7細胞鐵死亡的調(diào)控作用*

張新, 陳文娜△, 宋囡, 曹慧敏, 王俊巖

(遼寧中醫(yī)藥大學,遼寧 沈陽 110000)

探討黃芪甲苷(astragaloside IV, ASIV)對棕櫚酸(palmitic acid, PA)誘導的小鼠RAW264.7巨噬細胞鐵死亡的調(diào)控作用。選取對數(shù)生長期的RAW264.7細胞,加入終濃度為0、50、100、150和200 mg/L的ASIV,或0、100、200和400 μmol/L的PA,細胞成像儀培養(yǎng)48 h后計數(shù)分析,觀察ASIV和PA對RAW264.7細胞活力的影響。再將RAW264.7細胞分為對照組、PA (200 μmol/L)組和PA (200 μmol/L)+ASIV (100 mg/L)組。油紅O染色觀察RAW264.7細胞脂質(zhì)沉積情況;細胞免疫熒光染色觀察RAW264.7細胞中谷胱甘肽過氧化物酶4(glutathione peroxidase 4, GPX4)及鐵蛋白重鏈1(ferritin heavy chain 1, FTH1)的蛋白表達水平;RT-qPCR和Western blot測定GPX4、FTH1、P53和溶質(zhì)載體家族7成員11(solute carrier family 7 member 11, SLC7A11)的mRNA和蛋白表達水平;活性氧(reactive oxygen species, ROS)熒光探針檢測各組RAW264.7細胞ROS水平。細胞成像儀篩選出200 μmol/L和100 mg/L分別為后續(xù)實驗中PA和ASIV的相對最佳濃度。與對照組相比,PA組細胞核縮小且不清晰,細胞質(zhì)內(nèi)可見彌漫性橘紅色脂滴;細胞免疫熒光結果顯示,PA組GPX4和FTH1蛋白平均熒光強度顯著降低(<0.01);PA組P53表達顯著增加(<0.05),SLC7A11、GPX4和FTH1表達均顯著減少(<0.05);PA組ROS水平顯著增高(<0.05)。與PA組相比,PA+ASIV組細胞核部分恢復正常,細胞質(zhì)內(nèi)橘紅色脂滴減少;PA+ASIV組GPX4和FTH1蛋白平均熒光強度顯著升高(<0.01);PA+ASIV組P53表達顯著降低(<0.05),SLC7A11和GPX4表達顯著增加(<0.05),F(xiàn)TH1蛋白表達未見顯著差異(>0.05);PA+ASIV組ROS水平顯著降低(<0.05)。ASIV能夠抑制小鼠RAW264.7巨噬細胞的脂質(zhì)沉積,可能與調(diào)控鐵死亡相關因子表達有關。

黃芪甲苷;鐵死亡;棕櫚酸;巨噬細胞

非酒精性脂肪肝?。╪on-alcoholic fatty liver disease, NAFLD)作為流行的慢性肝臟疾病之一,全球范圍內(nèi)患病率約為25%[1],給人們帶來巨大的醫(yī)療負擔。NAFLD病因病機復雜多變,有研究表明多種炎癥細胞參與了NAFLD的發(fā)生發(fā)展和預后[2-3]。巨噬細胞作為肝臟中重要的免疫調(diào)控細胞,在NAFLD病理進程中發(fā)揮著重要的作用,有望成為治療NAFLD的重要靶細胞[4]。

脂肪酸是由多個碳原子組成,具有一定的脂毒性,脂肪酸過載是NAFLD發(fā)病機制的核心[5]。棕櫚酸(palmitic acid, PA)作為一種機體內(nèi)最豐富的飽和脂肪酸,脂毒性作用較強,非脂肪組織的細胞長期暴露于較高濃度的PA,會刺激細胞脂質(zhì)積累[6],引起脂質(zhì)過氧化導致細胞鐵死亡。研究顯示鐵死亡與非酒精性脂肪肝病密切相關,可能是導致NAFLD發(fā)生的重要病理機制之一[7-8]。近年的研究多采用PA誘導細胞鐵死亡探討其在脂質(zhì)沉積中發(fā)揮的作用[9-10]。鐵死亡是一種不同于壞死、凋亡和自噬等的新型程序性死亡方式,其特征為細胞內(nèi)氧化還原系統(tǒng)失衡,特別是氧化還原酶谷胱甘肽過氧化物酶4(glutathione peroxidase 4, GPX4)活性降低引起脂質(zhì)過氧化物的堆積導致鐵死亡[11]。

