国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

二甲醚、氨氣和甲烷混合燃料的層流預混火焰損特性研究

2022-06-25 03:03:26孫國軍付忠廣盧茂奇
燃燒科學與技術(shù) 2022年3期
關(guān)鍵詞:損率層流機理

孫國軍,付忠廣,盧茂奇

【碳中和專欄】

孫國軍,付忠廣,盧茂奇

(華北電力大學能源動力與機械工程學院,北京 102206)

面對能源日益短缺、環(huán)境污染日益嚴重的兩大世界難題,國內(nèi)外一直致力于開發(fā)利用風能、太陽能等可再生能源,然而風能、太陽能受氣候、季節(jié)、地理條件等諸多因素影響,其能量供給具有間歇性及波動性.為了提高可再生能源利用率,諸多國家及地區(qū)相繼提出了“Power-to-X”概念[1],其中氫氣[2]、氨氣(NH3)[3]、醇類[4]及醚類[5]等替代燃料作為可再生能源的化學能載體獲得了諸多關(guān)注.

二甲醚(DME)作為一種很有前途的清潔替代燃料,它可以利用可再生能源、廢棄的生物質(zhì)能進行大規(guī)模催化制備[6].與此同時,優(yōu)異的著火和霧化性?能[7-8]、運輸?shù)谋憷訹9]以及低排放特性[10]使得DME作為純?nèi)剂匣驌交烊剂显趦?nèi)燃機、燃氣輪機等領(lǐng)域廣泛研究,特別是CH4/DME二元燃料系統(tǒng)[11-12].類似地,完善的制備工藝、安全及便利的儲運性能使得NH3作為新一代能量載體極具發(fā)展?jié)摿13-15].然而,由于NH3具有較低的自燃性及火焰?zhèn)鞑ニ俣?,其燃燒穩(wěn)定性仍然存在挑戰(zhàn).目前,與高反應性燃料摻混燃燒是處理該問題的有效方案之一[16],如CH4/NH3二元燃料燃燒[17-18].此外,氨替代部分天然氣應用于工業(yè)燃氣輪機的理論可行性也得到了相應論證[3]. DME和NH3的有效利用對降低化石能源開采,實現(xiàn)“碳達峰”、“碳中和”發(fā)展目標具有重要意義.

1?計算方法

CH4/DME/空氣、CH4/NH3/空氣的層流預混火焰的傳播是基于Cantera-2.5.1開源程序中的FreeFlame代碼[26](類似于Chemkin-PRO中的PREMIX模塊[27])實現(xiàn)的,其控制方程和邊界條件的詳細數(shù)學表達可以在文獻[28]中找到.計算設置如下:計算域長度設置為0.2m,使用混合平均輸運模型評估輸運特性.為保證計算的準確性,曲率和梯度這兩種自適應網(wǎng)格控制參數(shù)均設定為0.02,最終的解決方案中將超過800個網(wǎng)格點.

式中:為DME、NH3;為氣體的摩爾分數(shù).

當量比的計算如式(2)所示:

此外,在進行FreeFlame預混火焰?zhèn)鞑サ挠嬎闱埃紤]以下假設[29]:①火焰為穩(wěn)定的一維層流火焰,忽略了輻射傳熱和Dofour效應;②氣體混合物符合理想氣體混合模型;③“Soret效應”不顯著;④外力作用可忽略不計;⑤整個計算域壓力恒定,無明顯波動.

由于層流預混火焰中黏性效應的貢獻非常小,通常忽略不計[23-24],則多組分反應過程的局部熵產(chǎn)可描述為[24]

式中:gen-conduction、gen-diffusion和gen-reaction分別為由熱傳導、質(zhì)量擴散和化學反應引起的局部熵產(chǎn);R為第種組分的比氣體常數(shù)(R=u/M,u=8.314J/(mol·K),M為摩爾質(zhì)量);為局部溫度;分別為平均導熱系數(shù)和密度;DX、Y、μω分別為混合物的平均擴散系數(shù)、第種組分的摩爾分數(shù)、質(zhì)量分數(shù)、化學勢和單位體積形成速率.

2?化學機理的選取與驗證

國內(nèi)外學者圍繞CH4/DME、CH4/NH3熱解與氧化特性開展了諸多討論,形成了一系列熱力學-化學動力學-輸運機理,如表1所示.

表1?化學動力學機理

Tab.1?Chemical kinetics mechanism

其中Zhao機理與Okafor機理已在大量的實驗數(shù)據(jù)驗證中展現(xiàn)了良好的預測能力.以Zhao機理為基礎(chǔ)機理同時添加Okafor機理中的NH3子機理,形成了78種組分、420步基元反應的合并機理(以下稱為Zhao-Okafor機理).

