張旭琳, 田香勤, 賈珍麗, 劉博蔚, 梁高遠, 張子辰, 李玲△, 張亮,△
硫氫化鈉通過抑制經(jīng)典細胞焦亡信號通路減輕巨噬細胞焦亡*
張旭琳1, 田香勤2,3▲, 賈珍麗1, 劉博蔚1, 梁高遠1, 張子辰1, 李玲1△, 張亮1,2△
(1石河子大學新疆地方與民族高發(fā)病教育部重點實驗室,新疆 石河子 832003;2國家衛(wèi)生健康委中亞高發(fā)病防治重點實驗室,新疆 石河子 832008;3新鄉(xiāng)醫(yī)學院,河南 新鄉(xiāng) 453003)
:探討硫化氫(hydrogen sulfide, H2S)供體硫氫化鈉(sodium hydrosulfide, NaHS)對巨噬細胞焦亡的作用。人髓系白血病單核細胞THP-1經(jīng)佛波酯刺激并分化為巨噬細胞后,采用不同濃度的氧化低密度脂蛋白(oxidized low-density lipoprotein, ox-LDL)和NaHS對其進行干預,并分為空白對照組、ox-LDL刺激組和NaHS+ox-LDL干預組。采用CCK-8法檢測THP-1巨噬細胞活力;采用油紅O染色和光鏡分別觀察THP-1巨噬細胞脂質蓄積和焦亡細胞形態(tài);采用Hoechst 33342/碘化丙啶(propidium iodide, PI)熒光染色和乳酸脫氫酶(lactate dehydrogenase, LDH)活性檢測評估細胞焦亡程度;采用H2S檢測試劑盒測定細胞內的H2S水平;采用試劑盒測定細胞中的caspase-1活性;采用Western blot分析細胞中焦亡關鍵蛋白的表達水平。與空白對照組相比,ox-LDL(100和150 mg/L)可顯著增加THP-1巨噬細胞中的PI陽性細胞比例、LDH釋放、caspase-1活性以及核苷酸結合寡聚化結構域樣受體蛋白3(nucleotide-binding oligomerization domain-like receptor protein 3, NLRP3)、caspase-1 (p20)、gasdermin D(GSDMD)、GSDMD-N和IL-18的蛋白表達(<0.05或<0.01),且ox-LDL(100 mg/L)可使THP-1巨噬細胞出現(xiàn)明顯脂質沉積和典型的細胞焦亡形態(tài)。而NaHS(100和200 μmol/L)干預則可顯著改善巨噬細胞的脂質沉積和焦亡,并可抑制ox-LDL誘導的caspase-1活性增加及焦亡信號通路關鍵蛋白的表達上調(<0.05或<0.01)。H2S供體NaHS可通過抑制經(jīng)典焦亡信號通路而減輕ox-LDL誘導的巨噬細胞焦亡。
硫化氫;氧化低密度脂蛋白;巨噬細胞;細胞焦亡
細胞焦亡作為機體應對病原微生物感染和細胞應激的一種促炎性細胞程序性死亡,其最初發(fā)現(xiàn)于巨噬細胞[1-3]。研究表明巨噬細胞的適度焦亡是各種傳染性、自身免疫性和炎癥性疾病發(fā)病過程中的重要先天免疫應答機制,且其有利于宿主通過招募各種免疫細胞以清除病原體或修復受損組織,并增強宿主細胞的免疫防御反應[2,4-5]。然而,免疫穩(wěn)態(tài)失衡引起的由核苷酸結合寡聚化結構域樣受體蛋白3(nucleotide-binding oligomerization domain-like receptor protein 3, NLRP3)/胱天蛋白酶1(caspase-1)/消皮素 D(gasdermin D, GSDMD)介導的經(jīng)典焦亡信號通路的過度激活及巨噬細胞的過度焦亡則可加劇組織損傷及自身免疫性或炎癥性疾病的發(fā)生發(fā)展[2,6]。目前研究已證實血管內膜下的泡沫巨噬細胞焦亡在炎癥性血管疾病——動脈粥樣硬化(atherosclerosis, AS)的發(fā)病過程中發(fā)揮著關鍵作用,泡沫巨噬細胞焦亡可造成AS斑塊中脂質壞死核心的形成擴大、AS斑塊的不穩(wěn)定性,以及動脈血栓的形成[7-9]。而細胞焦亡信號通路中關鍵蛋白的藥理特異性阻斷和基因缺失則可有效緩解巨噬細胞焦亡及AS斑塊的形成病變[10-13],因此,細胞焦亡中涉及的關鍵分子可為防治AS提供新思路和新靶點。