黃芪甲苷(astragaloside IV, ASIV)是黃芪提取物中純化的一種三萜類皂苷,具有調(diào)節(jié)免疫、抗氧化應激、改善脂質(zhì)沉積,降低血脂水平等功效[12-13],但ASIV能否通過鐵死亡途徑抑制巨噬細胞脂質(zhì)沉積,以往研究中卻鮮有報道。故本項工作通過PA誘導小鼠RAW264.7巨噬細胞,探討ASIV能否通過調(diào)控鐵死亡拮抗小鼠巨噬細胞脂質(zhì)沉積,以期為NAFLD的深入研究提供實驗依據(jù)。

材料和方法

1 主要實驗材料與儀器

小鼠RAW264.7單核-巨噬細胞(中國科學院典型培養(yǎng)物保藏委員會細胞庫);DMEM高糖培養(yǎng)液(HyClone);胎牛血清(Biological Industries);青霉素-鏈霉素溶液(Procell);胰蛋白酶(Solarbio);油紅O試劑盒(北京百奧萊博科技有限公司);PA(Sigma);ASIV(源葉生物);活性氧(reactive oxygen species, ROS)熒光探針二氫乙啶(dihydroethidium, DHE)購自威格拉斯生物技術有限公司;GPX4抗體、鐵蛋白重鏈1(ferritin heavy chain 1, FTH1)抗體和GAPDH抗體(Abcam);P53抗體(Proteintech);溶質(zhì)載體家族7成員11(solute carrier family 7 member 11, SLC7A11)抗體(Cell Signalling Technology);FTH1、P53、GPX4和SLC7A11引物(生工生物工程股份有限公司)。Cytation 1細胞成像儀(BioTek);實時熒光定量PCR儀(Thermo Fisher);Tanon 5200化學發(fā)光成像分析系統(tǒng)(上海天能科技有限公司)。

2 實驗方法

2.1RAW264.7巨噬細胞的復蘇與培養(yǎng)提前打開水浴箱預熱至37 ℃,從-80 ℃冰箱取出凍存管,迅速放入水浴箱中孵育使其快速融化,之后將細胞混懸液轉(zhuǎn)移至培養(yǎng)瓶,加入細胞培養(yǎng)液輕輕混勻置于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng),全程需無菌操作。

2.2最佳添加濃度的篩選取對數(shù)生長期的RAW264.7巨噬細胞,調(diào)整細胞濃度接種于96孔板,每孔100 μL,周圍一圈接種PBS,培養(yǎng)24 h后,根據(jù)文獻報道[14-17]和課題組前期探索,本實驗選取終濃度范圍為0、50、100、150和200 mg/L的ASIV,以及0、100、200和400 μmol/L的PA處理細胞,并設置空白對照組及復孔,置于Cytation 1細胞成像儀中繼續(xù)培養(yǎng)48 h后計數(shù)分析,用于確定ASIV和PA的相對最佳給藥濃度。

2.3油紅O染色將細胞混懸液按每孔3×104個均勻鋪在12孔板內(nèi),培養(yǎng)箱內(nèi)孵育24 h后空白組加入新鮮培養(yǎng)液,模型(200 μmol/L PA)組和ASIV(200 μmol/L PA+100 mg/L ASIV)組干預培養(yǎng)48 h。PBS清洗后多聚甲醛固定,之后改良油紅O染液密閉染色,棄去染液加入60%的異丙醇溶液清洗,蘇木素復染,PBS洗滌后鏡下觀察并拍照。

2.4細胞免疫熒光染色將細胞混懸液均勻鋪在12孔板內(nèi),培養(yǎng)箱內(nèi)孵育24 h后,空白組加入新鮮培養(yǎng)液,模型(200 μmol/L PA)組和ASIV(200 μmol/L PA+100 mg/L ASIV)組干預培養(yǎng)48 h,之后依次進行4%多聚甲醛固定、破膜、封閉、孵育GPX4/FTH1抗體、孵育Ⅱ抗、染核、封片,熒光顯微鏡下觀察并拍照保存。

