王星果 王克華 盧建 馬猛 竇套存 郭軍 胡玉萍 曲亮
王星果(1984-),博士,副研究員,入選江蘇省第六期“333高層次人才培養(yǎng)工程”第三層次培養(yǎng)對象、揚州市第五期“英才培育計劃”優(yōu)秀鄉(xiāng)村振興人才培育對象,主要從事蛋雞遺傳育種及脂質(zhì)代謝研究工作。先后主持國家自然科學基金項目、江蘇省自然科學基金項目及揚州市科技計劃項目各1項,作為主要成員參與國家自然科學基金、國家蛋雞產(chǎn)業(yè)技術(shù)體系、江蘇省自然科學基金、江蘇省重點研發(fā)、江蘇省農(nóng)業(yè)重大新品種創(chuàng)制等科研項目20余項。獲神農(nóng)中華農(nóng)業(yè)科技獎二等獎1項,申請或授權(quán)發(fā)明專利10余件,培育國家級畜禽新品種(配套系)1個,制訂行業(yè)標準及地方標準各1項;在《Poultry Science》《Animal》《PLoS One》《中國農(nóng)業(yè)科學》《南方農(nóng)業(yè)學報》《中國家禽》等期刊上發(fā)表學術(shù)論文30余篇。
摘要:【目的】對育成期高能飼喂下開產(chǎn)與未開產(chǎn)蛋雞的肝臟進行miRNA高通量測序分析,探明高能飲食狀態(tài)下蛋雞肝臟中影響其開產(chǎn)的miRNA,為提高產(chǎn)蛋性能打下基礎。【方法】以代謝能水平為12.14 MJ/kg的高能飼糧飼喂育成期蛋雞,通過Illumina NextSeq500高通量測序平臺對開產(chǎn)與未開產(chǎn)蛋雞肝臟進行small RNA測序,使用DESeq分析miRNA表達量,并以實時熒光定量PCR進行驗證;采用miRanda對差異表達miRNA進行靶基因和靶位點預測,同時以超幾何分布對差異表達的靶基因進行GO功能注釋分析和KEGG信號通路富集分析?!窘Y(jié)果】6個樣本(3個開產(chǎn)蛋雞樣本,3個未開產(chǎn)蛋雞樣本)能注釋到的miRNA均超過300個,約占miRBase中已鑒定雞miRNA的30.00%,且前體鑒定結(jié)果顯示各樣本注釋到的miRNA有部分定位在同一前體上。與未開產(chǎn)組樣本相比,開產(chǎn)組樣本有9個miRNA表達上調(diào)、3個miRNA表達下調(diào)。其中,gga-miR-132c-5p、gga-miR-132b-5p、gga-miR-2184a-5p、gga-miR-132c-3p、gga-miR-132b-3p及gga-miR-2184a-3p屬于同一miRNA基因簇,且gga-miR-1682、gga-miR-132b-3p和gga-miR-2184a-3p等3個上調(diào)miRNA在未開產(chǎn)蛋雞樣本中不表達。通過miRanda共預測得到129個差異表達潛在靶基因,以miR-203a預測得到的靶基因最多,為32個;其次是gga-miR-2184a-5p、gga-miR-148a-5p和gga-miR-12211-5p,分別預測到30、25和23個靶基因;而miR-132c-5p預測得到的靶基因最少,僅為9個。129個靶基因顯著注釋到8條GO功能條目上,生物學過程(Biological process)主要注釋到脂質(zhì)代謝過程、細胞脂質(zhì)代謝過程、脂質(zhì)生物合成過程、磷脂生物合成過程、磷脂代謝過程、甘油磷脂生物合成過程和解剖學結(jié)構(gòu)發(fā)育,分子功能(Molecular funcion)僅注釋到1條GO功能條目,即利鈉肽受體活性,未發(fā)現(xiàn)涉及細胞組分(Cellular component)的GO功能條目;在注釋到的8條GO功能條目中有6條與脂質(zhì)代謝相關,涉及的靶基因有22個,占總潛在靶基因的17.10%。KEGG信號通路富集分析結(jié)果顯示共顯著富集到7條KEGG信號通路,其中脂肪酸降解、脂肪酸生物合成、酮體合成與降解及PPAR信號通路等4條信號通路與脂質(zhì)代謝相關?!窘Y(jié)論】育成期高能飼喂下開產(chǎn)與未開產(chǎn)蛋雞中共存在12個差異表達miRNA,涉及129個差異表達潛在靶基因,且主要富集在肝臟脂質(zhì)代謝相關過程和信號通路,說明miRNA是通過調(diào)控脂質(zhì)代謝及其相關基因表達而影響蛋雞開產(chǎn)。
關鍵詞: 蛋雞;肝臟;miRNA;育成期;高能飼糧;開產(chǎn)
中圖分類號: S831.1? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼: A 文章編號:2095-1191(2022)02-0277-10
Liver miRNA profiles of laying hens before and after reaching sexual maturity with a high energy feed during
the maturation period
WANG Xing-guo, WANG Ke-hua, LU Jian, MA Meng, DOU Tao-cun,
GUO Jun, HU Yu-ping, QU Liang
(Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu? 225125, China)
Abstract:【Objective】In the current study, the liver miRNA profiles of sexually immature and sexually mature la-ying hens fed with a high energy feed during the maturation period were compared to clarify which liver miRNAs in liver influenced sexual maturity with high energy feed. The study laid a foundation for improving egg production. 