硫化氫(hydrogen sulfide, H2S)作為一種繼一氧化氮和一氧化碳之后的新型氣體信號分子,其供體藥物在心血管疾病治療中具有重要的應用價值[14],但H2S對AS發(fā)病中巨噬細胞焦亡的作用尚不明確。在本研究中,我們采用AS發(fā)病危險因素——氧化低密度脂蛋白(oxidized low-density lipoprotein, ox-LDL)刺激人髓系白血病單核細胞系THP-1起源的巨噬細胞,構建泡沫巨噬細胞焦亡模型,旨在探討外源性H2S供體硫氫化鈉(sodium hydrosulfide, NaHS)對泡沫巨噬細胞焦亡的調節(jié)作用。
1.1 細胞 人髓系白血病單核細胞THP-1購自ATCC。
1.2 藥物和試劑 THP-1細胞專用培養(yǎng)液購自Procell;佛波酯(phorbol 12-myristate 13-acetate, PMA)和細胞蛋白抽提試劑盒購自Solarbio;ox-LDL購自Yiyuan Biotechnology;NaHS購自Sigma;CCK-8試劑購自Dojindo;Hoechst 33342/PI熒光染料及乳酸脫氫酶(lactate dehydrogenase, LDH)試劑盒購自南京建成生物工程研究所;caspase-1活性測定試劑盒購Beyotime;小鼠抗人β-actin抗體和Ⅱ抗(包括辣根過氧化物酶標記的山羊抗兔和山羊抗小鼠抗體)均購自北京中杉金橋生物技術有限公司;兔抗人NLRP3、pro-caspase-1和GSDMD抗體購自Abcam;GSDMD-N抗體購自Cell Signaling Technology;兔抗人caspase-1 (p20)抗體和IL-18抗體購自Proteintech;化學發(fā)光試劑盒和PVDF膜購自Millipore。
1.3主要儀器設備細胞培養(yǎng)箱(賽默飛世爾公司);熒光顯微鏡(奧林巴斯公司);低溫高速離心機(賽默飛世爾公司);酶標儀(賽默飛世爾公司);電泳儀和轉膜儀(北京六一生物科技有限公司)。
2.1細胞培養(yǎng)將THP-1細胞以1×109L-1接種于含THP-1專用培養(yǎng)液[RPMI-1640、10%胎牛血清、0.05 mmol/L β-巰基乙醇和1%雙抗(1×105U/L青霉素和100 mg/L鏈霉素)]的細胞培養(yǎng)瓶置于CO2培養(yǎng)箱(37 ℃飽和濕度環(huán)境、5% CO2)中培養(yǎng),待細胞密度為3×108~2×109L-1時進行傳代鋪板,并進行后續(xù)藥物干預實驗。
2.2藥物干預與實驗分組將THP-1細胞接種于含1%胎牛血清培養(yǎng)液的細胞培養(yǎng)板中,使用濃度為100 μg/L PMA處理THP-1細胞24 h,以誘導單核細胞分化為巨噬細胞。將細胞密度調整為1×108~2×109L-1之后使用ox-LDL或/和NaHS對THP-1細胞進行處理,并分為以下3組:(1)空白對照組:正常THP-1細胞培養(yǎng)液培養(yǎng)THP-1巨噬細胞24 h;(2)ox-LDL處理組:根據(jù)文獻[15]采用終濃度為25、50、100和150 mg/L的ox-LDL處理THP-1巨噬細胞24 h;(3)NaHS+ox-LDL干預組:根據(jù)文獻[16]采用50、100和200 μmol/L NaHS預處理THP-1巨噬細胞30 min,再加入ox-LDL(100 mg/L)后培養(yǎng)細胞24 h。
2.3細胞活性檢測PMA誘導分化的THP-1巨噬細胞(每孔1×104細胞)經(jīng)不同濃度NaHS(0、50、100、200和400 μmol/L)干預24 h后向各孔加入100 μL含CCK-8溶液(體積比10%)的基礎培養(yǎng)液,在37 ℃條件下孵育1~3 h后用酶標儀測定各孔在450 nm波長處的吸光度。最后參照CCK-8試劑盒中的公式計算細胞的相對活力。
2.4Hoechst 33342/PI染色Hoechst 33342是具有一定細胞膜通透性的熒光染料,能進入正常細胞中與DNA結合使細胞染上深藍色熒光;PI是一種DNA結合性染料,不能透過正常完整的細胞膜,但當細胞焦亡形成膜穿孔時可進入細胞內使其染上紅色熒光。本實驗參照文獻[17]中的方法檢測各組細胞在3個隨機視野下的PI陽性染色的細胞數(shù)目,并根據(jù)公式PI陽性染色的細胞比例(%)=PI陽性染色細胞數(shù)/細胞總數(shù)×100%計算分析各組細胞焦亡情況。