2.5Western blot法測定鐵死亡信號通路相關蛋白表達水平細胞培養(yǎng)及分組給藥處理后棄去各瓶中的培養(yǎng)液,加入少量PBS清洗后,用細胞刮收取細胞,RIPA蛋白裂解液提取蛋白,BCA法測定蛋白濃度。每個樣品按60 μg上樣,SDS-PAGE分離蛋白,電泳結束后將蛋白轉(zhuǎn)移至PVDF膜上,室溫下用5%脫脂奶粉封閉1 h,4 ℃孵育Ⅰ抗過夜,Ⅱ抗室溫下孵育1 h,加入ECL發(fā)光液顯色,分析灰度值,用目的蛋白與內(nèi)參蛋白比值作為目的蛋白表達水平。

2.6RT-qPCR法測定鐵死亡相關mRNA表達水平棄去各瓶中的培養(yǎng)液,PBS清洗后加入RNAiso Plus,輕微晃動確保覆蓋整個細胞表面,用細胞刮收取細胞,將其轉(zhuǎn)移至離心管并混勻,室溫下靜置5 min,從核蛋白中分離RNA。Trizol法提取細胞mRNA,PrimeScript?RT Enzyme Mix試劑盒將mRNA反轉(zhuǎn)成cDNA,實時熒光定量PCR法擴增,2-ΔΔCt法進行相對定量分析,檢測基因mRNA相對表達水平,具體序列見表1。

表1 RT-qPCR引物序列

2.7ROS熒光探針檢測活性氧水平按照上述篩選的藥物濃度進行鋪板,孵育48 h后棄去原培養(yǎng)液,更換為帶有熒光探針DHE的培養(yǎng)液,室溫下避光孵育1 h,之后PBS清洗3次,加入DAPI染核5 min,PBS清洗后鏡下觀察。

3 統(tǒng)計學處理

采用SPSS 20.0軟件統(tǒng)計分析。計量數(shù)據(jù)以均數(shù)±標準差(mean±SD)表示。多組間均數(shù)比較采用單因素方差分析,組間兩兩比較采用LSD-檢驗。以<0.05為差異有統(tǒng)計學意義。

結果

1 不同濃度PA對巨噬細胞活力的影響

用不同濃度的PA處理細胞,48 h內(nèi)隨著時間的增加,200 μmol/L的PA對細胞活力影響最小,400 μmol/L的PA抑制細胞活力,故篩選出200 μmol/L作為后續(xù)實驗PA的相對最佳濃度,見圖1。

Figure 1. Effect of different concentrations of palmitic acid on macrophage viability. Mean±SD. n=6.

2 不同濃度ASIV對巨噬細胞活力的影響

用不同濃度的ASIV處理細胞,48 h內(nèi)隨著時間的增加,100 mg/L的ASIV促進細胞增長效果最好,150 mg/L和200 mg/L的ASIV抑制細胞增長,故篩選出100 mg/L作為后續(xù)實驗ASIV的相對最佳濃度,見圖2。

Figure 2. Effect of different concentrations of astragaloside IV on macrophage viability. Mean±SD. n=6.

3 各組RAW264.7細胞脂質(zhì)沉積情況

油紅O結果顯示,對照組小鼠RAW264.7細胞核為藍色,清晰可見,細胞質(zhì)內(nèi)未見橘紅色脂滴;與對照組相比,PA組RAW264.7細胞核縮小且不清晰,細胞質(zhì)可見彌漫性橘紅色脂滴,脂質(zhì)嚴重蓄積;與PA組相比,PA+ASIV組RAW264.7細胞核部分恢復正常,細胞質(zhì)內(nèi)橘紅色脂滴顯著減少,脂質(zhì)蓄積程度減輕,見圖3。

Figure 3. The lipid deposition levels of RAW264.7 cells in each group. The scale bar=50 μm. Blue: the cell nucleus; orange: the lipid droplets. The more intracellular lipid droplet vacuoles, the more severe the lipid deposition in hepatocytes.

4 各組RAW264.7細胞鐵死亡相關因子GPX4及FTH1表達水平

細胞免疫熒光結果顯示,與對照組相比,PA組細胞核呈藍色熒光,細胞質(zhì)呈綠色熒光且顏色較淺,GPX4和FTH1蛋白的表達顯著降低(<0.01);ASIV干預后,細胞質(zhì)綠色熒光顏色較深,GPX4和FTH1蛋白的表達顯著增高(<0.01),見圖4。

Figure 4. The expression levels of GPX4 and FTH1 in RAW264.7 cells of each group. The scale bar=50 μm. Blue: the cell nucleus; green: the cytoplasm. In cellular immunofluorescence staining, the darker the cytoplasm, the higher the level of protein expression. Mean±SD. n=3. *P<0.05 vs control group;#P<0.05 vs model group.

