国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

具有吸附功能的再生絲素蛋白復(fù)合膜的制備

2022-06-22 16:25:49王津津李慧慧郭建軍蔣蕾李航武國(guó)華
絲綢 2022年6期
關(guān)鍵詞:吸附力學(xué)性能

王津津 李慧慧 郭建軍 蔣蕾 李航 武國(guó)華

摘要:本文以埃洛石納米管(HNTs)對(duì)再生絲素蛋白(RSF)進(jìn)行共混改性,采用流延法制備了一種新型的生物吸附劑HNTs/RSF復(fù)合膜。表征結(jié)果表明,25% HNTs/RSF復(fù)合膜具有良好的機(jī)械性能和熱穩(wěn)定性,其中25% HNTs/RSF復(fù)合膜的斷裂強(qiáng)度和斷裂伸長(zhǎng)率分別達(dá)到(6.67±0.65) MPa和291.17%±16.74%,相比RSF膜分別提高了84.3%和278.2%。通過(guò)傅里葉變換紅外光譜(FTIR)和廣角X射線衍射(WAXD)分析表明,HNTs降低了RSF膜的β折疊和結(jié)晶度。進(jìn)一步通過(guò)亞甲基藍(lán)的吸附實(shí)驗(yàn)表明,增加環(huán)境的堿性或HNTs含量,均有助于提高其吸附性能,在300 min后基本達(dá)到吸附平衡。本文基于此制備了具有高吸附性能和優(yōu)異機(jī)械性能的HNTs/RSF復(fù)合膜,在醫(yī)藥化工廢水處理和生物吸附等領(lǐng)域具有較高的開(kāi)發(fā)和利用價(jià)值。

關(guān)鍵詞:再生絲素蛋白;埃洛石納米管;共混改性;力學(xué)性能;亞甲基藍(lán);吸附

中圖分類(lèi)號(hào):TS102.54文獻(xiàn)標(biāo)志碼:A文章編號(hào): 10017003(2022)06003410

引用頁(yè)碼: 061105

DOI: 10.3969/j.issn.1001-7003.2022.06.005(篇序)

基金項(xiàng)目: 江蘇省特聘教授專(zhuān)項(xiàng)基金項(xiàng)目(蘇教師〔2015〕17號(hào));國(guó)家特種農(nóng)產(chǎn)品質(zhì)量安全風(fēng)險(xiǎn)評(píng)價(jià)項(xiàng)目(GPFP1801003)

作者簡(jiǎn)介:王津津(1997),女,碩士研究生,研究方向?yàn)樯锊牧?。通信作者:武?guó)華,研究員,ghwu@just.edu.cn。

印染廢水是一種水質(zhì)成分復(fù)雜、色度高的有機(jī)廢水,因其毒性強(qiáng)、難降解、排放到環(huán)境中容易被生物體積蓄、會(huì)長(zhǎng)期滯留等多種特點(diǎn)成為長(zhǎng)期以來(lái)醫(yī)藥化工廢水治理中備受關(guān)注的難題[1]。印染廢水的處理方法通常為混凝沉淀法[2]、生物反應(yīng)器法[3]、光催化法[4]、吸附法[5]。其中,吸附法具有效率高、對(duì)環(huán)境影響小、應(yīng)用范圍廣、操作簡(jiǎn)單、易收集再利用等優(yōu)點(diǎn)。吸附法的原理是依靠分子間的引力或化學(xué)鍵之間的作用力,使染料分子能有效地固定在吸附劑表面,從而達(dá)到凈化水體的目的[6]

埃洛石納米管(Halloysite nanotubes,HNTs)是一種在自然界廣泛存在的低成本天然材料,具有高比表面積和特殊管狀結(jié)構(gòu)。其管狀結(jié)構(gòu)由帶負(fù)電荷的SiO2外表面和帶正電荷的Al(OH)3內(nèi)表面組成[7]。另外,其表面大量的羥基有助于HNTs在不同溶劑中更好地分散。因此,HNTs被用于染料吸附、重金屬吸附、藥物傳遞、膜過(guò)濾和表面功能化等眾多領(lǐng)域[8-9]。然而,僅HNTs單一材料,難以在水處理中廣泛應(yīng)用,因?yàn)槲胶蟮腍NTs粉末不易回收,且需要經(jīng)歷漫長(zhǎng)和復(fù)雜的再處理過(guò)程。尋找合適的HNTs應(yīng)用載體,形成可定向且規(guī)模使用的宏觀固體納米吸附復(fù)合材料成了一項(xiàng)重要而有意義的工作。

近年來(lái),再生絲素蛋白(Regenerated silk fibroin,RSF),是一種從蠶繭中提取的再生動(dòng)物蛋白,也可以從大量廢棄絲織品中獲得[10]。因它具有優(yōu)異的力學(xué)性能、可降解性和生物相容性及環(huán)境友好,而被廣泛應(yīng)用于服裝、醫(yī)療、化妝品等行業(yè),并逐漸受到國(guó)內(nèi)外科研人員的關(guān)注,根據(jù)用途將RSF加工成纖維[13]、薄膜[14]、海綿[15]或微球[16]等各種材料。此外,再生絲素蛋白具有親水性和兩性特性,已被證明可以有效地與各種有機(jī)或無(wú)機(jī)污染物[17-18]相互作用,并通過(guò)與各種有機(jī)或無(wú)機(jī)填料的結(jié)合進(jìn)一步提高其性能,成為醫(yī)藥化工廢水處理的潛在生物吸附載體。研究發(fā)現(xiàn),環(huán)境pH值、溫度、有機(jī)溶劑等[19]對(duì)RSF中晶體和β折疊結(jié)構(gòu)有很大的影響,可以通過(guò)調(diào)節(jié)制備工藝條件,從而獲得一種水穩(wěn)定的材料,在與水污染物相互作用中保持較為穩(wěn)定的結(jié)構(gòu)構(gòu)象,從而延長(zhǎng)使用壽命。