2.5LDH釋放測定參照文獻[18]使用LDH活性檢測試劑盒于450 nm波長測定各組細胞培養(yǎng)液上清的吸光度(),并根據(jù)公式LDH活性(U/L)=(測定孔值-對照孔值)/(標準孔值-標準對照孔值)×0.2×1 000,計算出培養(yǎng)液上清中的LDH活性。
2.6油紅O染色THP-1巨噬細胞經(jīng)指定藥物干預24 h后,用PBS漂洗3次后于4%多聚甲醛溶液中固定15 min;隨后經(jīng)PBS漂洗后于37 ℃條件下用油紅O染液染色10 min;再經(jīng)雙蒸水漂洗后用蘇木素復染2 min;最后經(jīng)雙蒸水沖洗分色返藍后甘油封片,并于顯微鏡下觀察拍照。
2.7H2S含量測定胰酶消化收集經(jīng)特定藥物干預處理24 h后的細胞,并向其中加入600 μL磷酸緩沖液(pH 6.8)裂解勻漿,隨后采用H2S檢測試劑盒測定細胞中的H2S水平。
2.8caspase-1活性測定各組細胞經(jīng)不同藥物干預24 h后,胰酶消化細胞,并在600×、4 ℃下離心5 min收集細胞,PBS漂洗離心后往細胞團塊中加入100 μL裂解液,于冰浴條件下孵育裂解15 min;隨后在4 ℃、18 000×條件下將細胞勻漿液離心15 min,并吸取上清檢測細胞中的蛋白含量。之后根據(jù)caspase-1活性檢測試劑盒中提供的的試劑和方法,使用酶標儀檢測各組樣品405 nm處的吸光度,并根據(jù)標準曲線計算各組細胞中的caspase-1活性。
2.9免疫印跡實驗向經(jīng)不同藥物處理24 h的細胞中加入120 μL預冷的RIPA細胞裂解液,冰浴裂解20 min;之后將細胞裂解液轉移至離心管中,將其在4 ℃、12 000 r/min離心15 min并吸取上清,對各組總蛋白進行蛋白定量。隨后用5×蛋白上樣緩沖液稀釋蛋白樣品并取40 μg蛋白上樣,在恒壓條件下完成SDS-PAGE。采用恒流濕轉法將總蛋白轉移至PVDF膜上,并將PVDF膜移至封閉液中室溫孵育2 h;隨后用1∶1 000稀釋的一抗溶液將PVDF膜在4 ℃下孵育12~16 h;翌日用TBST溶液洗膜后,向PVDF膜上加入Ⅱ抗溶液(1∶10 000)于室溫孵育1.5~2 h。Ⅱ抗孵育后用TBST溶液漂洗,并向膜上加入化學發(fā)光顯色液,采用X射線膠片對目的蛋白條帶進行曝光。對曝光膠片掃描后使用ImageJ軟件對各蛋白表達條帶進行蛋白積分吸光度分析,以內參照蛋白β-actin表達條帶的灰度值對目的蛋白的表達水平進行半定量分析。
應用GraphPad Prism 8軟件進行統(tǒng)計分析。實驗結果采用均數(shù)±標準差(mean±SD)表示。采用單因素方差分析進行組間均數(shù)比較,多重比較采用LSD-檢驗。以<0.05為差異有統(tǒng)計學意義。
為建立ox-LDL誘導的巨噬細胞焦亡模型,本實驗評估了不同濃度ox-LDL對THP-1巨噬細胞焦亡及焦亡關鍵蛋白表達水平的影響。與空白對照組相比,100和150 mg/L ox-LDL可使THP-1巨噬細胞中的PI陽性染色細胞比例和LDH釋放顯著升高(<0.05或<0.01),見圖1;且100和150 mg/L ox-LDL可使THP-1巨噬細胞中焦亡關鍵蛋白[NLRP3、caspase-1(p20亞單位)、GSDMD]及焦亡相關炎性介質IL-18的表達水平顯著上調(<0.05或<0.01),見圖2。
Figure 1. Effect of different concentrations of ox-LDL on the pyroptosis of THP-1-derived macrophages. A: double staining of Hoechst 33342 (blue) and PI (red) in THP-1-derived macrophages (scale bar=50 μm); B: LDH activity in the cell culture supernatants. Mean±SD. n=4. *P<0.05,**P<0.01 vs 0 mg/L group.