5 各組RAW264.7細胞鐵死亡相關蛋白表達水平

與對照組相比,PA組鐵死亡相關蛋白P53表達水平顯著增加(<0.05),而SLC7A11、GPX4和FTH1蛋白表達均顯著減少(<0.05);與PA組相比,PA+ASIV組P53蛋白表達顯著減少(<0.05),SLC7A11和GPX4蛋白表達均顯著增加,F(xiàn)TH1蛋白表達未見顯著差異,見圖5。

Figure 5. The expression levels of ferroptosis-related proteins in RAW264.7 cells of each group. Mean±SD. n=3. *P<0.05 vs control group;#P<0.05 vs PA group.

6 各組RAW264.7細胞鐵死亡相關mRNA表達水平

與對照組相比,PA組P53的mRNA表達水平顯著升高(<0.05),而SLC7A11、GPX4和FTH1的mRNA表達均顯著減少(<0.05);與PA組相比,PA+ASIV組P53的mRNA表達顯著減少(<0.05),SLC7A11、GPX4和FTH1的mRNA表達均顯著增加(<0.05),見圖6。

Figure 6. The mRNA expression levels of ferroptosis-related proteins in RAW264.7 cells of each group. Mean±SD. n=3. *P<0.05 vs control group;#P<0.05 vs PA group.

7 ASIV對PA誘導的RAW264.7細胞ROS生成的影響

ROS熒光探針結果顯示,與對照組相比,PA組細胞核呈藍色熒光,細胞質(zhì)呈紅色熒光且顏色較深,ROS水平顯著升高(<0.05);ASIV干預后,細胞質(zhì)紅色熒光顏色較淺,ROS水平顯著減低(<0.05),見圖7。

Figure 7. The level of reactive oxygen species in RAW264.7 cells of each group. The scale bar=40 μm. Blue: the cell nucleus; red: the cytoplasm. In cellular immunofluorescence staining, the darker the cytoplasm, the higher the level of ROS. Mean±SD. n=3. *P<0.05 vs control group;#P<0.05 vs PA group.

討論

受居民飲食結構及社會壓力等多重因素影響,NAFLD的發(fā)病率逐年上升,已超過慢性乙型肝炎成為我國第一大肝?。?8]。NAFLD的主要特征是肝臟對脂肪酸的攝入大于輸出,屬于低度慢性炎癥性疾病,與免疫調(diào)控密切相關[2, 19]。而肝臟巨噬細胞作為機體內(nèi)重要免疫細胞群,具有免疫調(diào)節(jié)、抗原呈遞和吞噬異物等功能,當內(nèi)源性和外源性病原體侵犯機體時,誘導巨噬細胞活化,激活的巨噬細胞依靠吞噬功能清除病原體[3]。有研究表明,肝臟單純脂肪變階段,門靜脈區(qū)域有部分巨噬細胞聚集浸潤[20],提示巨噬細胞可能參與了非酒精性脂肪肝的發(fā)生發(fā)展。

飽和脂肪酸具有脂毒性,PA作為主要飽和脂肪酸,過量累積可導致免疫細胞損傷。巨噬細胞在高強度長時間的PA刺激下誘導線粒體損傷和活性氧釋放増加[16],引起巨噬細胞鐵死亡,脂質(zhì)內(nèi)部消化和輸出障礙,導致脂質(zhì)異位沉積是引起NAFLD發(fā)生的重要環(huán)節(jié)。而PA是誘發(fā)細胞鐵死亡發(fā)生的主要致病因素[21],故本研究利用體外研究方法,復制了PA誘導的巨噬細胞鐵死亡模型。鐵死亡發(fā)生的關鍵分子機制是抗氧化酶GPX4與底物結合可將脂質(zhì)ROS及過氧化氫還原為相應的水和醇類物質(zhì),減少脂質(zhì)過氧化的損傷。而p53通過抑制基因的轉(zhuǎn)錄,阻止細胞對胱氨酸的攝取,抑制抗氧化酶GPX4底物的合成導致細胞抗氧化能力減弱[11]。另外FTH1可調(diào)控鐵離子的儲存,F(xiàn)TH1表達水平減低可增加游離鐵水平引起Fenton反應促進鐵死亡[22]。目前體外實驗研究已表明PA可通過調(diào)控鐵死亡相關因子引起鐵死亡及脂質(zhì)沉積[23-24]。在本研究結果顯示PA通過上調(diào)p53,下調(diào)SLC7A11、FTH1和GPX4的mRNA及蛋白表達促使ROS水平升高,巨噬細胞鐵死亡,導致細胞內(nèi)脂質(zhì)堆積。因此,本研究結果進一步表明鐵死亡通路的激活參與了巨噬細胞脂質(zhì)沉積,進而引起組織損傷。