綜上,本文以再生絲素蛋白為固體基質(zhì),通過(guò)埃洛石納米管的共混改性,采用流延法制備了一種具有高吸附性能和良好機(jī)械性能的HNTs/RSF天然復(fù)合膜材料。同時(shí),利用不同的表征方法探索HNTs對(duì)再生絲素蛋白膜內(nèi)部結(jié)構(gòu)的影響,充分挖掘可再生的絲素蛋白在生物吸附和污染物處理等領(lǐng)域的二次開(kāi)發(fā)和潛在利用價(jià)值。

1 實(shí) 驗(yàn)

1.1 試劑、材料與儀器

甲酸、碳酸鈉、無(wú)水氯化鈣、無(wú)水乙醇(國(guó)藥集團(tuán)化學(xué)試劑有限公司),蠶繭(中國(guó)農(nóng)業(yè)科學(xué)院蠶業(yè)研究所),納米埃洛石(上海阿拉丁有限公司)。

DF-101S磁力攪拌器(鞏義予華儀器有限公司),電熱恒溫鼓風(fēng)干燥箱(上海榮豐科學(xué)儀器有限公司),UV775B紫外分光光度計(jì)(上海精密科學(xué)儀器有限公司),Thermo Scientific Nicolet iS10傅里葉變換紅外光譜儀(美國(guó)賽默飛世爾公司),S-4800場(chǎng)發(fā)射掃描電子顯微鏡(日本日立公司),Pyris 1 TGA熱重分析儀(美國(guó)珀金埃爾默公司),Xeuss2.0 X射線散射儀(法國(guó)Xenocs公司),Instron-5967萬(wàn)能材料試驗(yàn)機(jī)(美國(guó)Instron公司)。B7CF044E-29E3-4739-8D56-0F70DB4106D8

1.2 過(guò) 程

1.2.1 RSF溶液的制備

稱(chēng)取一定量的蠶繭,將其剪成指甲蓋大小的片狀,放入0.05% Na2CO3水溶液中,煮沸30 min進(jìn)行脫膠處理后用去離子水反復(fù)漂洗3次去除雜質(zhì),上述過(guò)程循環(huán)3次。最后將完全脫膠后的絲素置于45 ℃下烘干至恒重,存入塑封袋中備用。

1.2.2 HNTs/RSF復(fù)合膜的制備

制備方法根據(jù)文獻(xiàn)[17],制備流程如圖1所示。分別加入不同質(zhì)量的HNTs于5% CaCl2-FA溶液中,室溫下攪拌1 h。之后加入一定量的絲素使其充分溶解,室溫下攪拌4 h,然后將HNTs均勻分散到上述絲素溶液中,使最終HNTs相對(duì)絲素質(zhì)量分?jǐn)?shù)為5%、10%、15%、20%、25%。將共混液倒入水平的乙烯基模具(直徑60 mm)上澆鑄薄膜;放入通風(fēng)櫥待甲酸揮發(fā)48 h后,將半成品在凝固浴乙醇中浸泡2 h,以去除CaCl2和殘留的甲酸;最后將HNTs/RSF復(fù)合膜剝?nèi)?,自然風(fēng)干。

1.2.3 力學(xué)性能測(cè)試

對(duì)添加了不同質(zhì)量濃度HNTs的RSF膜進(jìn)行分析,而在測(cè)試前破裂或從鉗夾中滑出的樣品被排除在進(jìn)一步的評(píng)估之外。將膜切成50 mm×10 mm的均勻條狀(每個(gè)樣品n=5),夾具長(zhǎng)度和初始速度分別預(yù)設(shè)為20 mm和20 mm/min進(jìn)行力學(xué)性能測(cè)試。

1.2.4 溶脹率和溶失率測(cè)定

采用稱(chēng)重法測(cè)量RSF膜和質(zhì)量分?jǐn)?shù)為25%-HNTs/RSF復(fù)合膜的溶脹率和溶失率。將復(fù)合膜在105℃烘箱中烘干后,稱(chēng)取一定質(zhì)量的樣品(W0),分別置于相同體積的不同pH值溶液中(3、7、11)浸泡24 h,在37 ℃下恒溫振蕩24 h,用濾紙快速吸干表面水分后稱(chēng)重(W1),最后置于105 ℃烘箱中烘干稱(chēng)重(W2)。溶脹率(SWR)和溶失率(WSR)計(jì)算公式如下:

SWR/%=W1-W0W0×100??? (1)

WSR/%=W0-W2W0×100??? (2)

1.2.5 吸附性能測(cè)定

選取亞甲基藍(lán)染料測(cè)試HNTs/RSF復(fù)合膜的吸附性能,該實(shí)驗(yàn)在24 ℃下進(jìn)行,準(zhǔn)確稱(chēng)取一定量的樣品,浸泡在100 mL(40 mg/L)亞甲基藍(lán)溶液中,考察pH值、HNTs添加量、接觸時(shí)間對(duì)染料去除率的影響。亞甲基藍(lán)吸附量和去除率的計(jì)算公式如下:

qe=V(c0-c1)m??? (3)