Figure 2. Effect of different concentrations of ox-LDL on the expression of pyroptosis-related proteins in THP-1-derived macrophages. β-actin was used as an internal control. Mean±SD. n=5. *P<0.05,**P<0.01 vs 0 mg/L group.
為初步研究NaHS對ox-LDL誘導的巨噬細胞焦亡的影響,我們采用不同濃度NaHS(50、100、200和400 μmol/L)或/和100 mg/L ox-LDL干預THP-1巨噬細胞,檢測了不同濃度NaHS對細胞活力的影響,以及各組THP-1巨噬細胞中的H2S含量、脂質沉積、焦亡細胞形態(tài)、PI陽性細胞比例和LDH釋放。如圖3A所示,與空白對照相比,不同濃度NaHS對THP-1巨噬細胞無毒性作用;而ox-LDL處理的THP-1巨噬細胞中的H2S含量顯著減少(<0.01;圖3B),并出現(xiàn)明顯脂質沉積和以細胞腫脹膨大及氣泡狀突出物為特點的細胞焦亡(<0.01),且ox-LDL處理可使THP-1巨噬細胞PI陽性細胞比例和LDH釋放顯著升高(<0.01),見圖4~6。與ox-LDL處理組相比,不同濃度NaHS干預則可使THP-1巨噬細胞中的H2S含量顯著升高(<0.05或<0.01;圖3B),并減輕ox-LDL誘導的THP-1巨噬細胞脂質沉積和細胞焦亡(<0.05或<0.01),見圖4、5。此外,中、高濃度(100和200 μmol/L)NaHS干預還可顯著降低THP-1巨噬細胞的焦亡細胞比例和LDH釋放(<0.01),見圖6。
Figure 3. Effect of gradient concentrations of NaHS on the viability (A) and H2S level (B) in THP-1-derived macrophages. Mean±SD. n=5. *P<0.05,**P<0.01 vs control group (0 μmol/L NaHS or 0 μmol/L NaHS+0 mg/L ox-LDL);#P<0.05,##P<0.01 vs ox-LDL (100 mg/L) group.
Figure 4. Effect of gradient concentrations of NaHS on lipid accumulation in ox-LDL incubated THP-1-derived macrophages (oil red O staining, scale bar=25 μm).
Figure 5. Effect of gradient concentrations of NaHS on morphological characteristics of pyroptosis in ox-LDL-incubated THP-1-derived macrophages. The scale bar=25 μm in the upper panel, and high-power fields with magnified details were shown in the lower panel. The arrowheads indicate typical pyroptotic cells with cell swelling, and large bubbles extending from the plasma membrane with plasma membrane rupture. Mean±SD. n=4. **P<0.01 vs control group (0 μmol/L NaHS+0 mg/L ox-LDL);#P<0.01,##P<0.01 vs ox-LDL (100 mg/L) group.
Figure 6. Effect of gradient concentrations of NaHS on ox-LDL-induced pyroptosis of THP-1-derived macrophages. A: double staining of Hoechst 33342 (blue) and PI (red) in THP-1-derived macrophages (scale bar=50 μm); B: LDH activity in the cell culture supernatants. Mean±SD. n=4. **P<0.01 vs control group (0 μmol/L NaHS+0 mg/L ox-LDL);##P<0.01 vs ox-LDL (100 mg/L) group.
