傅鶴林 安鵬濤 成國(guó)文 王仁健 李鮚 余小輝
摘要:基于反映法、疊加原理及滲流力學(xué)理論構(gòu)建了是否含注漿圈的兩種體外排水簡(jiǎn)化計(jì)算模型,推導(dǎo)了隧道與體外排水洞涌水量的計(jì)算公式、隧道二次襯砌外水壓力表達(dá)式,通過解析退化驗(yàn)證了理論模型及解析公式的正確性與適用性,根據(jù)推導(dǎo)公式進(jìn)行了參數(shù)敏感性分析,最后通過數(shù)值模擬進(jìn)一步進(jìn)行了檢驗(yàn).結(jié)果表明:體外排水洞與隧道涌水量均隨注漿圈滲透系數(shù)的下降而非線性降低,隧道二次襯砌外水壓力隨注漿圈滲透系數(shù)的下降而非線性增大,但其臨界值小于常規(guī)排水方式;增加初期支護(hù)的厚度可達(dá)到降低二次襯砌外水壓力及隧道涌水量的目的;圍巖與注漿圈、注漿圈與初期支護(hù)滲透系數(shù)合理比值分別為15與100,同時(shí)須嚴(yán)格控制二次襯砌滲透系數(shù);排水洞洞徑對(duì)體外排水洞涌水量影響顯著,為保護(hù)地下水資源,體外排水洞洞徑推薦為0.2 m.
關(guān)鍵詞:體外排水方式;滲流力學(xué);涌水量預(yù)測(cè);水壓力;注漿圈
中圖分類號(hào):U459.2????? 文獻(xiàn)標(biāo)志碼:A
Design of External Drainage Mode ConsideringGrouting Circle and Composite Lining
FU Helin1,2,AN Pengtao1,2?,CHENG Guowen3,WANG Renjian3,LI Jie1,2,YU Xiaohui3
(1. School of Civil Engineering,Central South University,Changsha 410075,China;
2. National Engineering Laboratory for High Speed Railway Construction(Central South University),Changsha 410075,China;
3. Guangdong Nanyue Transportation Investment & Construction Co Ltd,Guangzhou 510101,China)
Abstract:Based on the reflection method, superposition principle and the theory of seepage mechanics, two sim? plified calculation models for external drainage with or without grouting ring are constructed. The calculation formu? las for the inflow of the tunnel and the external drainage tunnel, and the external water pressure expression of the sec ? ondary lining of the tunnel are deduced. Analytical degradation verifies the correctness and applicability of the theo ? retical model and analytical formula. The parameter sensitivity analysis is carried out according to the deduced for? mula, and finally it is further tested through numerical simulation. The results show that the water inflow of the exter? nal drainage tunnel and the tunnel decreases nonlinearly with the decrease of the permeability coefficient of the grouting circle, and the external water pressure of the secondary lining of the tunnel increases nonlinearly with the de ? crease of the permeability coefficient of the grouting circle, but the critical value is less than conventional drainage method; increasing the thickness of the initial support can achieve the purpose of reducing the external water pres ? sure of the secondary lining and the amount of water inflow of the tunnel; the reasonable ratio of the permeability coef? ficient for the surrounding rock to the grouting circle, as well as the grouting circle to the initial support, is 15 and 100, respectively, and at the same time, the permeability coefficient of the secondary lining must be strictly con ? trolled; the diameter of the drainage tunnel has a significant impact on the inflow of the external drainage tunnel. To protect the ground water resources, the external drainage tunnel diameter is recommended to be 0.2 m.
Key words:external drainage;seepage mechanics;prediction of water inflow;water pressure;grouting circle
“以堵為主、防排結(jié)合”的控制型防排水原則是目前富水區(qū)隧道涌水處置的首選準(zhǔn)則[1-6].但運(yùn)營(yíng)情況表明[7-11],排水堵塞時(shí)因襯砌水壓力過高引發(fā)的仰拱開裂、軌道隆起、隧底翻漿冒泥等底部結(jié)構(gòu)病害問題時(shí)有發(fā)生,針對(duì)上述工程問題,合理選擇隧道防排水方式是有效解決措施之一[12],其中文獻(xiàn)[13]提出了一種排導(dǎo)能力強(qiáng)、隧底降壓效果優(yōu)的體外排水方式,此種排水方式在隧道正下方設(shè)置排水洞,將隧道支護(hù)結(jié)構(gòu)外的滲水直接滲流至排水洞,降低了隧道拱底的滲水壓力.