R/%=c0-c1c0×100??? (4)

式中:qe為平衡吸附量,mg/g;V為亞甲基藍(lán)水溶液體積,mL;c0和c1分別為吸附前初始質(zhì)量濃度和吸附平衡后的質(zhì)量濃度,mg/L;m為HNTs/RSF復(fù)合膜的投加量,g;R為亞甲基藍(lán)去除率,%。

亞甲基藍(lán)濃度采用分光光度法測(cè)定(最大吸收波長(zhǎng)668 nm),標(biāo)準(zhǔn)曲線為y=0.096 2x-0.006 4,R2=0.99;pH值采用PHS-3C型精密pH值計(jì)測(cè)定。

1.2.6 數(shù)據(jù)分析

所得數(shù)據(jù)用Origin 2017軟件作圖,結(jié)果表示為三個(gè)平行實(shí)驗(yàn)的平均值±標(biāo)準(zhǔn)差。顯著性檢驗(yàn)用SPSS 23.0分析處理,Duncan多重比較分析,圖表中不同字母表示差異顯著,p<0.05。

2 結(jié)果與分析

2.1 HNTs/RSF復(fù)合膜的形貌分析

圖2為HNTs的掃描電鏡和動(dòng)態(tài)散射(DLS),結(jié)果證實(shí)HNTs呈管狀形,分布均勻,尺寸為(242.4±34.38) nm。利用掃描電鏡(SEM)分別對(duì)RSF膜和HNTs/RSF復(fù)合膜的微觀結(jié)構(gòu)進(jìn)行表征,如圖3所示。相比RSF膜(圖3(a)),HNTs/RSF復(fù)合膜(圖3(b))表面較為粗糙,有少量孔洞且可以明顯觀察到納米顆粒的存在。圖3顯示,RSF膜的截面(圖3(c))形成光滑致密且規(guī)則的褶皺形狀,而HNTs/RSF復(fù)合膜截面(圖3(d))由于納米顆粒的存在,形成了大量的孔洞和裂紋,同時(shí)在這種結(jié)構(gòu)中能夠明顯地觀察到分布均勻的HNTs,這種疏松多孔結(jié)構(gòu)可能會(huì)增加一定的表面積,有利于染料等物質(zhì)的吸附。

2.2 HNTs/RSF復(fù)合膜的紅外分析

圖4為RSF膜和HNTs/RSF復(fù)合膜的紅外光譜。由圖4可見(jiàn),1 650 cm-1和1 620 cm-1(酰胺I)處,1 230 cm-1和1 265 cm-1(酰胺Ⅲ)處顯示出絲素蛋白的特征吸收峰[20]均存在,說(shuō)明HNTs并未改變絲素蛋白本身的結(jié)構(gòu)。由于FTIR測(cè)試是在開(kāi)放的環(huán)境中進(jìn)行的,空氣中的水分子會(huì)干擾酰胺Ⅰ和酰胺Ⅱ區(qū)域,但酰胺Ⅲ區(qū)域不受水分子的影響。因此,在本文中,酰胺Ⅲ區(qū)(1 200~1 300 cm-1)被用來(lái)半定量研究每個(gè)樣品的蛋白質(zhì)構(gòu)象轉(zhuǎn)變。其中,1 230 cm-1和1 265 cm-1處的峰分別是α螺旋/無(wú)規(guī)則卷曲和β折疊的吸收。如圖5所示,RSF和HNTs/RSF復(fù)合膜中α螺旋/無(wú)規(guī)卷曲和β折疊的含量可以看出,HNTs的存在導(dǎo)致β折疊含量明顯降低,其中RSF膜的β折疊含量為45.93%±0.38%,當(dāng)HNTs含量為25%時(shí),β折疊含量最低,達(dá)到35.82%±0.80%。這說(shuō)明HNTs的加入阻礙了α螺旋/無(wú)規(guī)卷曲向β折疊的轉(zhuǎn)變,或不利于β折疊的形成,可能是由于HNTs的存在導(dǎo)致絲素分子的結(jié)構(gòu)重排,從而影響絲素蛋白的聚集。B7CF044E-29E3-4739-8D56-0F70DB4106D8