層流火焰速度體現(xiàn)了可燃氣體的擴散性、反應性物理化學性質(zhì),是建立和驗證化學動力學機理的基礎(chǔ)數(shù)據(jù).圖1顯示了Zhao-Okafor機理預測值與Lowry等[40]利用向外傳播的球形火焰獲取的CH4/DME實驗值,以及Han等[41]采用熱通量法獲取的CH4/NH3實驗值的對比.結(jié)果表明,Zhao-Okafor機理在不同燃料摻混比及初始壓力條件下均展現(xiàn)了良好的預測能力.對于CH4/DME預混火焰,層流燃燒速度隨著運行壓力的升高單調(diào)下降,不同壓力條件下層流燃燒速度均在=1.1附近達到峰值,Zhao-Okafor機理計算值與實驗值的平均相對誤差為9.6%,考慮到實驗測量值的不確定度在2.5%~10.5%的范圍,上述的差異性是可接受的.對于CH4/ NH3預混火焰,層流燃燒速度隨著摻混比的增大單調(diào)下降,不同摻混燃料層流燃燒速度均在=1.05附近達到峰值.此外,Zhao-Okafor機理在貧燃側(cè)的預測能力是優(yōu)異的,相比于實驗值的平均相對誤差僅為2.7%.較大的誤差源于富燃火焰?zhèn)龋貏e是高NH3摻混比燃料.Han等[41]也報道過類似的現(xiàn)象,并指出計算的誤差主要與含氮反應速率參數(shù)的不準確性有關(guān).總的來說,Zhao-Okafor機理良好再現(xiàn)了CH4/DME及CH4/NH3的層流燃燒速度變化趨勢,且計算精度也是令人滿意的.

為進一步驗證Zhao-Okafor機理的準確性,將Zhao-Okafor機理的預測結(jié)果與Burke等[8]利用快速壓縮機(RCM)和激波管(ST)實驗測量的甲烷/二甲醚燃料,以及Xiao等[42]利用ST實驗測量的甲烷/氨氣燃料著火延遲時間進行對比,結(jié)果如圖2所示.可以看到,對于CH4/DME燃料,Zhao-Okafor機理能夠準確捕捉到DME燃料復雜的負溫度區(qū)間(NTC)行為,較大的誤差源于<1000K溫度區(qū)間,這是由于Zhao機理的固有缺陷,缺少對涉及CH3OCH2的反應速率參數(shù)壓力敏感性關(guān)系的修正引起的[43].對于CH4/NH3燃料,在所有實驗條件下,Zhao-Okafor機理均存在一定的過度預測,Dai等[44]與Li等[45]也都報道過類似的現(xiàn)象,這是因為目前最適合氨燃燒的化學動力學模型仍未被提出,對開發(fā)模型所需參數(shù)存在一定爭論.但是,不同的模型在特定的條件下能夠較為準確地預測氨火焰的燃燒速度、火焰結(jié)構(gòu)和生成物濃度[46].總體而言,Zhao-Okafor機理能較好地預測著火延遲時間與當量比、壓力和溫度的關(guān)系.因此,本文將采用Zhao-Okafor機理開展熱力學第二定律的計算分析.

3?結(jié)果分析

基于上述計算方法以及選取的化學機理,以純CH4、80%CH4/20%DME、80%CH4/20%NH3火焰為例,計算了=1.0、=295K、=0.1MPa條件下,層流預混火焰各源項熵產(chǎn)率及溫度隨軸向距離的變化,如圖3所示.熱傳導熵由溫度和溫度梯度決定,在火焰上游,較高的溫度梯度克服了較低溫度的影響,導致熱傳導熵產(chǎn)率峰值快速形成.在火焰下游,隨著溫度逐漸穩(wěn)定,由組分摩爾分數(shù)梯度影響的質(zhì)量擴散熵以及化學反應熵開始顯著,相應熵產(chǎn)率峰值依次出現(xiàn).此外,無論何種燃料類型,化學反應熵產(chǎn)率始終遠高于熱傳導熵產(chǎn)率以及質(zhì)量擴散熵產(chǎn)率,說明化學反應是主要的熵產(chǎn)源.