【Method】High-energy feed with 12.14 MJ/kg metabolic energy was used to feed laying hens during the maturation period. Liver miRNAs were detected by small RNA sequencing with the Illumina NextSeq500 platform in sexually mature(R) and sexual-ly immature (N) laying hens. miRNA expression was analyzed using the bioinformatics software DESeq and validated using qRT-PCR. Target genes and target sites of differentially expressed miRNAs were predicted by miRanda and the differentially targeted genes were analyzed for GO and KEGG enrichment using a hypergeometric distribution. 【Result】More than 300 miRNAs could be annotated in each of the 6 samples (3 R and 3 N), accounting for about 30.00% of the identified chicken miRNAs in miRBase. The results from precursor identification showed that some annotated miRNAs in each sample were located on the same precursor. Compared with the N group, the expression levels of 9 miRNAs in the R group were up-regulated and 3 miRNAs were down-regulated, among which gga-miR-132c-5p, gga-miR-132b-5p,gga-miR-2184a-5p, gga-miR-132c-3p, gga-miR-132b-3p and gga-miR-2184a-3p were in a miRNA cluster. In addition, 3 upregulated miRNAs in the R group, including gga-miR-1682, gga-miR-132b-3p and gga-miR-2184a-3p, were not expressed in the N group. A total of 129 target genes of the differentially expressed genes were predicted by miRanda. The number of target genes predicted for gga-miR-203a was the highest(32),gga-miR-2184a-5p, gga-miR-148a-5p and gga-miR-12211-5p showed a smaller number(30, 25 and 23, respectively) and miR-132c-5p the lowest(only 9). GO analysis of the 129 differentially targeted genes showed that there were 8 significantly enriched GO terms, including 7 biological processes: lipid metabolism, cellular lipid metabolism, lipid biosynthesis, phospholipid biosynthesis, phospholipid metabolism, glycerophospholipid biosynthesis and anatomical structure development. No cellular component terms were found and only 1 molecular function term was detected: natriuretic peptide receptor activity. In the 8 enriched GO items, 6 were related to lipid metabolism, and 22 target genes were involved, accounting for 17.10% of the 129 genes. KEGG analysis showed that there were 7 significant enriched KEGG terms, of which fatty acid degradation, fatty acid biosynthesis, synthesis and degradation of ketone bodies and PPAR signaling pathway were related to lipid metabolism. 【Conclusion】A total of 12 miRNAs are differentially expressed between sexually immature and sexually mature laying hens under a high energy feeding regime during the maturation period, involving 129 potential differentially expressed genes, which are mainly enriched in processes and pathways related to lipid metabolism in the liver. The data suggests that miRNAs affect sexual maturity of laying hens by regulating lipid metabolism and related genes.