2.3 HNTs/RSF復(fù)合膜的廣角X射線衍射(WAXD)分析

本文進(jìn)一步采用WAXD分析HNTs對(duì)RSF復(fù)合膜結(jié)構(gòu)的影響,如圖6所示。2D-WAXD圖明顯顯示,25%-HNTs/RSF復(fù)合膜的衍射環(huán)同時(shí)具備RSF和HNTs的特征衍射環(huán)。使用Fit2D對(duì)2D-WAXD進(jìn)行積分,得到一維衍射角曲線,并用peakfit進(jìn)行分峰擬合。如圖7所示,RSF膜顯示在2θ=8.68°、17.06°、20.81°、24.14°、26.75°和30.53°出現(xiàn)結(jié)晶衍射峰,其符合silk Ⅱ的β片層結(jié)構(gòu)[21]。與RSF膜相比,HNTs復(fù)合膜中顯示出4個(gè)新的衍射峰,為HNTs的特征峰,其中2θ=12.5°、20.0°、25.6°、27.1°。同時(shí),從表1可以看出,HNTs/RSF復(fù)合膜的結(jié)晶度明顯下降,這與之前β折疊含量變化趨勢(shì)一致。這可能是由于HNTs的存在導(dǎo)致周?chē)腞SF分子運(yùn)動(dòng)受限,結(jié)晶度下降。利用Scherrer公式[22]計(jì)算晶粒尺寸,(210)(200)和(002)三個(gè)晶面分別對(duì)應(yīng)晶粒尺寸在a(鏈間)、b(片層間)和c(纖維軸)方向的大小。結(jié)果顯示,由于HNTs的存在,RSF的晶粒體積增大。在RSF分子形成膜的自組裝過(guò)程中,HNTs與RSF分子產(chǎn)生相互作用,導(dǎo)致RSF分子運(yùn)動(dòng)受限難以形成晶粒。同時(shí),由于納米顆粒的物理吸附作用,形成的小晶粒容易團(tuán)聚成尺寸更大的晶粒,所以在HNTs/RSF復(fù)合膜中形成晶粒少而大的晶體結(jié)構(gòu)[23]。

2.4 HNTs/RSF復(fù)合膜的熱穩(wěn)定性分析

膜的熱穩(wěn)定性是其實(shí)際應(yīng)用的一個(gè)重要指標(biāo)。如圖8所示,本文對(duì)RSF和25%-HNTs/RSF復(fù)合膜進(jìn)行熱重分析,得到TGA和DTG曲線。結(jié)果顯示,RSF膜和25%-HNTs/RSF復(fù)合膜隨著溫度的上升重量損失過(guò)程基本相同,且二者均含有20%左右的水分,在熱處理中這些水分很快就被除去。DTG曲線顯示,RSF膜和HNTs/RSF復(fù)合膜降解峰分別出現(xiàn)在243.9 ℃和251.5 ℃,所對(duì)應(yīng)的失重率為68.87%和67.33%。與RSF膜相比,HNTs/RSF復(fù)合膜失重速率較為緩慢,其熱穩(wěn)定性有所提高,使其具有開(kāi)發(fā)和應(yīng)用價(jià)值的潛力。

2.5 HNTs/RSF復(fù)合膜的力學(xué)性能分析

圖9為不同質(zhì)量分?jǐn)?shù)的HNTs/RSF復(fù)合膜的力學(xué)性能測(cè)試結(jié)果。由圖9可知,當(dāng)HNTs質(zhì)量分?jǐn)?shù)為25%時(shí)斷裂強(qiáng)度和斷裂伸長(zhǎng)率最高,分別為(6.67±0.65) MPa和291.17%±16.74%。同時(shí),相對(duì)于RSF空白膜的斷裂強(qiáng)度和斷裂伸長(zhǎng)率僅為(3.62±0.31) MPa和76.88%±10.44%(表2),分別提高了84.3%和278.2%。與RSF相比,HNTs質(zhì)量分?jǐn)?shù)少(≤15%)的RSF復(fù)合膜在斷裂強(qiáng)度方面無(wú)明顯差異,但是其斷裂伸長(zhǎng)率有所提高,表現(xiàn)出更好的柔韌性。與Kopp等[24]報(bào)道并制備的絲素膜斷裂強(qiáng)度1.4 MPa、斷裂伸長(zhǎng)率30%相比,本文制備的HNTs/RSF復(fù)合膜力學(xué)性能良好。說(shuō)明HNTs的添加對(duì)絲素蛋白膜的力學(xué)性能有積極影響,可有效促進(jìn)RSF膜的韌性和剛性。結(jié)合FTIR和WAXD結(jié)果,推測(cè)HNTs的存在阻礙了RSF中無(wú)規(guī)卷曲和α螺旋構(gòu)象向β折疊構(gòu)象的轉(zhuǎn)變,導(dǎo)致RSF復(fù)合膜的結(jié)晶度下降,說(shuō)明無(wú)定型區(qū)域的增加是斷裂伸長(zhǎng)率上升的主要原因。這與Pan等[25]提出的納米受限結(jié)晶增韌機(jī)制相符合,HNTs在RSF基質(zhì)中充當(dāng)一個(gè)交聯(lián)節(jié)點(diǎn),與RSF晶粒連接形成交聯(lián)網(wǎng)絡(luò),使再生絲素復(fù)合膜的韌性大幅增加。優(yōu)良的機(jī)械性能是膜材料在眾多領(lǐng)域應(yīng)用的前提,同時(shí)作為吸附劑其優(yōu)異的韌性也可以在存儲(chǔ)和吸附過(guò)程中提供更多的實(shí)用和便捷。

2.6 HNTs/RSF復(fù)合膜的溶脹率與溶失率

圖10是RSF膜和25%-HNTs/RSF復(fù)合膜在不同pH值溶液中浸泡24 h后的溶脹率和溶失率。由圖10(a)可以看出,當(dāng)溶液pH值由3變?yōu)?的時(shí)候,RSF膜的溶脹率由25.4%±3.6%升至59.8%±7.2%,而HNTs/RSF復(fù)合膜的溶脹率隨pH值的變化較為穩(wěn)定,且在中性和堿性環(huán)境中都比RSF膜的溶脹率低。另由圖10(b)可以看出,在不同的pH值環(huán)境下,HNTs/RSF復(fù)合膜的溶失率與RSF膜相比均有顯著性的降低。在水溶液中純絲素大分子之間的氫鍵易被水與絲素大分子形成的氫鍵取代[26],推測(cè)是由于HNTs表面的羥基與絲素分子中的羧基和氨基形成分子間氫鍵,提高了復(fù)合膜在水中的穩(wěn)定性,從而使絲素蛋白分子溶脹性能和溶失性能降低。說(shuō)明與RSF膜相比,HNTs/RSF復(fù)合膜的溶脹率與溶失率隨pH值的波動(dòng)較為平緩。