依托地下水經(jīng)環(huán)、縱向排水管與橫向排水管流入側(cè)溝,再由側(cè)溝與中心水溝共同排出隧道的常規(guī)排水方式,文獻(xiàn)[14-22]針對(duì)注漿圈的參數(shù)設(shè)計(jì)及涌水量計(jì)算問題進(jìn)行了深入研究,分析了注漿圈的堵水作用機(jī)制,為注漿圈的設(shè)計(jì)提供了理論基礎(chǔ).針對(duì)體外排水方式,文獻(xiàn)[23-24]利用數(shù)值分析軟件對(duì)滲流場(chǎng)與襯砌水壓力分布規(guī)律進(jìn)行了探討;文獻(xiàn)[25-26]以鏡像法和滲流力學(xué)理論為基礎(chǔ),推導(dǎo)了半無限平面內(nèi)深埋式中心水溝排水時(shí)隧道滲流場(chǎng)及涌水量的解析解.
綜上所述,國(guó)內(nèi)外學(xué)者對(duì)常規(guī)排水方式下隧道涌水量及滲流場(chǎng)的分析較為廣泛,而對(duì)體外排水方式下隧道及體外排水洞涌水量的理論分析較少,同時(shí)考慮注漿圈與復(fù)合襯砌時(shí)更鮮有涉及,但現(xiàn)有研究方法與思路仍值得借鑒.為此,構(gòu)建是否含注漿圈的兩種體外排水簡(jiǎn)化計(jì)算模型,以反映法、疊加原理及滲流力學(xué)理論為基礎(chǔ)推導(dǎo)隧道與體外排水洞涌水量的計(jì)算公式、隧道二次襯砌外水壓力表達(dá)式,并進(jìn)行退化驗(yàn)證,同時(shí)對(duì)特征參數(shù)進(jìn)行敏感性分析,并通過數(shù)值模擬進(jìn)行驗(yàn)證,以求對(duì)體外排水方式下注漿圈及支護(hù)結(jié)構(gòu)的設(shè)計(jì)進(jìn)行有意義的嘗試與補(bǔ)充.
1無注漿時(shí)滲流場(chǎng)解析解
1.1計(jì)算模型及基本假定
建立半無限平面內(nèi)隧道與體外排水洞滲流模型,如圖1所示.
圖1中,r0、re、rc分別為二次襯砌內(nèi)徑、二次襯砌外徑及初期支護(hù)外徑;體外排水洞半徑為rd;體外排水洞與隧道初期支護(hù)外徑最小距離為 h0;隧道圓心至給水邊界豎直距離為 d;地下水水位為 H.
考慮實(shí)際工況及方便問題解答,作如下假定:
1)圍巖與各結(jié)構(gòu)均質(zhì)且各向同性;
2)隧道與體外排水洞均處于穩(wěn)定滲流狀態(tài);
3)滲流服從達(dá)西定律;
4)隧道為大埋深.
1.2模型求解
利用反映法,將半無限雙孔隧洞滲流場(chǎng)轉(zhuǎn)化為無限滲流場(chǎng)下4個(gè)單孔隧洞的疊加問題,如圖2所示.
點(diǎn) M ( x,y )為滲流場(chǎng)中任意點(diǎn);R1、R2、R3、R4分別為點(diǎn) M 至各孔洞中心點(diǎn)的距離;Q1與 Q2分別為體外排水洞與隧道涌水量.
根據(jù)假定,水流速度與水力坡度滿足達(dá)西定律,表達(dá)式為:
式中:v 為滲流速度;k 為介質(zhì)滲透系數(shù);i為水力坡度.
根據(jù)滲流力學(xué)原理,無限平面內(nèi)單孔隧洞穩(wěn)定徑向滲流連續(xù)性方程極坐標(biāo)表達(dá)式為:
式中:ρ為計(jì)算點(diǎn)至孔洞中心的距離;Φ為無限平面內(nèi)計(jì)算點(diǎn)的滲流場(chǎng)水頭勢(shì)函數(shù).
假定某斷面的流量為 Q,則:
對(duì)式(3)積分得:
式中:c 為待定常數(shù),其值由邊界條件確定.
當(dāng)無限平面內(nèi)4個(gè)孔洞均達(dá)到穩(wěn)定滲流時(shí),平面內(nèi)任意一點(diǎn)水頭勢(shì)函數(shù)根據(jù)勢(shì)的疊加原理確定,計(jì)算式為:
式中:Qi 為第i個(gè)孔洞的涌水量;c 1為待定常數(shù).
假定圍巖滲透系數(shù)為kr,當(dāng) M點(diǎn)位于圍巖范圍,則水頭勢(shì)函數(shù)表達(dá)式為:
式中:
由于假定為深埋,忽略隧道復(fù)合襯砌外緣各位置滲流的離散型,對(duì)隧道結(jié)構(gòu)有:
式中:Qc、Qe分別為實(shí)際隧道中初期支護(hù)外緣、初期支護(hù)內(nèi)緣涌水量;Hc、He 分別為實(shí)際隧道初期支護(hù)外緣、初期支護(hù)內(nèi)緣的水頭高度;kc、ke分別為初期支護(hù)及二次襯砌的滲透系數(shù).