ASIV作為一種中藥單體成分,可通過調(diào)節(jié)不同生物學過程發(fā)揮抗脂、抗炎、抗動脈粥樣硬化等作用[12-13]。在本研究中,我們觀察了ASIV對PA誘導的巨噬細胞鐵死亡和鐵死亡標志蛋白表達的影響。結果顯示ASIV可能通過下調(diào)P53,上調(diào)FTH1、SLC7A11和GPX4部分蛋白及基因的表達抑制PA誘導的巨噬細胞鐵死亡及脂質(zhì)沉積,但對鐵死亡蛋白FTH1表達無影響。有研究表明基因具有較多的同源性假基因,它們來自FTH1處理后mRNA的逆向轉(zhuǎn)位,含有一個或多個IRE序列,已表達的假基因的IRE序列可能會與競爭IRE結合因子,而已轉(zhuǎn)錄的假基因有可能產(chǎn)生同源的FTH1多肽[25],與ASIV競爭性結合導致真正的FTH1蛋白受到抑制。

綜上所述,ASIV可能通過下調(diào)P53,上調(diào)FTH1、SLC7A11和GPX4的mRNA及蛋白表達抑制PA誘導的巨噬細胞鐵死亡,減輕小鼠肝臟巨噬細胞脂質(zhì)沉積。本實驗結果為NAFLD的深入研究提供實驗依據(jù)。

[1] Cotter TG, Rinella M. Nonalcoholic fatty liver disease 2020: the state of the disease[J]. Gastroenterology, 2020, 158(7):1851-1864.

[2] Hou J, Zhang J, Cui P, et al. TREM2 sustains macrophage-hepatocyte metabolic coordination in nonalcoholic fatty liver disease and sepsis[J]. J Clin Invest, 2021, 131(4):e135197.

[3]田鐘元,安秀琴,劉近春. 巨噬細胞在代謝相關脂肪性肝病中的研究進展[J]. 中國現(xiàn)代醫(yī)生, 2021, 59(34):183-187.

Tian ZY, An XQ, Liu JC. Research progress of macrophages in metabolic dysfunction-associated fatty liver disease[J].Chin Mod Doctor, 2021, 59(34):183-187.

[4] Alisi A, Carpino G, Oliveira FL, et al. The role of tissue macrophage-mediated inflammation on NAFLD pathogenesis and its clinicalimplications[J]. Mediators Inflamm, 2017, 2017:8162421.

[5] Friedman SL, Neuschwander-Tetri BA, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24(7):908-922.

[6]陶嘉,唐超,孟凡強,等. 黑木耳多肽對棕櫚酸誘導的脂肪肝細胞的降脂作用[J]. 食品科學, 2022, 43(3):106-113.

Tao J, Tang C, Meng FQ, et al. Lipid-lowering effect of auricularia auricula peptides on palmitic acid-induced liver cells[J]. Food Sci, 2022, 43(3):106-113.

[7] Wu J, Wang Y, Jiang R, et al. Ferroptosis in liver disease: new insights into disease mechanisms[J]. Cell Death Discov, 2021, 7(1):276.

[8] Li X, Wang TX, Huang X, et al. Targeting ferroptosis alleviates methionine-choline deficient (MCD)-diet induced NASH by suppressing liver lipotoxicity[J]. Liver Int, 2020, 40(6):1378-1394.

[9] Magtanong L, Ko PJ, Dixon SJ. Emerging roles for lipids in non-apoptotic cell death[J]. Cell Death Differ, 2016, 23(7):1099-1109.

[10] Qi J, Kim JW, Zhou Z, et al. Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation-mediated cell death in mice[J]. Am J Pathol, 2020, 190(1):68-81.

[11] Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis[J]. Free Radic Biol Med, 2019, 133:130-143.

[12] Wu H, Gao Y, Shi HL, et al. Astragaloside IV improves lipid metabolism in obese mice by alleviation of leptin resistance and regulation of thermogenic network[J]. Sci Rep, 2016, 6:30190.