Key words: laying hen; liver; miRNA; growing period; high energy feed; reaching sexual maturity
Foundation items: Agricultural Major New Breed Creation of Jiangsu Province (PZCZ201729); Recruit of Seed Industry Revitalization of Jiangsu Province (JBGS〔2021〕104); Special Construction of China Agriculture Research System (CARS-40-K01); Science and Technology Project of Yangzhou (YZ2021030)
0 引言
【研究意義】我國蛋雞業(yè)正在從數(shù)量增長模式向質(zhì)量提升模式轉(zhuǎn)變,亟待對蛋雞的生產(chǎn)性能進一步改善,而開展育成期蛋雞高能飼喂是提高其生產(chǎn)性能的有效措施(李永峰,2017;李娜等,2019)。肝臟是重要的能量代謝器官,且與產(chǎn)蛋性能有密切關系(李紅,2016)。miRNA作為新發(fā)現(xiàn)的一種小分子調(diào)控物質(zhì),長度18~24 nt,無蛋白編碼潛能,但可通過靶向調(diào)控功能基因的表達進而調(diào)控各種生物過程(李崇奇等,2014;謝冬微和孫健,2020;閆尊強等,2020),包括肌肉細胞的增殖與分化、骨骼肌發(fā)育階段肌纖維增殖及轉(zhuǎn)換等(孫瑞萍等,2020)。因此,對育成期高能飼喂的開產(chǎn)與未開產(chǎn)蛋雞肝臟進行miRNA及其靶基因分析,可為了解影響蛋雞開產(chǎn)的miRNA及通過調(diào)控開產(chǎn)相關miRNA靶向調(diào)節(jié)產(chǎn)蛋相關功能基因的表達打下基礎。【前人研究進展】在影響蛋雞生產(chǎn)性能的因素中以營養(yǎng)水平最重要,直接與養(yǎng)殖效益掛鉤(李飛翔等,2017),可從蛋白(Schutte and van Weerden,1978)、維生素(趙振福和曲長海,2009)、能量水平(費強,2013)及礦物質(zhì)(姚俊峰等,2016)等方面進行營養(yǎng)調(diào)控,其中能量水平調(diào)控越來越受到人們的重視(張利敏等,2012;張曉怡等,2019;方書寶等,2020;于小飛,2020)。育成期蛋雞能量調(diào)控是進行產(chǎn)蛋性能研究的主要方向,但基本都是對調(diào)控后蛋雞的表觀特征進行闡述,在使用不同能量飼料飼喂育成蛋雞的研究中發(fā)現(xiàn)高能飼喂能顯著提高其體重、體尺、產(chǎn)蛋率和屠宰性能(張李俊等,2005;袁超等,2013;鄭瑞等,2017)。肝臟在雞、鴨等家禽中是物質(zhì)代謝特別是脂質(zhì)代謝的主要器官,對育成期的能量調(diào)控起關鍵作用(劉振,2016);此外,由于雞蛋中30%的卵黃由脂質(zhì)構(gòu)成,而這些脂質(zhì)均來源于肝臟(張金偉,2009),因此肝臟脂質(zhì)代謝的快慢直接影響雞蛋卵黃形成的速度,進而影響產(chǎn)蛋率,即產(chǎn)蛋性能與肝臟存在十分密切的關系。miRNA是一類廣泛的生物調(diào)控分子,有關雞肝臟miRNA表達譜已有較多研究報道,包括生長激素處理雞肝臟miRNA表達譜(Wang et al.,2014)、雞產(chǎn)蛋高峰前后肝臟miRNA表達譜(Li et al.,2016)、育成期高能飼喂蛋雞肝臟miRNA表達譜(王星果等,2021)等,且這些研究均發(fā)現(xiàn)部分差異表達miRNA參與代謝過程,可能具有重要的生物功能。