圖3?在Φ=1.0、T=295K、p=0.1MPa條件下,不同層流預混火焰的熵產(chǎn)率和溫度分布

3.1?不同燃料摻混比對損率的影響

圖4 在Φ=1.0、T=295K、p=0.1MPa條件下,不同DME、NH3摻混比對各源項損率的影響

圖5 在Φ=1.0、T=295K、p=0.1MPa條件下,不同DME、NH3摻混比時排氣混合物中各組分對排氣損率的相對貢獻度

圖6?在F=1.0、T=295K、p=0.1MPa條件下,添加DME時,對化學反應損貢獻最大的基元反應

圖7?在F=1.0、T=295K、p=0.1MPa條件下,添加NH3時對化學反應損貢獻最大的基元反應

3.2?不同溫度對損率的影響

圖8 在F=1.0、p=0.1MPa條件下,不同溫度對各源項損率的影響

3.3?不同壓力對損率的影響

圖9 在F=1.0、T=395K條件下,不同壓力對各源項損率的影響

3.4?不同當量比對損率的影響

圖10 在T=395K、p=2MPa條件下,不同當量比對各源項損率的影響

圖11 在T=395K、p=2MPa條件下,不同當量比時排氣混合物中各組分對排氣損率的相對貢獻度

表3?響應面函數(shù)擬合參數(shù)

Tab.3?Fitting parameters of response surface function

注:2表示擬合優(yōu)度.

表4?正交工況

Tab.4?Orthogonal working conditions

4?結(jié)?論

[1] Bargiacchi E,Antonelli M,Desideri U. A comparative assessment of Power-to-Fuel production pathways[J].,2019,183:1253-1265.

[2] Aliyu M,Nemitallah M A,Said S A,et al. Characteristics of H2-enriched CH4-O2diffusion flames in a swirl-stabilized gas turbine combustor:Experimental and numerical study[J].,2016,41(44):20418-20432.

[3] Ichikawa A,Naito Y,Hayakawa A,et al. Burning velocity and flame structure of CH4/NH3/air turbulent premixed flames at high pressure[J].,2019,44(13):6991-6999.

[4] Rivera-Tinoco R,F(xiàn)arran M,Bouallou C,et al. Investigation of power-to-methanol processes coupling electrolytic hydrogen production and catalytic CO2reduction[J].,2016,41(8):4546-4559.

[5] Kang Y,Lu T,Lu X,et al. Study on combustion characteristics of dimethyl ether under the moderate or intense low-oxygen dilution condition[J].,2016,108:549-565.

[6] Chen W,Hsu C,Wang X. Thermodynamic approach and comparison of two-step and single step DME (dimethyl ether)syntheses with carbon dioxide utilization[J].,2016,109:326-340.

[7] Wang Y,Liu H,Ke X,et al. Kinetic modeling study of homogeneous ignition of dimethyl ether/hydrogen and dimethyl ether/methane [J].,2017,119:373-386.

[8] Burke U,Somers K P,O Toole P,et al. An ignition delay and kinetic modeling study of methane,dimethyl ether,and their mixtures at high pressures [J].,2015,162(2):315-330.

[9] 亢銀虎. 二甲醚火焰燃燒特性及工程應用的研究[D]. 重慶:重慶大學,2015.

Kang Yinhu. Study on Combustion Characteristics of Dimethyl Ether Flame and Engineering Application[D]. Chongqing:Chongqing University,2015(in Chinese).

[10] 亢銀虎,盧嘯風,嚴?謹,等. 基于多尺度模擬的二甲醚MILD火焰NO排放機理[J]. 燃燒科學與技術(shù),2018,24(4):345-353.

Kang Yinhu,Lu Xiaofeng,Yan Jin,et al. Multi-dimensional study on NOemission mechanisms of DME-MILD flame[J].,2018,24(4):345-353(in Chinese).

[11] Jin T,Wu Y,Wang X,et al. Ignition dynamics of DME/methane-air reactive mixing layer under reactivity controlled compression ignition conditions:Effects of cool flames[J].,2019,249:343-354.

[12] Ezoji H,Shafaghat R,Jahanian O. Numerical simulation of dimethyl ether/natural gas blend fuel HCCI combustion to investigate the effects of operational parameters on combustion and emissions[J].,2019,135(3):1775-1785.

[13] 周?梅,楚育純,王兆林,等. 氨-丙烷混合燃料降碳燃燒的排放特性[J]. 燃燒科學與技術(shù),2020,26(3):257-264.

Zhou Mei,Chu Yuchun,Wang Zhaolin,et al. Emis-sion characteristics of NH3-C3H8-air mixture for carbon reduction combustion[J].,2020,26(3):257-264(in Chinese).

[14] Nakamura H,Hasegawa S. Combustion and ignition characteristics of ammonia/air mixtures in a micro flow reactor with a controlled temperature profile[J].,2017,36(3):4217-4226.