[13] Liang XY, Hong FF, Yang SL. Astragaloside IV alleviates liver inflammation, oxidative stress and apoptosis to protect against experimental non-alcoholic fatty liver disease[J]. Diabetes Metab Syndr Obes, 2021, 14:1871-1883.

[14] 張暢,羅肖肖,晏勇,等. 棕櫚酸通過上調(diào)脂肪酸轉(zhuǎn)位酶誘導THP-1細胞的炎癥反應[J]. 中國病理生理雜志, 2018, 34(3):393-398.

Zhang C, Luo XX, Yan Y, et al. Palmitate triggers inflammatory response by upregulating fatty acid translocase in THP-1 macrophages[J]. Chin J Pathophysiol, 2018, 34(3):393-398.

[15] Liu B, Deng X, Jiang Q, et al. Scoparone improves hepatic inflammation and autophagy in mice with nonalcoholic steatohepatitis by regulating the ROS/P38/Nrf2 axis and PI3K/AKT/mTOR pathway in macrophages[J]. Biomed Pharmacother, 2020, 125:109895.

[16] Ishiyama J, Taguchi R, Yamamoto A, et al. Palmitic acid enhances lectin-like oxidized LDL receptor (LOX-1) expression and promotes uptake of oxidized LDL in macrophage cells[J]. Atherosclerosis, 2010, 209(1):118-124.

[17] 孟婷婷. 黃芪三種成分對小鼠巨噬細胞RAW264.7的免疫增強作用及其機制研究[D]. 合肥:安徽農(nóng)業(yè)大學, 2016:35-36.

Meng TT. Immune enhancing effect and its mechanism of three components of Mongolian milkvetch root in macrophages RAW264.7 of mouse[D]. Hefei: Anhui Agricultural University, 2016:35-36.

[18] Estes C, Anstee QM, Arias-Loste MT, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016-2030[J]. Hepatol, 2018, 69(4):896-904.

[19] 孟民杰,楊欽河,王強,等. 不同治法方藥對大鼠脂肪肝Kupffer細胞ERK1/2蛋白活性的影響[J]. 中國病理生理雜志, 2007, 23(8):1551-1555.

Meng MJ, Yang QK, Wang Q, et al. Effects of different therapeutic methods and typical recipes on activition of ERK1/2 in Kupffer cells of rats with fatty liver[J]. Chin J Pathophysiol, 2007, 23(8):1551-1555.

[20] Park JW, Jeong G, Kim SJ, et al. Predictors reflecting the pathological severity of non-alcoholic fatty liver disease: comprehensive study of clinical and immunohistochemical findings in younger Asian patients[J]. Gastroenterol Hepatol, 2007, 22(4):491-497.

[21]姚玉昌,趙多維,肖十雨,等. 棕櫚酸對綿羊單核巨噬細胞炎性因子和氧化應激水平的影響[J]. 東北農(nóng)業(yè)大學學報, 2021, 52(7):64-71.

Yao YC, Zhao DW, Xiao SY, et al. Effect of palmitic acid on inflammatory factors and and oxidative stress levels in sheep monocytes macrophages[J]. J Northeast Agric Univ, 2021, 52(7):64-71.

[22]張新,陳文娜,宋囡,等. 丹蔞片通過鐵死亡途徑減輕非酒精性脂肪性肝病模型小鼠肝臟氧化損傷[J]. 中國病理生理雜志, 2021, 37(12):2180-2188.

Zhang X, Chen WN, Song N, et al. Danlou tablets attenuate oxidative damage of liver in mice with non-alcoholic fatty liver disease through ferroptosis pathway[J]. Chin J Pathophysiol, 2021, 37(12):2180-2188.

[23] Magtanong L, Ko PJ, Dixon SJ. Emerging roles for lipids in non-apoptotic cell death[J]. Cell Death Differ, 2016, 23(7):1099-1109.

[24] 劉洋,孫岳,楊安寧,等. 鐵死亡參與高脂飲食誘導的-/-小鼠動脈粥樣硬化及ox-LDL誘導的泡沫細胞形成過程[J]. 實用醫(yī)學雜志, 2021, 37(5):585-590.

Liu Y, Sun Y, Yang AN, et al. Involvement of ferroptosis in atherosclerosis induced by high-fat diet in-/-mouse and formation of ox-LDL-induced foam cell[J]. J Pract Med, 2021, 37(5):585-590.