為進一步探討NaHS抑制THP-1巨噬細胞焦亡的作用,我們檢測了不同濃度NaHS對ox-LDL處理的THP-1巨噬細胞中細胞焦亡關鍵酶caspase-1活性及焦亡關鍵蛋白表達水平的影響。結果顯示,與空白對照相比,ox-LDL處理可使THP-1巨噬細胞中的caspase-1活性及焦亡關鍵蛋白的表達水平(<0.01)顯著升高;而中、高濃度的NaHS可顯著抑制ox-LDL處理的THP-1巨噬細胞中的caspase-1活性(<0.05或<0.01),并顯著下調上述焦亡關鍵標志蛋白的表達(<0.05或<0.01),見圖7、8。
Figure 7. Effect of gradient concentrations of NaHS on the enzymatic activity of caspase-1 in ox-LDL-incubated THP-1-derived macrophages. Mean±SD. n=6. **P<0.01 vs control group (0 μmol/L NaHS+0 mg/L ox-LDL);#P<0.05,##P<0.01 vs ox-LDL (100 mg/L) group.
Figure 8. Effect of gradient concentrations of NaHS on the expression of pyroptosis-related proteins in ox-LDL-incubated THP-1-derived macrophages. β-actin was used as an internal control. Mean±SD. n=5. **P<0.01 vs control group (0 μmol/L NaHS+0 mg/L ox-LDL);#P<0.05,##P<0.01 vs ox-LDL (100 mg/L) group.
巨噬細胞作為先天免疫和組織修復中的關鍵免疫細胞,其所形成的泡沫巨噬細胞介導的慢性炎癥應答在AS發(fā)生發(fā)展過程中具有決定性作用[5,7]。因此,抑制巨噬細胞介導的慢性炎癥反應對于防治AS具有重要意義。研究表明,AS致病危險因素包括ox-LDL、膽固醇結晶、甘油三酯和同型半胱氨酸誘導巨噬細胞形成泡沫細胞導致AS發(fā)生發(fā)展[3,5,19]的同時,還可誘導泡沫巨噬細胞發(fā)生一種促炎性細胞程序性死亡—細胞焦亡[5, 19],其典型細胞形態(tài)特征為膜孔形成、細胞腫脹及其滲透性裂解[17, 20]。在本研究中我們采用光鏡觀察和細胞焦亡鑒定的金標準[7](PI染色和LDH釋放)初步證實了中、高濃度的ox-LDL可顯著誘導THP-1巨噬細胞發(fā)生以細胞腫脹裂解、PI陽性細胞比例和LDH釋放升高為主要特征的細胞焦亡。在體動物和細胞體外研究表明上述AS致病危險因素均可上調并激活細胞焦亡信號通路中的關鍵蛋白而使巨噬細胞發(fā)生焦亡[3, 5, 9, 21]。這與本研究中、高濃度的ox-LDL可明顯上調THP-1巨噬細胞中NLRP3、caspase-1、GSDMD、GSDMD-N和IL-18的表達相一致。因此,本研究結果進一步證實了ox-LDL對巨噬細胞焦亡的誘導作用。近期有研究表明阻斷NLRP3或caspase-1可有效抑制巨噬細胞焦亡及其介導的AS的發(fā)生發(fā)展[10-13]。因此,探討NLRP3-caspase-1-GSDMD介導的巨噬細胞焦亡可為防治AS提供新思路。
近十年來對于信號分子H2S的心血管保護和抗炎作用[14,22]已達成共識,且本研究中也再次證實了不同濃度的H2S供體NaHS對ox-LDL誘導的THP-1巨噬細胞中脂質沉積的抑制作用。然而,H2S是否可抑制ox-LDL誘導的巨噬細胞焦亡尚不清楚。在本文中,我們深入探索了不同濃度NaHS對ox-LDL誘導的THP-1巨噬細胞焦亡和焦亡關鍵蛋白表達或活性的影響,結果顯示ox-LDL在誘導THP-1巨噬細胞焦亡的同時可降低巨噬細胞中的H2S水平。而中、高濃度NaHS處理可顯著增加細胞內的H2S水平,且其可通過抑制THP-1巨噬細胞中的caspase-1活性、下調焦亡關鍵蛋白(NLRP3、Pro-caspase-1、caspase-1、GSDMD、GSDMD-N)和焦亡相關炎性介質(IL-18)的表達而抑制經(jīng)典焦亡信號通路的激活,進而減輕ox-LDL引發(fā)的巨噬細胞焦亡。這與本課題組已發(fā)表成果中關于H2S緩釋性供體GYY4137可通過下調經(jīng)典焦亡信號通路而對內皮細胞焦亡發(fā)揮抑制作用的研究結果[17]相一致,因此,本研究進一步證實了H2S對細胞焦亡及其信號通路的調控作用。