[15] 邊志堅,王金華,趙浩然,等. 氨/氫氣湍流預混火焰?zhèn)鞑ヌ匦詫嶒炑芯縖J]. 燃燒科學與技術(shù),2020,26(6):551-557.

Bian Zhijian,Wang Jinhua,Zhao Haoran,et al. Experimental study on turbulent premixed flame propagation characteristics of ammonia/hydrogen mixtures[J].,2020,26(6):551-557(in Chinese).

[16] Zhang J,Zhong A,Huang Z,et al. Second-law ther-modynamic analysis in premixed flames of ammonia and hydrogen binary fuels[J].,2019,141(7):071007.

[17] Dai L,Gersen S,Glarborg P,et al. Autoignition studies of NH3/CH4mixtures at high pressure[J].,2020,218:19-26.

[18] 張?君. NH3/CH4燃燒室燃燒特性及污染物排放研究[D]. 大連:大連海事大學,2019.

Zhang Jun. Study on Combustion Characteristics and Emissions of NH3/CH4[D]. Dalian:Dalian Maritime University,2019(in Chinese).

[19] Zhang J,Huang Z,Han D. Effects of mechanism re-duction on the exergy losses analysis in n-heptane autoignition processes [J].,2020,21(9):1764-1777.

[20] Caton J A. Exergy destruction during the combustion process as functions of operating and design parameters for a spark-ignition engine[J].,2012,36(3):368-384.

[21] Chen S,Li J,Han H,et al. Effects of hydrogen addition on entropy generation in ultra-lean counter-flow methane-air premixed combustion [J].,2010,35(8):3891-3902.

[22] Chen S,Mi J,Liu H,et al. First and second thermodynamic-law analyses of hydrogen-air counter-flow diffusion combustion in various combustion modes[J].,2012,37(6):5234-5245.

[23] Nishida K,Takagi T,Kinoshita S. Analysis of entropy generation and exergy loss during combustion[J].,2002,29(1):869-874.

[24] Acampora L,Marra F S. Second law thermodynamic analysis of syngas premixed flames[J].,2020,45(21):12185-12202.

[25] Liu D,Wang H,Zhang Y. On the entropy generation and exergy loss of laminar premixed flame under engine-relevant conditions[J].,2021,283:119245.

[26] Goodwin D G,Speth R L,Moffat H K,et al. Cantera:An object-oriented software toolkit for chemi-cal kinetics,Thermodynamics,and Transport Proc-esses(Version 2. 5. 1)[EB/OL]. https://doi.org/10.5281/ zenodo.4527812,Zenodo,2021.

[27] Kee R J,Grcar J F,Smooke M D,et al. PREMIX: a Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames[R]. Sandia National Laboratories Report,1985:SAND85-8249.

[28] Kee R J,Coltrin M E,Glarborg P.:[M]. Hoboken,New Jersey:John Wiley and Sons,Inc.,2005.

[29] Williams F A.[M]. Boca Raton:CRC Press,1985.

[30] Bejan Adrian.[M]. Hoboken,New Jersey:John Wiley & Sons,Inc.,2016.

[31] Yan F,Su W. Numerical study on exergy losses of n-heptane constant-volume combustion by detailed chemi-cal kinetics[J].,2014,28 (10):6635-6643.

[32] Mohebbi M,Reyhanian M,Ghofrani I,et al. Availability analysis on combustion of n-heptane and isooctane blends in a reactivity controlled compression ignition engine[J].,2018,232(11):1501-1515.

[33] Zhao Z,Chaos M,Kazakov A,et al. Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether[J].,2008,40(1):1-18.

[34] Burke U,Somers K P,O Toole P,et al. An ignition delay and kinetic modeling study of methane,dimethyl ether,and their mixtures at high pressures[J].,2015,162(2):315-330.

[35] Bhattacharya A,Basu S. An investigation into the heat release and emissions from counterflow diffusion flames of methane/dimethyl ether/hydrogen blends in air[J].,2019,44(39):22328-22346.

[36] Hashemi H,Christensen J M,Glarborg P. High-pressure pyrolysis and oxidation of DME and DME/CH4[J].,2019,205:80-92.

[37] Okafor E C,Naito Y,Colson S,et al. Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames[J].,2018,187:185-198.

[38] Tian Z,Li Y,Zhang L,et al. An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure[J].,2009,156(7):1413-1426.

[39] Mechanical and Aerospace Engineering(Combustion Research),The UCSD. Chemical-kinetic mechanisms for combustion applications[EB/OL]. http://web.eng. ucsd.edu/mae/groups/combustion/mechanism.html,Uni-versity of California at San Diego,2014.