至今,關于雞肝臟miRNA的生物功能也有部分研究報道,如miR-122、miR-33、miR-223等對肝臟脂質(zhì)代謝起調(diào)控作用,且均通過對FABP5、P4HA1、FTO和DAGLA等靶基因表達的調(diào)控來實現(xiàn)(Wang et al.,2015,2019,2021;Shao et al.,2019)?!颈狙芯壳腥朦c】在育成期高能飼喂蛋雞肝臟miRNA表達譜研究中已發(fā)現(xiàn)幾個參與能量調(diào)控的miRNA,結(jié)合轉(zhuǎn)錄組信息聯(lián)合分析,證實這些miRNA是通過調(diào)控免疫和脂質(zhì)代謝過程而影響蛋雞后期產(chǎn)蛋性能(王星果等,2020,2021)。然而,在高能飼喂情況下蛋雞只仍然有開產(chǎn)早晚之分,因此有必要對其肝臟miRNA進行全面比較分析,進一步挖掘影響蛋雞開產(chǎn)的miRNA?!緮M解決的關鍵問題】選取高能飼喂育成期蛋雞,并對開產(chǎn)與未開產(chǎn)蛋雞的肝臟進行miRNA高通量測序分析,旨在探明高能飲食狀態(tài)下蛋雞肝臟中影響其開產(chǎn)的miRNA,為提高產(chǎn)蛋性能打下基礎。
1 材料與方法
1. 1 試驗動物飼養(yǎng)
選取江蘇省家禽科學研究所選育的C3蛋雞品系,1~8周齡常規(guī)飼養(yǎng),于56日齡時挑選體重相近的母雞80羽,分成8個重復,每個重復10羽;9~18周齡定量飼喂代謝能水平為12.14 MJ/kg的高能飼糧,18周齡后自由采食常規(guī)營養(yǎng)水平的飼糧。整個飼養(yǎng)過程均參照NRC標準配制試驗日糧,分9~18周齡和19周齡后2個階段配制,粉料飼喂。9~16周齡在育成雞舍四層階梯籠內(nèi)飼養(yǎng)(5羽/籠),17周齡起在產(chǎn)蛋雞舍三層階梯籠內(nèi)飼養(yǎng)(1羽/籠)。試驗期間所有蛋雞均自由飲水,并執(zhí)行常規(guī)光照和免疫等管理程序。
1. 2 small RNA高通量測序
至140日齡每個重復隨機選取開產(chǎn)蛋雞和未開產(chǎn)蛋雞各1羽,稱重后分別選取最接近平均值的3羽蛋雞,屠宰后取其肝臟,放入液氮中保存。TRIzol法提取肝臟總RNA,以Agilent 2100毛細管電泳檢測RNA質(zhì)量;采用Illumina的TruSeq小RNA樣品準備試劑盒構(gòu)建small RNA文庫,PCR擴增富集,加上測序接頭和Index部分;經(jīng)凝膠電泳純化后使用Quant-iT PicoGreen dsDNA Assay Kit對構(gòu)建的small RNA文庫進行定量,然后使用Illumina NextSeq500高通量測序平臺上機測序。
1. 3 miRNA序列分析
將測序獲得的原始數(shù)據(jù)進行接頭去除和質(zhì)量過濾,得到Clean reads,對序列長度在18 nt以上的Clean reads進行去重處理后得到Unique reads,使用Bowtie程序?qū)lean reads和Unique reads與雞參考基因組進行比對,比對上的Reads進一步分析。將上一步能比對上的Reads與miRBase中的已知miRNA成熟序列和前體序列進行比對,再次比對上的Reads則進行注釋,以注釋miRNA為單位統(tǒng)計表達量。剩余的Reads與雞參考基因組中其余的ncRNA(rRNA、tRNA、snRNA和snoRNA)進行比對及注釋。