雖然已有研究表明H2S及其供體可通過下調巨噬細胞中NLRP3炎癥小體的表達而發(fā)揮抗炎作用[23-27],但這些研究主要聚焦于H2S對巨噬細胞中NLRP3炎癥小體激活的抑制作用,因缺少焦亡關鍵指標的檢測而未能充分說明H2S對巨噬細胞焦亡的抑制作用。而本研究不但驗證了H2S對NLRP3炎癥小體激活的抑制作用,且通過細胞焦亡關鍵檢測指標(光鏡觀察、PI陽性染色、LDH釋放、焦亡關鍵酶caspase-1活性、焦亡執(zhí)行者GSDMD蛋白及打孔蛋白GSDMD-N的表達)明確了H2S對巨噬細胞焦亡的抑制效應及其可能機制。然而,本研究結果及當前國內外研究仍局限于H2S供體抑制細胞焦亡信號通路關鍵蛋白的表達而發(fā)揮抗細胞焦亡或抗AS效應的表象認識,而對于H2S通過何種分子機制抑制細胞焦亡并發(fā)揮抗AS作用尚不清楚。目前研究認為H2S對功能蛋白的硫巰基化修飾是其發(fā)揮生物學功能、影響蛋白質二硫鍵形成和調節(jié)眾多功能蛋白活性的關鍵機制,且硫巰基化修飾與心血管系統(tǒng)穩(wěn)態(tài)維持及AS的發(fā)生發(fā)展密切相關[28]。因此,H2S是否可通過硫巰基化修飾焦亡關鍵蛋白而發(fā)揮抗細胞焦亡和抗AS效應仍有待于進一步研究。
綜上所述,本研究在已有相關研究結果的基礎上,在巨噬細胞中進一步提供了H2S通過下調經(jīng)典焦亡信號通路而對細胞焦亡發(fā)揮抑制效應的實驗證據(jù)。
[1] Zou YP, Luo X, Yi F, et al. Luteolin prevents THP-1 macrophage pyroptosis by suppressing ROS production via Nrf2 activation[J]. Chem Biol Interact, 2021, 345:109573.
[2] Yuan YY, Xie KX, Wang SL, et al. Inflammatory caspase-related pyroptosis: mechanism, regulation and therapeutic potential for inflammatory bowel disease[J]. Gastroenterol Rep, 2018, 6(3):167-176.
[3] He X, Fan XH, Bai B, et al. Pyroptosis is a critical immune-inflammatory response involved in atherosclerosis [J]. Pharmacol Res, 2021, 165:105447.
[4] Sanz AB, Sanchez-Ni?o MD, Izquierdo MC, et al. Macrophages and recently identified forms of cell death[J]. Int Rev Immunol, 2014, 33(1):9-22.
[5] Wang Q, Wu JF, Zeng YC, et al. Pyroptosis: a pro-inflammatory type of cell death in cardiovascular disease[J]. Clin Chim Acta, 2020, 510:62-72.
[6] Huang SS, Guo DY, Jia BB, et al. Dimethyl itaconate alleviates the pyroptosis of macrophages through oxidative stress[J]. BMC Immunol, 2021, 22(1):72.
[7] Zeng ZL, Li GH, Wu SY, et al. Role of pyroptosis in cardiovascular disease[J]. Cell Prolif, 2019, 52(2):e12563.
[8] Jia C, Chen HW, Zhang J, et al. Role of pyroptosis in cardiovascular diseases[J]. Int Immunopharmacol, 2019, 67:311-318.
[9] Xu YJ, Zheng L, Hu YW, et al. Pyroptosis and its relationship to atherosclerosis[J]. Clin Chim Acta, 2018, 476:28-37.