據(jù)流體質(zhì)量守恒定律
以隧道軸線位置為參考面,對(duì)實(shí)際隧道初期支護(hù)外緣及體外排水洞邊緣有:
聯(lián)立式(9)~(12),得:
式中:A=kckr ln +kekr ln -kcke ln ;B=h0 + rd + rd .
1.3解析結(jié)果驗(yàn)證
1)h0無窮大
若體外排水洞與隧道初期支護(hù)外徑最小距離 h0趨于無窮大,則有
此時(shí)式(13)退化為半無限平面內(nèi)無支護(hù)隧道的最大涌水量計(jì)算公式;式(14)退化為半無限平面內(nèi)設(shè)置復(fù)合襯砌時(shí)隧道的涌水量計(jì)算公式[27].
2) rd無窮小
若體外排水洞洞徑rd無窮小,則有:
此時(shí)式(13)趨近于0,與事實(shí)符合;式(14)退化為半無限平面內(nèi)設(shè)置復(fù)合襯砌時(shí)隧道的涌水量計(jì)算公式.
由式(15)~(18)可知,式(13)(14)均可退化為半無限平面內(nèi)單孔孔洞涌水量計(jì)算公式,而半無限平面內(nèi)單孔孔洞涌水量計(jì)算公式為本文所得體外排水洞穩(wěn)定滲流的特例,驗(yàn)證了本文計(jì)算公式的正確性.
聯(lián)立式(9)(10)與(14),計(jì)算隧道二次襯砌外水壓力表達(dá)式為:
式中:γw 為水的重度.
2含注漿圈時(shí)滲流場(chǎng)解析解
2.1 計(jì)算模型及基本假定
建立半無限平面內(nèi)含注漿圈時(shí)隧道與體外排水洞滲流模型,如圖3所示.
圖3中,rg為注漿圈外緣半徑,其余參數(shù)同圖1.
2.2模型求解
由式(8)可知,注漿圈外緣界面水頭勢(shì)函數(shù)為:
此時(shí)對(duì)隧道與體外排水洞而言,注漿圈外緣為定水頭邊界.由式(5)可知,注漿圈內(nèi)任一點(diǎn)水頭勢(shì)函數(shù)表達(dá)式為:
式中:Φ*表示注漿圈區(qū)域內(nèi)任一點(diǎn)的水頭勢(shì)函數(shù);kg 為注漿圈滲透系數(shù);c2為待定常數(shù).
由式(21),依次計(jì)算注漿圈外緣、隧道初期支護(hù)外緣及體外排水洞洞壁水頭勢(shì)函數(shù):
式中:Φg(*)、Φ c(*)分別為注漿圈外緣、隧道初期支護(hù)外緣及體外排水洞洞壁水頭勢(shì)函數(shù).
流入初期支護(hù)與二次襯砌的滲水量滿足流體質(zhì)量守恒定律.由式(9)可得:
聯(lián)立式(20)與式(22)(23),得:
式(24)(25)中:
2.3解析結(jié)果驗(yàn)證
若未施加帷幕注漿,可令kr = kg,式(24)與(25)退化為:
忽略注漿圈外緣水頭高度的離散型,式(27)(28)可分別退化為式(13)(14),而注漿圈外緣水頭高度在非富水區(qū)時(shí)隨注漿圈外緣的位置而變化,因此式(27)(28)僅適用于給水邊界距隧道軸線位置較大的工況,此時(shí) B +2d ≈2d,則式(27)退化為(13),式(28)退化為(14).即僅含復(fù)合襯砌支護(hù)結(jié)構(gòu)為本節(jié)所推導(dǎo)的含注漿圈及復(fù)合襯砌支護(hù)結(jié)構(gòu)的計(jì)算特例,驗(yàn)證了本節(jié)計(jì)算公式的正確性.
聯(lián)立式(9)(25)(26),可計(jì)算隧道二次襯砌外水壓力.
3特征參數(shù)敏感性分析
鑒于所推導(dǎo)體外排水洞及隧道涌水量與二次襯砌外水壓力計(jì)算公式影響參數(shù)眾多,直接分析較為復(fù)雜.現(xiàn)對(duì)體外排水方式的主要特征參數(shù)進(jìn)行探討分析.
3.1 注漿圈滲透系數(shù)
假定給水邊界 H =200 m;注漿圈厚度為6 m;隧道尺寸參數(shù) r0、re、rc分別為:6 m、6.5 m、6.8 m;原巖滲透系數(shù)為2×10-6 m/s,注漿圈與初期支護(hù)及二次襯砌滲透系數(shù)的比值分別為200、100.涌水量及隧道二次襯砌外水壓力隨注漿圈滲透系數(shù)的變化關(guān)系分別如圖4與5所示.