2.7 HNTs/RSF復(fù)合膜對(duì)亞甲基藍(lán)的吸附性能

本文選取亞甲基藍(lán)染料模擬測(cè)試HNTs/RSF復(fù)合膜的吸附性能。如圖11(a)所示,不同pH值環(huán)境下,25%-HNTs/RSF復(fù)合膜對(duì)亞甲基藍(lán)吸附能力的影響。隨著pH值的增加,樣品對(duì)亞甲基藍(lán)的吸附率逐漸上升,從56.18%上升至94.74%,說(shuō)明堿性環(huán)境更利于HNTs/RSF復(fù)合膜對(duì)亞甲基藍(lán)的吸附。其中pH 10時(shí)該復(fù)合膜對(duì)亞甲基藍(lán)的去除率為94.74%±1.09%,吸附容量為(12.63±0.15) mg/g,為吸附最佳條件。此外,比較不同HNTs質(zhì)量分?jǐn)?shù)對(duì)RSF復(fù)合膜對(duì)亞甲基藍(lán)的吸附效果。結(jié)果表明,納米顆粒質(zhì)量分?jǐn)?shù)為25%和30%時(shí)對(duì)染料的吸附率分別為95.05%±0.56%、95.99%±0.56%,而RSF膜去除率僅為57.04%±1.68%,分別提高了66.63%和68.3%(圖11(b))。說(shuō)明HNTs的加入提高了RSF膜對(duì)亞甲基藍(lán)的吸附性能。B7CF044E-29E3-4739-8D56-0F70DB4106D8

在pH 10的條件下,進(jìn)一步考察隨接觸時(shí)間變化,25%-HNTs/RSF復(fù)合膜對(duì)亞甲基藍(lán)的吸附效果,如圖12所示。結(jié)果顯示,HNTs/RSF復(fù)合膜對(duì)亞甲基藍(lán)的吸附過(guò)程表現(xiàn)為吸附位點(diǎn)較多的初始階段,染料分子向樣品表面擴(kuò)散,通過(guò)理化特性被快速負(fù)載,到60 min后吸附能力下降,進(jìn)入平衡前的一個(gè)緩慢吸附過(guò)程,最終在300 min達(dá)到吸附平衡。

2.8 吸附等溫線

吸附等溫線模型用于描述恒溫下吸附質(zhì)和吸附劑之間的關(guān)系。本文選用兩種常用的等溫線模型Langumir和Freundlich來(lái)分析HNTs/RSF復(fù)合膜對(duì)亞甲基藍(lán)的吸附,實(shí)驗(yàn)結(jié)果如圖13所示。

Langumir等溫吸附模型用于表征單分子層吸附過(guò)程,計(jì)算公式如下:

Ceqe=1qmb+Ceqm(5)

式中:Ce是染料溶液的平衡濃度,mg/L;qe是染料的平衡吸附量,mg/g;qm是對(duì)應(yīng)于完整單層覆蓋的最大吸附容量,mg/g;b(L/mg)是Langumir常數(shù),與結(jié)合位點(diǎn)的親和力有關(guān)。

Freundlich模型多用于非均相的多分子層吸附,計(jì)算公式如下:

lnqe=lnKf+1nlnCe(6)

式中:Kf為Freundlich吸附系數(shù);1/n為Freundlich常數(shù)反映吸附過(guò)程的吸附強(qiáng)度,一般認(rèn)為1/n小于1易于吸附。

表3總結(jié)了擬合的Langumir和Freundlich模型參數(shù)。對(duì)于亞甲基藍(lán)染料模型,Langmir等溫線模型的R2值高于Freundlich模型,表明亞甲基藍(lán)染料分子在HNTs/RSF復(fù)合膜上的吸附遵循Langmuir的單層表面覆蓋模型。證實(shí)本文制備的HNTs/RSF復(fù)合膜是一種結(jié)構(gòu)均一的吸附劑,對(duì)亞甲基藍(lán)的最大吸附量為27.88 mg/g。表4列出了從相關(guān)文獻(xiàn)中收集的其他吸收劑對(duì)亞甲基藍(lán)的吸附程度,以及本文研究的結(jié)果。結(jié)果表明,HNTs/RSF復(fù)合膜具有相當(dāng)?shù)奈侥芰?,可以作為一種有效的吸附劑用于廢水中染料的去除。