對注釋到已知miRNA的Reads進行表達量標準化處理,采用DESeq分析差異表達miRNA,按照表達量倍數(shù)差異Fold Change>2.0或Fold Change<0.5及表達差異顯著性P<0.05篩選出差異表達miRNA。基于本課題組前期鑒定高能飼喂狀態(tài)下開產(chǎn)與未開產(chǎn)蛋雞肝臟差異表達基因,以開產(chǎn)組上調(diào)miRNA對應下調(diào)基因、下調(diào)miRNA對應上調(diào)基因,以基因mRNA的3'非編碼區(qū)(3'-UTR)為目標序列,采用miRanda對差異表達miRNA進行靶基因和靶位點預測,同時以超幾何分布對差異表達miRNA的靶基因進行GO功能注釋分析和KEGG信號通路富集分析。
1. 4 miRNA表達量驗證
采用實時熒光定量PCR驗證miRNA表達量。選取上調(diào)miRNA和下調(diào)miRNA各2個,設計特異性反轉(zhuǎn)錄引物和實時熒光定量PCR正向引物(表1),實時熒光定量PCR反向引物為通用引物。取500 ng肝臟總RNA用特異性反轉(zhuǎn)錄引物反轉(zhuǎn)錄合成cDNA,再通過熒光定量PCR儀進行實時熒光定量PCR擴增,并進行熔解曲線分析。以U6 rRNA為內(nèi)參序列,經(jīng)隨機引物反轉(zhuǎn)錄后使用U6 rRNA特異性引物進行實時熒光定量PCR擴增,并繪制熔解曲線。
2 結(jié)果與分析
2. 1 small RNA測序質(zhì)量分析結(jié)果
各樣本經(jīng)small RNA測序得到的Raw reads見表2。由表2可知,6個樣本(3個開產(chǎn)蛋雞樣本,3個未開產(chǎn)蛋雞樣本)測得的Raw reads均在千萬級別,且Clean reads/Raw reads比值較高,均在80.00%以上,說明測序效果較好,序列質(zhì)量較高。開產(chǎn)蛋雞組與未開產(chǎn)蛋雞組相比,二者的Raw reads和Clean reads數(shù)量均相當,說明兩組測序質(zhì)量相近。
2. 2 miRNA鑒定結(jié)果
各樣本的Clean reads和Unique reads與雞參考基因組及miRBase中的miRNA和前體比對后,進行注釋,得到每個樣本注釋到的miRNA及其前體(表3)。6個樣本能注釋到的miRNA均超過300個,約占miRBase中已鑒定雞miRNA的30.00%,且前體鑒定結(jié)果顯示各樣本注釋到的miRNA有部分定位在同一前體上。各樣本注釋到的Clean reads占所有Reads的比例均在50.00%左右。注釋到各非編碼RNA的Clean reads見表4,發(fā)現(xiàn)miRNA比其他幾種主要的非編碼RNA多1~3個數(shù)量級。可見,RNA質(zhì)量較高,且所測序列以miRNA為主。
2. 3 差異表達miRNA分析結(jié)果
對開產(chǎn)組樣本與未開產(chǎn)組樣本鑒定獲得的miRNA進行表達量比較分析,旨在篩選出差異表達miRNA,結(jié)果(表5)發(fā)現(xiàn),與未開產(chǎn)組樣本相比,開產(chǎn)組樣本有9個miRNA表達上調(diào)、3個miRNA表達下調(diào)。其中,gga-miR-132c-5p、gga-miR-132b-5p、gga-miR-2184a-5p、gga-miR-132c-3p、gga-miR-132b-3p及gga-miR-2184a-3p屬于同一miRNA基因簇;gga-miR-132c-5p的表達差異最明顯,相差近57倍;且gga-miR-1682、gga-miR-132b-3p和gga-miR-2184a-3p在未開產(chǎn)組未檢測出,究其原因可能是在開產(chǎn)蛋雞中具有特殊作用。挑選部分差異表達miRNA(gga-miR-132c-5p、gga-miR-2184a-5p、gga-miR-155和gga-miR-203a)進行實時熒光定量PCR驗證,結(jié)果(圖1)發(fā)現(xiàn)這4個miRNA表達量的實時熒光定量PCR檢測結(jié)果與small RNA高通量測序結(jié)果基本一致,說明差異表達miRNA分析結(jié)果較可靠。