圖4與圖5表明體外排水洞與隧道涌水量均隨注漿圈滲透系數(shù)的下降而非線性降低;隧道二次襯砌外水壓力隨注漿圈滲透系數(shù)的下降而非線性增大.其中原巖與注漿圈滲透系數(shù)比值(kr/kg )小于15時(shí),注漿圈滲透系數(shù)對(duì)涌水量及隧道二次襯砌外水壓力敏感性顯著;當(dāng)原巖與注漿圈滲透系數(shù)比值大于15時(shí),繼續(xù)降低注漿圈滲透系數(shù)對(duì)體外排水洞與隧道涌水量及二次襯砌外水壓力影響均較弱.解析結(jié)果與文獻(xiàn)[10]的研究結(jié)果具有一致性.
綜合考慮經(jīng)濟(jì)及排水因素,注漿圈滲透系數(shù)與原巖合理比值為15,而未實(shí)施體外排水洞時(shí)原巖與注漿圈滲透系數(shù)合理比值建議在兩個(gè)數(shù)量級(jí)內(nèi)[28-30],表明設(shè)置體外排水洞時(shí)帷幕注漿在較高滲透系數(shù)時(shí)同樣可發(fā)揮明顯作用.原因?yàn)椋何丛O(shè)置體外排水洞時(shí),涌水通過隧道二次襯砌背后的環(huán)向盲管、縱向與橫向排水管,進(jìn)而利用水溝排出隧道,此時(shí)注漿圈內(nèi)的涌水需經(jīng)較長(zhǎng)滲流路徑才可排出隧道,而設(shè)置體外排水洞時(shí)注漿圈內(nèi)的滲水可直接排出,滲流路徑縮短,故對(duì)注漿圈堵水功能降低了要求,此時(shí)可減小注漿量,以達(dá)到安全、經(jīng)濟(jì)的最優(yōu)效果.
同時(shí)隨排水洞洞徑增大體外排水洞涌水量增加而隧道涌水量及隧道二次襯砌外水壓力降低,但排水洞洞徑對(duì)排水洞涌水量的影響更為顯著.如kr/kg 為3,體外排水洞洞徑為0.1 m、0.2 m、0.3 m 及0.4 m 時(shí),排水洞涌水量(m3·d-1·m-1)為:12.41、14.18、15.45、16.51,分別增加:14.23%、24.54%與32.99%;隧道涌水量(m3·d-1·m-1)為2.97、2.85、2.76、2.69,分別降低:4.1%、7.02%與9.38%;隧道二次襯砌外水壓力為:656.83、629.89、610.71及595.21,分別降低4.1%、7.02%與9.38%,表明通過增大排水洞洞徑而降低二次襯砌外水壓力的同時(shí)會(huì)增加更多的涌水量,對(duì)當(dāng)?shù)厮雌茐臅?huì)加劇,因此體外排水洞洞徑的確定需綜合考慮支護(hù)結(jié)構(gòu)受力及隧址區(qū)環(huán)境要求.
3.2 復(fù)合襯砌
3.2.1初期支護(hù)
假定體外排水洞洞徑為0.2 m,原巖與注漿圈滲透系數(shù)比值為15,其它參數(shù)同3.1節(jié),繪制涌水量及外水壓力與初期支護(hù)的關(guān)系如圖6所示.
由圖6可知,隨初期支護(hù)滲透系數(shù)的降低體外排水洞涌水量與隧道二次襯砌外水壓力非線性增大,隧道涌水量非線性降低,其中初期支護(hù)滲透系數(shù)對(duì)隧道涌水量、隧道二次襯砌外水壓力、體外排水洞涌水量的影響程度逐漸減弱.
同時(shí)隨初期支護(hù)厚度的增加隧道二次襯砌外水壓力與隧道涌水量急劇下降,而對(duì)體外排水洞涌水量影響較弱.如 kg/kc 為60,初期支護(hù)厚度為0.2 m、0.3 m、0.4 m 及0.5 m 時(shí),排水洞涌水量(cm3·d-1·m-1) 為:3.34、3.41、3.47、3.5,分別增加:2.28%、3.87%與5.02%;隧道涌水量(cm3·d-1·m-1)為2.67、2.27、1.98、1.76,分別降低:14.75%、25.56%與33.82%;隧道二次襯砌外水壓力(kPa)為:884.49、754.04、658.43及585.35,分別降低14.75%、25.56%與33.82%,表明可通過增加初期支護(hù)的厚度達(dá)到降低二次襯砌外水壓力及隧道涌水量的目的.
設(shè)置體外排水洞時(shí),隧道排水通道暢通,注漿圈內(nèi)的滲水可快速通過體外排水洞排出,降低了對(duì)隧道支護(hù)結(jié)構(gòu)的作用,因此初期支護(hù)對(duì)體外排水洞涌水量影響較弱.