[40] Lowry W B,Serinyel Z,Krejci M C,et al. Effect of methane-dimethyl ether fuel blends on flame stability,laminar flame speed,and Markstein length[J].,2011,33(1):929-937.

[41] Han X,Wang Z,Costa M,et al. Experimental and kinetic modeling study of laminar burning velocities of NH3/air,NH3/H2/air,NH3/CO/air and NH3/CH4/air premixed flames[J].,2019,206:214-226.

[42] Xiao H,Lai S,Valera-Medina A,et al. Experimental and modeling study on ignition delay of ammonia/meth-ane fuels[J].,2020,44(8):6939-6449.

[43] Lu M,F(xiàn)u Z,Yuan X,et al. Study of the reduced kinetic mechanism of methane/dimethyl ether combus-tion[J].,2021,303(1):121308.

[44] Dai L,Gersen S,Glarborg P,et al. Autoignition studies of NH3/CH4mixtures at high pressure[J].,2020,218:19-26.

[45] Li R,Konnov A A,He G,et al. Chemical mechanism development and reduction for combustion of NH3/H2/CH4mixtures[J].,2019,257:116059.

[46] 陳達南,李?軍,黃宏宇,等. 氨燃燒及反應機理研究進展[J]. 化學通報,2020,83(6):508-515.

Chen Da’nan,Li Jun,Huang Hongyu,et al. Progress in ammonia combustion and reaction mechanism[J].,2020,83(6):508-515(in Chinese).

Analysis of Exergy Losses in Laminar Premixed Flames of Dimethyl Ether, Ammonia and Methane Blends

Sun Guojun,F(xiàn)u Zhongguang,Lu Maoqi

(School of Energy,Power and Mechanical Engineering,North China Electric Power University,Beijing 102206,China)

To elucidate the energy-mass conversion characteristics during the combustion of alternative fuels and to explore the principle of improving the efficiency of combustion process,the exergy loss characteristics of CH4/air laminar premixed flames blended with dimethylether(DME) and ammonia(NH3) were analyzed separately by the second law of thermodynamics. The results show that the performance of NH3is better than that of DME over a wide range of blending ratio;the conduction loss drives the total exergy loss to decrease with increasing temperature;the increase of operating pressure contributes to the reduction of the chemical and exhaust gas exergy loss rates;the total exergy loss rate decreases first and then increases as the equivalent ratio increases,reaching a minimal value near the stoichiometric ratio. In addition,a response surface function for the total exergy loss rate was constructed with a wide range of operating parameters,which is expected to be useful for the design optimization and operation of CH4/DME and CH4/NH3fuel combustion systems.

exergy loss;laminar premixed flame;dimethyl ether;ammonia;chemical kinetics

O64

A

1006-8740(2022)03-0271-12

2021-09-12.

北京市自然科學基金資助項目(3162030).

孫國軍(1997—??),男,碩士研究生,sgj@ncepu.edu.cn.

付忠廣,男,博士,教授,fzg@ncepu.edu.cn.

10.11715/rskxjs.R202109008

(責任編輯:隋韶穎)

猜你喜歡
損率層流機理
層流輥道電機IP56防護等級結(jié)構(gòu)設計
防爆電機(2022年5期)2022-11-18 07:40:18
我國水庫淤損情勢分析
水利學報(2022年3期)2022-06-07 05:26:02
摻氫對二甲醚層流燃燒特性的影響
隔熱纖維材料的隔熱機理及其應用
層流切應力誘導microRNA-101下調(diào)EZH2抑制血管新生
煤層氣吸附-解吸機理再認識
中國煤層氣(2019年2期)2019-08-27 00:59:30
無功補償極限線損率分析及降損措施探究
電子制作(2017年2期)2017-05-17 03:55:17
霧霾機理之問
供電企業(yè)月度實際線損率定量計算方法
電子制作(2016年1期)2016-11-07 08:42:53
X80鋼層流冷卻溫度場的有限元模擬
额尔古纳市| 綦江县| 武隆县| 鱼台县| 都江堰市| 英吉沙县| 香格里拉县| 和平县| 桦川县| 汶川县| 富川| 永安市| 铜川市| 涿州市| 平泉县| 梅河口市| 巴东县| 长乐市| 登封市| 浙江省| 万荣县| 稷山县| 承德市| 祁连县| 龙陵县| 东安县| 龙口市| 襄汾县| 景洪市| 调兵山市| 融水| 福建省| 清河县| 新宁县| 阿合奇县| 颍上县| 荆门市| 十堰市| 安阳市| 获嘉县| 万年县|