□王 清
怎樣更好地探索、發(fā)現(xiàn)和理解“側面積相同的圓柱體積”蘊含的規(guī)律呢?可采用如下教學環(huán)節(jié)。
1.觀察發(fā)現(xiàn),感知不同圓柱的特點及決定因素
教師出示高矮不一、胖瘦不同的8 個圓柱(圖略)。學生觀察后,教師提問:“這些圓柱有什么不同?圓柱的胖瘦、高矮與什么有關?”引導學生總結:圓柱底面圓的半徑決定胖瘦,高決定高矮。
2.畫圖計算,感悟影響圓柱體積大小的要素
教師提問:“高的圓柱體積一定比矮的圓柱大嗎?胖的圓柱體積一定比瘦的圓柱大嗎?”讓學生通過畫草圖進行說明。
1.卷一卷,展示“卷法”
教師出示4個面積都是36dm2的長方形或正方形(如圖1)。如果把它們分別卷成圓柱,有幾種卷法?讓學生猜測、操作、驗證。教師巡視指導,并收集典型作品。
圖1
2.算一算,計算“體積”
教師展示學生作品(如圖2),并出示任務:想一想,一個長方形能卷出幾種圓柱?長和寬分別是圓柱的什么?正方形呢?猜一猜,它們的體積誰最大,誰最???算一算,體積分別是多少?讓學生填寫表1。
圖2
表1
續(xù)表
3.理一理,發(fā)現(xiàn)“規(guī)律”
(1)讓學生觀察表1,思考:這些圓柱有什么相同點和不同點?總結:它們的側面積相等,但體積不相等。
(2)讓學生比較表1,思考:側面積相同的圓柱體積有什么規(guī)律?總結歸納:側面積相同的圓柱,底面半徑或底面周長越大,體積就越大。
4.證一證,追究“原因”
(1)再次驗證。請在表1空白處繼續(xù)填寫一些與上面不同的數(shù)據(jù),進一步驗證以上結論。
(2)證明。教師提問:“當圓柱的底面周長為ɑ,高為b 時,它的體積是多少?如果側面積S 保持不變,圓柱體積大小與什么有關?”學生完成后,教師出示圖3。
圖3
通過卷一卷、算一算、理一理、證一證這些數(shù)學活動,學生不僅直觀地探索發(fā)現(xiàn)了“側面積相同的圓柱體積”的規(guī)律,還在探索中發(fā)展了思維能力和創(chuàng)新能力。