3.2.2 二次襯砌
假定體外排水洞洞徑為0.2 m,初期支護(hù)厚度0.4 m,原巖與注漿圈、注漿圈與初期支護(hù)滲透系數(shù)比值分別為15與100.其余參數(shù)同3.1節(jié),涌水量及外水壓力與二次襯砌相關(guān)參數(shù)的關(guān)系如圖7所示.
由圖7可知,隨二次襯砌滲透系數(shù)的降低體外排水洞涌水量與隧道二次襯砌外水壓力非線性增大,隧道涌水量非線性降低,其中二次襯砌滲透系數(shù)對(duì)隧道涌水量及隧道二次襯砌外水壓力影響程度大于對(duì)體外排水洞涌水量的影響程度.
隨二次襯砌厚度的增加,隧道涌水量與二次襯砌外水壓力均減小,體外排水洞涌水量基本保持不變.當(dāng)二次襯砌與初期支護(hù)滲透系數(shù)比值為1.5,二次襯砌厚度為0.3 m、0.4 m、0.5 m 及0.6 m 時(shí),隧道涌水量(m3·d-1·m-1)為:0.94、0.81、0.72及0.64,涌水量分別降低:13.58%、23.78%及31.71%;隧道二次襯砌外水壓力(Pa )分別為:1560.08、1348.15、1189.15及1065.45,分別降低:13.58%、23.78%及31.71%,表明適當(dāng)增加二次襯砌厚度可降低二次襯砌外水壓力與隧道涌水量.
綜合分析,設(shè)置體外排水洞時(shí)可降低注漿量以保證原巖與注漿圈滲透系數(shù)比值維持在較低水平(10~15),注漿圈與初期支護(hù)滲透系數(shù)比值可保持在100附近,同時(shí)須嚴(yán)格控制二次襯砌滲透系數(shù),在此基礎(chǔ)上可通過增加初期支護(hù)與二次襯砌的厚度達(dá)到降低隧道涌水量與二次襯砌外水壓力的目的.同時(shí)排水洞洞徑對(duì)體外排水洞排水量影響顯著,為保護(hù)當(dāng)?shù)厮雌胶猓w外排水洞洞徑需控制在合理范圍.
4數(shù)值模擬分析
為驗(yàn)證本文構(gòu)建模型的合理性及公式推導(dǎo)的正確性,以鴻圖隧道在建工程為背景進(jìn)行數(shù)值模擬分析.
4.1 工程背景
鴻圖隧道位于廣東省,左線與右線長(zhǎng)分別為6336 m 與6337 m,為分離式雙向四車道公路隧道,最大埋深約739 m,處于區(qū)域性大斷裂蓮花山斷裂帶.同時(shí)隧道緊鄰飛泉電站、飛泉水庫(kù)、三度水庫(kù)及下穿黃棉湖水庫(kù),部分?jǐn)鄬优c大型水體相連,突涌水風(fēng)險(xiǎn)極高,如圖8所示.
4.2 參數(shù)選取
含仰拱的曲墻式隧道斷面,較接近圓形,此時(shí)將隧道斷面假定為圓形,誤差一般在可接受范圍[31].采用等代圓法將非圓形隧道轉(zhuǎn)化為圓形隧道進(jìn)行研究,文獻(xiàn)[32]對(duì)等代圓半徑進(jìn)行了分析,本文取隧道斷面外接圓半徑為等代圓半徑,表達(dá)式為:
式中:r0表示原隧道做等代圓處理后的半徑;b 表示原隧道的斷面跨度;h 表示原隧道的斷面高度.
計(jì)算得等代圓半徑 r0=6.2 m.據(jù)第3節(jié)分析,體外排水洞洞徑為0.2 m,初期支護(hù)與二次襯砌厚度分別設(shè)計(jì)為40 cm 與50 cm,注漿圈厚度為6 m,靜水頭高度為250 m,結(jié)合設(shè)計(jì)院與現(xiàn)場(chǎng)測(cè)試及施工經(jīng)驗(yàn),材料參數(shù)如表1所示.
4.3 三維模型建立
采用有限差分軟件 FLAC3D 進(jìn)行模擬,考慮施工過程中的空間尺寸效應(yīng),按照估算與試算結(jié)果,確定模型尺寸為:x×y×z=100 m×50 m×100 m,隧道埋深為50 m.原巖、注漿圈、初期支護(hù)及二次襯砌均采用實(shí)體單元,模型四周為透水邊界,底部不透水,約束模型四周法線方向上的位移,模型底部為固定端約束.頂部施加均布力,彌補(bǔ)地應(yīng)力的不足,材料參數(shù)按表1取值.
4.4 結(jié)果對(duì)比
分別提取隧道二次襯砌外緣(頂部、底部、左邊墻、右邊墻,并求平均值)滲水壓力及涌入體外排水洞與隧道涌水量,結(jié)果如表2所示.