[25] Di Sanzo M, Quaresima B, Biamonte F, et al. FTH1 pseudogenes in cancer and cell metabolism[J]. Cells, 2020, 9(12):2554.

Regulatory effect of astragaloside IV on palmitic acid-induced ferroptosis of mouse marcrophage cell line RAW264.7

ZHANG Xin, CHEN Wen-na△, SONG Nan, CAO Hui-min, WANG Jun-yan

(,110000,)

To investigate the regulatory effect of astragaloside IV (ASIV) on the ferroptosis of mouse marcrophage cell line RAW264.7 induced by palmitic acid (PA).The RAW264.7 cells at logarithmic growth stage were added with 0, 50, 100, 150 and 200 mg/L of ASIV, or 0, 100, 200 and 400 μmol/L of PA, and then were counted and analyzed after 48 h of incubation in a cell imager to observe the effects of ASIV and PA on the viability of macrophages. The RAW264.7 cells were divided into control group, PA (200 μmol/L) group, and PA (200 μmol/L)+ASIV (100 mg/L) group. Oil red O staining was performed to observe lipid deposition in the RAW264.7 cells. The expression levels of glutathione peroxidase 4 (GPX4) and ferritin heavy chain 1 (FTH1) proteins in the RAW264.7 cells were observed by immunofluorescence staining. The mRNA and protein expression levels of ferroptosis-related proteins GPX4, FTH1, P53 and solute carrier family 7 member 11 (SLC7A11) were determined by RT-qPCR and Western blot, respectively. Reactive oxygen species (ROS) fluorescence probe was used to detect the production of ROS.The results of cell imager showed that 200 μmol/L and 100 mg/L were screened by as the optimal concentrations of PA and ASIV for subsequent experiments, respectively. Compared with control group, the cell nuclei in PA group were shrunk and indistinct, and diffuse orange-red lipid droplets were visible in the cell cytoplasm. Cellular immunofluorescence results showed that mean fluorescence intensity of GPX4 and FTH1 proteins was significantly lowered in PA group (<0.01). The mRNA and protein expression levels of P53 were significantly increased in PA group (<0.05), while the expression levels of SLC7A11, GPX4 and FTH1 were significantly reduced (<0.05). The production of ROS was significantly increased in PA group (<0.05). Compared with PA group, the morphological change of the nuclei in PA+ASIV group were partially restored, and the orange-red lipid droplets in the cell cytoplasm were reduced. The mean fluorescence intensity of GPX4 and FTH1 proteins was significantly increased in PA+ASIV group (<0.01). The mRNA and protein expression levels of P53 were significantly reduced, SLC7A11 and GPX4 were significantly increased in PA+ASIV group (<0.05), but the expression of FTH1 protein was not significantly different (>0.05). The production of ROS was significantly reduced in PA+ASIV group (<0.05).Astragaloside IV inhibits lipid deposition in mouse RAW264.7 cells, which may be related to the regulation of ferroptosis-related factors.

Astragaloside IV; Ferroptosis; Palmitic acid; Macrophages

R392; R363.2

A

10.3969/j.issn.1000-4718.2022.06.018

1000-4718(2022)06-1105-08

2022-02-17

2022-05-20

國家自然科學基金資助項目(No. 81874372)

Tel: 024-31207185; E-mail: chenwn1992@126.com

(責任編輯:宋延君,羅森)

猜你喜歡
孵育脂質(zhì)熒光
扳機日血清雌激素不同水平時授精前后卵母細胞孵育時間對短時受精胚胎移植結局的影響
茶葉中脂質(zhì)含量檢測及其方法比較
組蛋白甲基轉(zhuǎn)移酶SETD2在肝組織中的缺陷導致脂質(zhì)代謝異常及肝癌
脂質(zhì)過氧化在慢性腎臟病、急性腎損傷、腎細胞癌中的作用
干式熒光發(fā)光法在HBV感染診療中應用價值
肽基脯氨酰同分異構酶(Pin1)對子宮頸癌細胞脂質(zhì)代謝的作用
用課程“孵育”會“發(fā)光”的教室
魔力熒光色
軍事電子專業(yè)研究生創(chuàng)新能力的孵育與拓展
應用快速孵育法優(yōu)化酶聯(lián)免疫吸附實驗過程探討——以乙型肝炎病毒表面抗原檢測為例