[10] Hendrikx T, Jeurissen ML, van Grop PJ, et al. Bone marrow-specific caspase-1/11 deficiency inhibits atherosclerosis development in-/-mice[J]. FEBS J, 2015, 282(12):2327-2338.
[11] Zeng WY, Wu DB, SunYX, et al. The selective NLRP3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages [J]. Sci Rep, 2021, 11(1):19305.
[12] Sharma A, Choi JSY, Stefanovic N, et al. Specific NLRP3 inhibition protects against diabetes-associated atherosclerosis [J]. Diabetes, 2021, 70(3):772-787.
[13] Abderrazak A, Couchie D, Mahmood DF, et al. Anti-inflammatory and antiatherogenic effects of the NLRP3 inflammasome inhibitor arglabin in ApoE2.Ki mice fed a high-fat diet[J]. Circulation, 2015, 131(12):1061-1070.
[14] Zhang L, Wang YN, Li Y, et al. Hydrogen sulfide (H2S)-releasing compounds: therapeutic potential in cardiovascular diseases[J]. Front Pharmacol, 2018, 9:1066.
[15] Ni J, Li Y, Guo R. Salidroside protects against foam cell formation and apoptosis, possibly via the MAPK and AKT signaling pathways[J]. Lipids Health Dis, 2017, 16(1):198.
[16] Wu D, Li J, Zhang Q, et al. Exogenous hydrogen sulfide regulates the growth of human thyroid carcinoma cells [J]. Oxid Med Cell Longev, 2019, 2019:6927298.
[17] 何婷婷,張旭琳,賈珍麗,等. 硫化氫通過下調NLRP3/caspase-1信號通路抑制氧化型低密度脂蛋白誘導的血管內皮細胞焦亡[J]. 中國病理生理雜志, 2021, 37(10): 1738-46.
He TT, Zhang XL, Jia ZL, et al. Hydrogen sulfide inhibits oxidized low-density lipoprotein-induced pyroptosis in vascular endothelial cells by down-regulating NLRP3/caspase-1 signaling pathway[J]. Chin J Pathophysiol, 2021, 37(10):1738-1746.
[18] Wu XX, Zhang HY, Qi W, et al. Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis[J]. Cell Death Dis, 2018, 9(2):171.
[19] Zeng C, Wang RQ, Tan HM. Role of pyroptosis in cardiovascular diseases and its therapeutic implications[J]. Int J Biol Sci, 2019, 15(7):1345-1357.
[20] 趙夢繁,蘇日娜,毛欽,等. 犀角地黃湯合銀翹散通過干預mtROS-NLRP3通路抑制流感病毒感染的巨噬細胞焦亡[J]. 中國病理生理雜志, 2021, 37(6):1049-1054.
Zhao MF, Su RN, Mao Q, et al. Xijiao-Dihuang decoction with Yinqiao powder inhibits pyroptosis of macrophages caused by influenza virus via interfering with mtROS-NLRP3 pathway[J]. Chin J Pathophysiol, 2021, 37(6):1049-1054.
[21] Martinet W, Coornaert I, Puylaert P, et al. Macrophage death as a pharmacological target in atherosclerosis[J]. Front Pharmacol, 2019, 10:306.
[22] Zhang HH, Bai ZJ, Zhu LQ, et al. Hydrogen sulfide donors: therapeutic potential in anti-atherosclerosis[J]. Eur J Med Chem, 2020, 205:112665.
[23] Wang HG, Shi XZ, Qiu MY, et al. Hydrogen sulfide plays an important role by influencing NLRP3 inflammasome[J]. Int J Biol Sci, 2020, 16(14):2752-2760.
[24] Qin M, Long F, Wu WJ, et al. Hydrogen sulfide protects against DSS-induced colitis by inhibiting NLRP3 inflammasome[J]. Free Radic Biol Med, 2019, 137:99-109.
[25] Lin Z, Altaf N, Li C, et al. Hydrogen sulfide attenuates oxidative stress-induced NLRP3 inflammasome activation via-sulfhydrating c-Jun at Cys269 in macrophages[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(9):2890-2900.
[26] Castelblanco M, Lugrin J, Ehirchiou D, et al. Hydrogen sulfide inhibits NLRP3 inflammasome activation and reduces cytokine production both in vitro and in a mouse model of inflammation[J]. J Bio Chem, 2018, 293(7):2546-2557.