3 結(jié) 論

本文采用流延法制備了一種基于可再生絲素蛋白,可控且高效的HNTs/RSF新型復(fù)合生物吸附膜。HNTs的加入可有效提高RSF膜的韌性和剛性,當(dāng)質(zhì)量分?jǐn)?shù)為25%時(shí),斷裂強(qiáng)度和斷裂伸長(zhǎng)率均為最高,分別為(6.67±0.65) MPa和291.17%±16.74%。FTIR和WAXD分析表明,一定量的HNTs可有效降低絲素膜中β折疊的含量,有利于RSF分子形成晶粒少而大的晶體結(jié)構(gòu),這可能是導(dǎo)致HNTs/RSF復(fù)合膜機(jī)械性能提升的原因。吸附結(jié)果顯示,調(diào)控溶液的pH值或RSF膜中HNTs的質(zhì)量分?jǐn)?shù),均有助于提供更多吸附位點(diǎn),提高對(duì)亞甲基藍(lán)的吸附性能,在300 min后基本達(dá)到吸附平衡。SEM結(jié)果表明,HNTs的加入導(dǎo)致膜表面趨于粗糙,內(nèi)部呈現(xiàn)疏松多孔結(jié)構(gòu)。這種疏松多孔結(jié)構(gòu)是HNTs/RSF復(fù)合膜具有優(yōu)異吸附性能的原因之一,同時(shí)HNTs/RSF復(fù)合膜具有良好的熱穩(wěn)定性。因此,HNTs/RSF復(fù)合膜可作為一種可控且高效的生物吸附劑去除廢水中的染料,這種新型的可持續(xù)生物吸附劑在實(shí)際應(yīng)用中具有潛在的應(yīng)用價(jià)值。

參考文獻(xiàn):

[1]張洛紅, 王文韜, 柴易達(dá), 等. 有機(jī)陽(yáng)離子型絮凝劑處理陰離子印染廢水的研究進(jìn)展[J]. 印染, 2019, 45(18): 51-55.

ZHANG Luohong, WANG Wentao, CHAI Yida, et al. Research progress in treatment of anionic dye wastewater with organic cationic flocculants[J]. China Dyeing & Finishing, 2019,45(18): 51-55.

[2]龔浩珍, 陳秋麗, 劉海葉. 混凝沉淀-水解酸化-生物接觸氧化法處理印染廢水[J]. 廣東化工, 2009, 36(7): 154-155.

GONG Haozhen, CHEN Qiuli, LIU Haiye. The method of coagulation and sedimentation-hydrolytic acidification-biological contact oxidation for dyeing wastewater treatment[J]. Guangdong Chemical Industry, 2009, 36(7): 154-155.

[3]JIN Y, WANG D Q, ZHANG W J. Newly designed hydrolysis acidification flat-sheet ceramic membrane bioreactor for treating high-dtrength dyeing wastewater[J]. International Journal of Environmental Research and Public Health, 2019, 16(5): 777-788.

[4]SURESH P, VIJAYA J J, KENNEDY L J. Photocatalytic degradation of textile-dyeing wastewater by using a microwave combustion-synthesized zirconium oxide supported activated carbon[J]. Materials Science in Semiconductor Processing, 2014, 27(1): 482-493.B7CF044E-29E3-4739-8D56-0F70DB4106D8

[5]張巧利, 徐強(qiáng), 張媛媛, 等. 磁性介孔碳的制備及對(duì)水體中染料的吸附去除[J]. 環(huán)境化學(xué), 2018, 37(11): 2548-2554.

ZHANG Qiaoli, XU Qiang, ZHANG Yuanyuan, et al. Preparation of magnetic mesoporous carbon and its application for dyes removal from water[J]. Environmental Chemistry, 2018, 37(11): 2548-2554.

[6]黃月, 宋麗鳳. 吸附法處理染料廢水的研究進(jìn)展[J]. 染料與染色, 2018, 55(2): 58-61.

HUANG Yue, SONG Lifeng. Research development of dye wastewater treatment by adsorption method[J]. Dyestuffs and Coloration, 2018, 55(2): 58-61.

[7]GOURAY M, MAUSUMI M. TiO2decorated functionalized halloysite nanotubes (TiO2@HNTs) and photocatalytic PVC membranes synthesis, characterization and its application in water treatment[J]. Scientific Reports, 2019, 9(1): 4345-4362.

[8]馬智, 王金葉, 高祥, 等. 埃洛石納米管的應(yīng)用研究現(xiàn)狀[J]. 化學(xué)進(jìn)展, 2012, 24(Z1): 275-283.

MA Zhi, WANG Jinye, GAO Xiang, et al. Application of halloysite nanotubes[J]. Progress in Chemistry, 2012, 24(Z1): 275-283.

[9]LIU M, CHANG Y, JING Y, et al. Functionalized halloysite nanotube by chitosan grafting for drug delivery of curcumin to achieve enhanced anticancer efficacy[J]. Journal of Materials Chemistry B, 2016, 4(13): 2553-2263.

[10]GUO J J, YANG B, MA Q, et al. Photothermal regenerated fibers with enhanced toughness: Silk fibroin/MoS2nanoparticles[J]. Polymers, 2021, 13(22): 3937-3951.

[11]侯?lèi)?ài)芹, 史雅琪, 謝孔良. 絲素蛋白的提取及其在紡織上的應(yīng)用進(jìn)展[J]. 針織工業(yè), 2009(4): 63-67.

HOU Aiqin, SHI Yaqi, XIE Kongliang. Extraction of the silk fibroin and its application progress in textiles[J]. Knitting Industries, 2009(4): 63-67.

[12]明津法, 黃曉衛(wèi), 寧新, 等. 絲素蛋白材料制備及應(yīng)用進(jìn)展[J]. 絲綢, 2021, 58(2): 20-26.