由表2可知,理論值與模擬值有一定差異,其中隧道二次襯砌外水壓力、隧道涌水量、體外排水洞涌水量分別相差:8.66%、9.46%與11.11%,誤差在可控范圍內(nèi),差異的原因是等代圓近似替代及理論公式推導(dǎo)時(shí)忽略隧道支護(hù)結(jié)構(gòu)及注漿圈外水壓力的離散型.數(shù)值模擬進(jìn)一步驗(yàn)證了本文所推導(dǎo)公式的正確性,也為體外排水方式的設(shè)計(jì)提供了理論依據(jù).
5結(jié)論
針對(duì)是否含注漿圈的兩種體外排水簡(jiǎn)化計(jì)算模型,通過反映法、疊加原理及滲流力學(xué)理論推導(dǎo)了隧道與體外排水洞涌水量的計(jì)算公式、隧道二次襯砌外水壓力表達(dá)式,并進(jìn)行了退化分析,最后利用數(shù)值模擬手段進(jìn)一步得到了驗(yàn)證,具體結(jié)論為:
1)推導(dǎo)了隧道與體外排水洞涌水量的計(jì)算公式、隧道二次襯砌外水壓力表達(dá)式,未設(shè)置注漿圈時(shí)計(jì)算公式可退化為半無限平面內(nèi)單孔孔洞涌水量計(jì)算公式,設(shè)置注漿圈時(shí)計(jì)算公式適用于給水邊界較大的工況;
2)未設(shè)置體外排水洞時(shí),涌水通過隧道二次襯砌背后的環(huán)向盲管、縱向與橫向排水管,進(jìn)而利用排水溝排出隧道,此時(shí)注漿圈內(nèi)的涌水需經(jīng)較長(zhǎng)滲流路徑才可排出隧道;而設(shè)置體外排水洞時(shí)注漿圈內(nèi)的滲水可直接排出,滲流路徑縮短,故對(duì)注漿圈堵水功能降低了要求,此時(shí)可減小注漿量,以達(dá)到安全、經(jīng)濟(jì)的最優(yōu)效果;
3)注漿圈與初期支護(hù)滲透系數(shù)合理比值為80~120,同時(shí)須嚴(yán)格控制二次襯砌滲透系數(shù),在此基礎(chǔ)上可通過增加初期支護(hù)與二次襯砌的厚度達(dá)到降低隧道涌水量與二次襯砌外水壓力的目的;
4)排水洞洞徑對(duì)體外排水洞排水量影響顯著,為保護(hù)當(dāng)?shù)厮Y源,體外排水洞洞徑需取適宜值.
參考文獻(xiàn)
[1] 丁浩,蔣樹屏,李勇.控制排放的隧道防排水技術(shù)研究[J].巖土工程學(xué)報(bào),2007,29(9):1398-1403.
DING H,JIANG S P,LI Y. Study on waterproof and drainage techniques of tunnels based on controlling drainage[J]. Chinese Journal of Geotechnical Engineering,2007,29(9):1398-1403.(In Chinese)
[2] 蔣忠信.隧道工程與水環(huán)境的相互作用[J].巖石力學(xué)與工程學(xué)報(bào),2005,24(1):121-127.
JIANG Z X. Interaction between tunnel engineering and water en ?vironment[J]. Chinese Journal of Rock Mechanics and Engineer? ing,2005,24(1):121-127.(In Chinese)
[3] 尹泉,程盼,傅鶴林,等.運(yùn)營(yíng)期隧道地下水位變化情況估算[J].鐵道科學(xué)與工程學(xué)報(bào),2017,14(2):303-307.
YIN Q,CHENG P,F(xiàn)U H L,et al. Calculation of underground wa? ter level for tunnel in operation period[J]. Journal of Railway Sci? ence and Engineering,2017,14(2):303-307.(In Chinese)
[4] 劉招偉,張頂立,張民慶.圓梁山隧道毛壩向斜高水壓富水區(qū)注漿施工技術(shù)[J].巖石力學(xué)與工程學(xué)報(bào),2005,24(10):1728-1734.
LIU Z W,ZHANG D L,ZHANG M Q. Grouting technique for high-pressure and water-rich area in maoba syncline at yuanliang? shan tunnel[J]. Chinese Journal of Rock Mechanics and Engineer? ing,2005,24(10):1728-1734.(In Chinese)
[5] 鄭波,吳劍,吳曉龍.水壓力作用下隧道底部結(jié)構(gòu)裂損機(jī)理及其防治[J].鐵道工程學(xué)報(bào),2017,34(1):91-96.
ZHENG B,WU J,WU X L. Research on the cracking mechanism and treatment measures of tunnel invert filling structure under the action of water pressure[J]. Journal of Railway Engineering Soci? ety,2017,34(1):91-96.(In Chinese)
[6] 杜明慶,張頂立,張素磊,等.高速鐵路隧道仰拱結(jié)構(gòu)受力現(xiàn)場(chǎng)實(shí)測(cè)分析[J].中國(guó)鐵道科學(xué),2017,38(5):53-61.