[27] Luo ZL, Ren JD, Huang Z, et al. The role of exogenous hydrogen sulfide in free fatty acids induced inflammation in macrophages[J]. Cell Physiol Biochem, 2017, 42(4):1635-1644.
[28] Gupta R, Sahu M, Tripathi R, et al. Protein-sulfhydration: unraveling the prospective of hydrogen sulfide in the brain, vasculature and neurological manifestations[J]. Ageing Res Rev, 2022, 76:101579.
Sodium hydrosulfide attenuates pyroptosis of macrophages by inhibiting classical pyroptosis signaling pathway
ZHANG Xu-lin1, TIAN Xiang-qin2,3▲, JIA Zhen-li1, LIU Bo-wei1, LIANG Gao-yuan1, ZHANG Zi-chen1, LI Ling1△, ZHANG Liang1,2△
(1,,832003,;2,,,,832008,;3,,453003,)
To investigate the effect of hydrogen sulfide (H2S) donor sodium hydrosulfide (NaHS) on the pyroptosis of macrophages.Human acute monocytic leukemia cell line THP-1 was induced to differentiate into macrophages by phorbol 12-myristate 13-acetate (PMA) stimulation. The PMA-induced THP-1 cells were treated with oxidized low-density lipoprotein (ox-LDL) or/and NaHS at different concentrations and then were divided into control group, ox-LDL (25, 50, 100 and 150 mg/L) treatment groups and different concentrations (50, 100 and 200 μmol/L) of NaHS+ox-LDL (100 mg/L) treatment groups. The viability of THP-1 cells was detected by CCK-8 assay. Lipid accumulation and pyroptotic morphological changes in THP-1 cells were observed by oil red O staining and light microscopy, respectively. Pyroptosis of the THP-1 cells was evaluated by Hoechst 33342/propidium iodide (PI) fluorescence staining and measurement of lactate dehydrogenase (LDH) activity in the cell supernatants. The level of H2S in THP-1 cells was detected by H2S detection assay kit. The enzymatic activity of caspase-1 in THP-1 cells were measured by caspase-1 activity assay kit. The expressional levels of pyroptosis-related proteins in THP-1 cells were analyzed by Western blot.Compared with control group, percentage of PI positive cells, LDH release, caspase-1 activity, and the protein levels of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), caspase-1 (p20), gasdermin D (GSDMD), GSDMD-N and interleukin-18 (IL-18) were markedly increased by stimulation with 100 and 150 mg/L of ox-LDL (<0.05 or<0.01). In addition, ox-LDL (100 mg/L) induced lipid accumulation and typical pyroptotic death in THP-1 cells. However, pre-treatment with NaHS (100 and 200 μmol/L) significantly reduced ox-LDL-induced lipid accumulation and pyroptosis in THP-1 cells, and suppressed caspase-1 activity and the up-regulation of specific markers of pyroptosis signaling pathway in ox-LDL-stimulated THP-1 cells (<0.05 or<0.01).The H2S donor NaHS attenuates pyroptotic cell death induced by ox-LDL in macrophages by inhibiting classical pyroptosis signaling pathway.
Hydrogen sulfide; Oxidized low-density lipoprotein; Macrophages; Pyroptosis
R543.5; R363.2
A
10.3969/j.issn.1000-4718.2022.06.008
1000-4718(2022)06-1015-09
2022-03-25
2022-05-26
國家自然科學基金資助項目(No. 81600325);中國醫(yī)學科學院中央級公益性科研院所基本科研業(yè)務費專項資金(No. 2020-PT330-003);國家衛(wèi)生健康委中亞高發(fā)病防治重點實驗室開放課題(No. KF202107);兵團“強青科技領軍人才”項目(No. 2022CB002-10);自治區(qū)研究生創(chuàng)新計劃項目(No. XJ2021G130);國家級大學生創(chuàng)新創(chuàng)業(yè)訓練計劃(No. 202110759023)
張亮 Tel: 0993-2058775; E-mail: zxn20171220@126.com;李玲 Tel: 18209058319; E-mail: 550856991@qq.com
▲并列第1作者
(責任編輯:盧萍,羅森)