MING Jinfa, HUANG Xiaowei, NING Xin, et al. Preparation and application of silk fibroin materials[J].Journal of Silk, 2021, 58(2): 20-26.

[13]馬強(qiáng), 楊波, 李慧慧, 等. 再生絲素蛋白/納米銫鎢青銅雜化纖維的制備及性能研究[J]. 絲綢, 2021, 58(6): 9-14.

MA Qiang, YANG Bo, LI Huihui, et al. Preparation and properties of the hybrid fiber made of regenerated silk fibroin/cesium tungsten bronze nanoparticles[J].Juornal of Silk, 2021, 58(6): 9-14.

[14]LIN Z, MENG Z, MIAO H, et al. Biomimetic salinity power generation based on silk fibroin ion-exchange membranes[J]. ACS Nano, 2021, 15(3): 5649-5660.

[15]石敏, 陶思潔, 李丹, 等. 面向組織工程應(yīng)用的再生絲素/海藻酸鈣海綿:制備,表征及體內(nèi),體外性能研究[J]. 材料導(dǎo)報(bào), 2020, 34(4): 158-165.

SHI Min, TAO Sijie, LI Dan, et al. Regenerated silk fibroin/calcium alginate sponge for tissue engineering applications: Preparation, characterization and in vivo and in vitro properties[J]. Materials Review, 2020, 34(4): 158-165.B7CF044E-29E3-4739-8D56-0F70DB4106D8

[16]李俊, 許燕, 王梅. 利福平絲素蛋白載藥微球的制備及性能研究[J]. 西北藥學(xué)雜志, 2020, 35(1): 80-84.

LI Jun, XU Yan, WANG Mei. Preparation and properties of rifampicin loaded microspheres[J]. Northwest Pharmaceutical Journal, 2020, 35(1): 80-84.

[17]SONG P, ZHANG D, YAO X, et al. Preparation of a regenerated silk fibroin film and its adsorbability to azo dyes[J]. International Journal of Biological Macromolecules, 2017, 102: 1066-1072.

[18]DAVIDE M, GIANVITO C, GIOVANNI P, et al. Titanate fibroin nanocomposites: A novel approach for the removal of heavy-metal ions from water[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 651-659.

[19]CAMPAGNOLO L, MORSELLI D, MAGR, et al. Silk fibroin/orange peel foam: An efficient biocomposite for water remediation[J]. Advanced Sustainable Systems, 2018, 3(1): 1800097-1800107.

[20]LING S, QI Z, KNIGHT D P, et al. Synchrotron FTIR microspectroscopy of single natural silk fibers[J]. Biomacromolecules, 2011, 12(9): 3344-3349.

[21]SHEN Y, JOHNSON M A, MARTIN D C. Microstructural characterization of Bombyx mori silk fibers[J]. Macromolecules, 1998, 31(25): 8857-8864.

[22]UM I C, CHANG S K, KWEON H Y, et al. Wet spinning of silk polymer. Ⅱ. Effect of drawing on the structural characteristics and properties of filament[J]. International Journal of Biological Macromolecules, 2004, 34(1/2): 107-119.

[23]CAI L, SHAO H, HU X, et al. Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(10): 2551-2557.

[24]KOPP A, SCHUCK L, GOSAU M, et al. Influence of the casting concentration on the mechanical and optical properties of FA/CaCl2-derived silk fibroin membranes[J]. International Journal of Molecular Sciences, 2020, 21(18): 6704-6721.

[25]PAN H, ZHANG Y, SHAO H, et al. Nanoconfined crystallites toughen artificial silk[J]. Journal of Materials Chemistry B, 2014, 2(10): 1408-1414.

[26]薛豪杰, 劉琳, 胡丹丹, 等. 低溶脹殼聚糖/絲素蛋白復(fù)合膜的制備及性能測(cè)試[J]. 蠶業(yè)科學(xué), 2011, 37(6): 1073-1078.

XUE Haojie, LIU Lin, HU Dandan, et al. Fabrication andproperty test of chitosan/silk fibroin composite films with low swelling ratio[J]. Science of Sericulture, 2011, 37(6): 1073-1078.

[27]SHENVI S S, ISLOOR A M, ISMAIL A F, et al. Humic acid based biopolymeric membrane for effective removal of methylene blue and rhodamine B[J]. Industrial & Engineering Chemistry Research, 2015, 54(18): 4965-4975.B7CF044E-29E3-4739-8D56-0F70DB4106D8

[28]KAVITHA D, NAMASIVAYAM C. Experimental and kinetic studies on methylene blue adsorption by coir pith carbon[J]. Bioresource Technology, 2007, 98(1): 14-21.

[29]ANIRUDHAN T S, RAMACHANDRAN M. Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): Kinetic and competitive adsorption isotherm[J]. Process Safety & Environmental Protection, 2015, 95: 215-225.

[30]XIAO S, WANG Z, MA H, et al. Effective removal of dyes from aqueous solution using ultrafine silk fibroin powder[J]. Advanced Powder Technology, 2014, 25(2): 574-581.