DU M Q,ZHANG D L,ZHANG S L,et al. Field test and analy? sis of mechanical characteristics of tunnel invert structure for high-speed railway[J]. China Railway Science ,2017,38(5):53-61.(In Chinese)
[7]? TAO X L,MA J R,ZENG W. Treatment effect investigation of un ?derground continuous impervious curtain application in water-rich strata[J]. International Journal of Mining Science and Technol? ogy,2015,25(6):975-981.
[8]? SEMBENELLI P G,SEMBENELLI G. Deep jet-grouted cut-offsin riverine alluvia for ertan cofferdams[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(2):142-153.
[9]? HWANG J H,LU C C. A semi-analytical method for analyzingthe tunnel water inflow [J]. Tunnelling and Underground Space Technology,2007,22(1):39-46.
[10]李林毅,陽(yáng)軍生,高超,等.考慮注漿圈作用的體外排水隧道滲流場(chǎng)解析研究[J].巖土工程學(xué)報(bào),2020,42(1):133-141.
LI L Y,YANG J S,GAO C,et al. Analytical study on seepage field of tunnels with external drainage considering effect of grout? ing rings[J]. Chinese Journal of Geotechnical Engineering,2020,42(1):133-141.(In Chinese)
[11] KOLYMBAS D,WAGNER P. Groundwater ingress totunnels–the exact analytical solution [J]. Tunnelling and Underground Space Technology,2007,22(1):23-27.
[12]信春雷.不同防排水模式對(duì)山嶺隧道襯砌水壓力影響關(guān)系研究[D].成都:西南交通大學(xué),2011:46-53.
XIN C L. Study on the impact of different waterproof and drainage patterns upon water pressure load on mountain tunnel lining[ D]. Chengdu:Southwest Jiaotong University,2011:46-53.(In Chi? nese)
[13] NAM S W,BOBET A. Liner stresses in deep tunnels below the wa?ter table [J]. Tunnelling and Underground Space Technology,2006,21(6):626-635.
[14] SHI H,BAI M Z,XING S C. Mechanics parameter optimizationand evaluation of curtain grouting material in deep ,water-rich karst tunnels[J]. Advances in Materials Science and Engineering,2017,2017:1-12.
[15] ZHAO X,YANG X. Experimental study on water inflow character?istics of tunnel in the fault fracture zone[J]. Arabian Journal of Geosciences,2019,12(13):1-14.
[16]潘以恒,羅其奇,周斌,等.半無限平面含注漿圈深埋隧道滲流場(chǎng)解析研究[J].浙江大學(xué)學(xué)報(bào)(工學(xué)版),2018,52(6):1114-1122.
PAN Y H,LUO Q Q,ZHOU B,et al. Analytical study on seepage field of deep tunnel with grouting circle in half plane[J]. Journal of Zhejiang University (Engineering Science),2018,52(6):1114-1122.(In Chinese)
[17]楊賽舟,何川,李錚,等.富水地區(qū)隧道注漿圈內(nèi)部水壓分布規(guī)律[J].中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2017,46(3):546-553.
YANG S Z,HE C,LI Z,et al. Inner water pressure distribution law of the tunnel grouting circle in water-rich area[J]. Journal of China University of Mining and Technology,2017,46(3):546-553.(In Chinese)
[18]應(yīng)宏偉,朱成偉,龔曉南.考慮注漿圈作用水下隧道滲流場(chǎng)解析解[J].浙江大學(xué)學(xué)報(bào)(工學(xué)版),2016,50(6):1018-1023.
YING H W,ZHU C W,GONG X N. Analytic solution on seepage field of underwater tunnel considering grouting circle[J]. Journal of Zhejiang University (Engineering Science),2016,50(6):1018-1023.(In Chinese)
[19]張頂立,孫振宇.海底隧道主動(dòng)控制式防排水系統(tǒng)及其設(shè)計(jì)方法[J].巖石力學(xué)與工程學(xué)報(bào),2019,38(1):1-17.
ZHANG D L,SUN Z Y. An active control waterproof and drainage system of subsea tunnels and its design method[J]. Chinese Jour? nal of Rock Mechanics and Engineering,2019,38(1):1-17.( In Chinese)
[20] FARMER I W,JENNINGS D H. Effect of strata permeability onthe radial hydrostatic pressures on mine shaft linings [J]. Mine Water & the Environment,1983,2(3):17-24.
[21]張丙強(qiáng).半無限平面雙孔平行隧道滲流場(chǎng)解析研究[J].鐵道學(xué)報(bào),2017,39(1):125-131.
ZHANG B Q. Analytical solution for seepage field of twin-parallel tunnels in semi-infinite plane[J]. Journal of the China Rail Way Society,2017,39(1):125-131.(In Chinese)
[22]朱成偉,應(yīng)宏偉,龔曉南.任意埋深水下隧道滲流場(chǎng)解析解[J].巖土工程學(xué)報(bào),2017,39(11):1984-1991.
ZHU C W,YING H W,GONG X N,et al. Analytical solutions for seepage fields of underwater tunnels with arbitrary burial depth [J]. Chinese Journal of Geotechnical Engineering ,2017,39(11):1984-1991.(In Chinese)
[23] ARJNOI P,JEONG J H,KIM C Y,et al. Effect of drainage condi?tions on porewater pressure distributions and lining stresses in drained tunnels[J]. Tunnelling and Underground Space Technol? ogy,2009,24(4):376-389.
[24]樊祥喜,陽(yáng)軍生,麻彥娜,等.不同防排水方式下富水隧道受列車振動(dòng)荷載動(dòng)力影響分析[J].鐵道科學(xué)與工程學(xué)報(bào),2018,15(11):2901-2908.
FAN X X,YANG J S,MA Y N,et al. Analysis of dynamic influ? ence of train vibration load on water rich tunnel under different wa? ter proof and drainage ways[J]. Journal of Railway Science and Engineering,2018,15(11):2901-2908.(In Chinese)
[25]李林毅,陽(yáng)軍生,王樹英,等.體外排水方式在隧道工程中的研究及應(yīng)用[J].鐵道學(xué)報(bào),2020,42(10):118-126.
LI L Y,YANG J S,WANG S Y,et al. Research and application of external drainage methodin tunnel project [J]. Journal of the China Railway Society,2020,42(10):118-126.(In Chinese)
[26]李林毅,陽(yáng)軍生,張崢,等.深埋式中心水溝排水隧道滲流場(chǎng)解析研究[J].浙江大學(xué)學(xué)報(bào)(工學(xué)版),2018,52(11):2050-2057.
LI L Y,YANG J S,ZHANG Z,et al. Analytical study of seepage field of deep-buried central ditch drainage tunnel[J]. Journal of Zhejiang University (Engineering Science),2018,52(11):2050-2057.(In Chinese)
[27]翟云芳.滲流力學(xué)[M].北京:石油工業(yè)出版社,2003:26-37.
ZHAI Y F. Seepage mechanics[ M]. Beijing:Petroleum Industry Press,2003:26-37.(In Chinese)
[28]張成平,張頂立,王夢(mèng)恕,等.高水壓富水區(qū)隧道限排襯砌注漿圈合理參數(shù)研究[J].巖石力學(xué)與工程學(xué)報(bào),2007,26(11):2270-2276.
ZHANG C P,ZHANG D L,WANG M S,et al. Study on appropri? ate parameters of grouting circle for tunnels with limiting dis ? charge ling in high water pressure and water-enriched region[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(11):2270-2276.(In Chinese)
[29]李鵬飛,張頂立,趙勇,等.海底隧道復(fù)合襯砌水壓力分布規(guī)律及合理注漿加固圈參數(shù)研究[J].巖石力學(xué)與工程學(xué)報(bào),2012,31(2):280-288.
LI P F,ZHANG D L,ZHAO Y,et al. Study on distribution law of water pressure acting on composite lining and reasonable param ? eters of grouting circle for subsea tunnel[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(2):280-288.( In Chinese)
[30]黃震,朱術(shù)云,趙奎,等.工程活動(dòng)誘發(fā)的圍巖結(jié)構(gòu)變化對(duì)隧道突涌水的影響分析[J].巖土工程學(xué)報(bào),2018,40(3):449-458.
HUANG Z,ZHU S Y,ZHAO K,et al. Influences of structural variation of host rock induced by engineering activities on water in ? rush of tunnels[J]. Chinese Journal of Geotechnical Engineering,2018,40(3):449-458.(In Chinese)
[31] 田云,陳衛(wèi)忠,田洪銘,等.考慮軟巖強(qiáng)度時(shí)效弱化的緩沖層讓壓支護(hù)設(shè)計(jì)研究[J].巖土力學(xué),2020,41( S1):237-245.
TIAN Y,CHEN W Z,TIAN H M,et al. Study on design of buffer layer yielding support considering time-effect weakening of soft rock strength[J]. Rock and Soil Mechanics,2020,41( S1):237-245.(In Chinese)
[32] 閆春嶺,丁德馨,畢忠偉,等.深埋隧道圍巖穩(wěn)定性的粘彈性力學(xué)分析[J].貴州工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2005,34(3):125-129.
YAN C L,DING D X,BI Z W,et al. Viscoelastic mechanical analysis of the stability of surrounding rock in deep tunnels [J]. Journal of Guizhou University of Technology(Natural Science Edi? tion),2005,34(3):125-129.(In Chinese)