Preparation of regenerated silk fibroin protein composite films with adsorption function

WANG Jinjin1a, LI Huihui1b, GUO Jianjun1a,2, JIANG Lei1b, LI Hang1a, WU Guohua1a,b

(1a.College of Biotechnology; 1b.College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology,Zhenjiang 212100, China; 2.College of Agriculture, Anshun University, Anshun 561000, China)

Abstract:Dye wastewater is becoming a serious environmental problem due to its toxicity, unacceptable color, high chemical oxygen demand, and resistance to chemical, photochemical and biological degradation. The release of organic dyes into water systems takes the form of pharmaceutical and chemical wastewater, agricultural runoff, and chemical spills. In order to achieve sustainable development, the research, development, and application of degradable natural polymeric materials-silk proteins, have attracted a lot of attention from researchers in terms of adsorbent substrate materials. China is a large producer and processor of silk, accounting for 65% of the global production of raw silk. During the production and processing of silk, a large amount of trimmings are produced. However, the current unmodified pure silk fibroin protein film has disadvantages such as poor mechanical properties, high water solubility, and instability. Regenerated silk fibroin protein (RSF) is a protein obtained from silkworm cocoons through degumming, dissolving, and dialysis. At the same time, it can be processed into the form of fibers, films, gels, microspheres, etc. Halloysite nanotubes (HNTs) have the advantages of toughness, low cost, high specific surface area, good biocompatibility, and environmental friendliness. It is widely used in cosmetics, drug slow-release, water treatment, and other fields. In this study, RSF was modified by the addition of HNTs to prepare HNTs/RSF composite films with high adsorption and excellent mechanical properties as a potential biosorbent carrier for dye wastewater treatment.B7CF044E-29E3-4739-8D56-0F70DB4106D8

In this paper, a series of HNTs/RSF composite films were prepared by the coasting method by blending HNTs with RSF solution at mass fractions of 5%, 10%, 15%, 20%, 25%, and 30%, respectively. The effects of different mass fractions of HNTs on the microscopic morphology, secondary structure, crystal structure, thermal stability, and mechanical properties of the RSF films were investigated. With the elongation at the break of the composite membrane as a reference index, the 25%-HNTs/RSF composite film was selected for testing the adsorption performance of methylene blue. This included tests on the effect of HNTs content, pH of the aqueous solution, and contact time on its adsorption performance. The use of HNTs/RSF film for the removal of dye from wastewater, besides being an interesting solution for the disposal of waste silk by the textile industry, also results in environmental, social, and economic benefits. It is found that the addition of HNTs is effective in overcoming the shortcomings of RSF films, such as rigidity and brittleness, as well as water solubility. Scanning electron microscopy (SEM) shows that the addition of HNTs results in a rough surface of the membrane and a loose porous structure inside. The mechanical properties results show that the addition of HNTs can significantly improve the toughness and rigidity of the RSF film. When the content of HNTs is 25%, the breaking strength and elongation at the break of the composite film reach the highest of (6.67±0.65) MPa and 291.17%±16.74%, which are 84.3% and 278.2% higher than those of the RSF film, respectively. Fourier transform infrared spectroscopy (FTIR) and wide-angle X-ray diffraction (WAXD) analysis show that an appropriate amount of HNTs could effectively reduce the content and crystallinity of β-sheets in silk fibroin membranes, which may be the reason for the improved mechanical properties of HNTs/RSF composite membranes. The adsorption experiments of methylene blue show that increasing alkaline or HNTs content of the solution environment could improve the adsorption performance, and the adsorption equilibrium is reached after 300 min.

RSF, a regenerative biological protein, can be obtained from a large number of discarded textiles. Based on this, this work provides a method to prepare multifunctional regenerated silk-based composite membranes with high tenacity and obtain regenerated composite membranes with adsorption properties. The research results can provide reference for basic research such as improving the mechanical properties of regenerated silk-based proteins, and also have high development and utilization value in the fields of pharmaceutical and chemical wastewater treatment and biosorption.

Key words:regenerated silk fibroin; halloysite nanotubes; blend modification; mechanical properties; methylene blue; adsorptionB7CF044E-29E3-4739-8D56-0F70DB4106D8

猜你喜歡
吸附力學(xué)性能
反擠壓Zn-Mn二元合金的微觀組織與力學(xué)性能
Pr對(duì)20MnSi力學(xué)性能的影響
云南化工(2021年11期)2022-01-12 06:06:14
Mn-Si對(duì)ZG1Cr11Ni2WMoV鋼力學(xué)性能的影響
山東冶金(2019年3期)2019-07-10 00:54:00
一種吸附膜的制備及其吸附性能
Fe(Ⅲ)負(fù)載改性核桃殼對(duì)Cu2+吸附研究
炭氣凝膠的制備與吸附氫氣性能
核桃殼基吸附材料的制備及性能測(cè)試
科技視界(2016年25期)2016-11-25 12:30:06
活化粉煤灰在煤焦油加工廢水預(yù)處理中的應(yīng)用
四環(huán)素類(lèi)抗生素的環(huán)境行為研究進(jìn)展
科技視界(2016年11期)2016-05-23 08:07:47
MG—MUF包覆阻燃EPS泡沫及力學(xué)性能研究
清丰县| 揭阳市| 固原市| 安康市| 台安县| 英山县| 天水市| 淳化县| 都安| 盖州市| 什邡市| 宜春市| 敦煌市| 宁武县| 黎平县| 广东省| 唐海县| 浪卡子县| 松江区| 萨迦县| 根河市| 三明市| 资源县| 云龙县| 海丰县| 泸州市| 夏河县| 富民县| 聊城市| 鹤山市| 兰考县| 和平区| 霍山县| 城市| 台前县| 惠水县| 黑龙江省| 黔南| 达日县| 比如县| 策勒县|