2. 4 差異表達miRNA靶基因預測結(jié)果
本課題組前期鑒定出開產(chǎn)組樣本與未開產(chǎn)組樣本的差異表達基因494個,其中開產(chǎn)組樣本有上調(diào)基因285個、下調(diào)基因209個。運用miRanda對開產(chǎn)組樣本與未開產(chǎn)組樣本的12個差異表達miRNA進行靶基因預測,結(jié)果共預測得到129個潛在靶基因(表6)。其中,以miR-203a預測得到的靶基因最多,為32個;其次是gga-miR-2184a-5p、gga-miR-148a-5p和gga-miR-12211-5p,分別預測到30、25和23個靶基因;而miR-132c-5p預測得到的靶基因最少,僅為9個。
2. 5 差異表達miRNA靶基因功能分析結(jié)果
2. 5. 1 GO功能注釋分析 對預測得到的129個差異表達miRNA靶基因進行GO功能注釋分析,結(jié)果發(fā)現(xiàn)這129個靶基因顯著注釋到8條GO功能條目上。其中,生物學過程(Biological process)主要注釋到脂質(zhì)代謝過程(Lipid metabolic process)、細胞脂質(zhì)代謝過程(Cellular lipid metabolic process)、脂質(zhì)生物合成過程(Lipid biosynthetic process)、磷脂生物合成過程(Phospholipid biosynthetic process)、磷脂代謝過程(Phospholipid metabolic process)、甘油磷脂生物合成過程(Glycerophospholipid biosynthetic process)和解剖學結(jié)構(gòu)發(fā)育(Anatomical structure development);分子功能(Molecular function)僅注釋到1條GO功能條目,即利鈉肽受體活性(Natriuretic peptide receptor activity);未發(fā)現(xiàn)涉及細胞組分(Cellular component)的GO功能條目(圖2)。從表7可看出,在注釋到的8條GO功能條目中有6條與脂質(zhì)代謝相關,涉及的靶基因有22個,占總潛在靶基因的17.10%,其中11個靶基因(PEMT、FAR1、FADS2、MSMO1、ANGPTL3、KDSR,ENPP7、MBOAT2、FDFT1、FGF19和PTDSS1)表達上調(diào)、11個靶基因(SLC16A1、BRCA1、INPPL1、BCMO1、ACAA1、APOA1、BPNT1、ACSL1、CYP2AC1、LCAT和KIT)表達下調(diào),說明脂質(zhì)代謝是較重要的GO功能。
2. 5. 2 KEGG信號通路富集分析 對預測得到的129個差異表達miRNA靶基因進行KEGG信號通路富集分析,結(jié)果顯示顯著富集得到7條KEGG信號通路(圖3)。由表8可看出,在7條顯著富集的KEGG信號通路及其涉及靶基因中,脂肪酸降解(Fatty acid degradation)、脂肪酸生物合成(Fatty acid biosynthesis)及酮體合成與降解(Synthesis and degradation of ketone bodies)等3條信號通路與脂質(zhì)代謝相關;PPAR信號通路(PPAR signaling pathway)與內(nèi)分泌系統(tǒng)相關,同時與脂肪組織分化和脂肪代謝相關(Siersbaek et al.,2010;王璟等,2016);視黃醇代謝(Retinol metabolism)信號通路和維生素代謝相關;過氧化物酶體(Peroxisome)信號通路與分解代謝相關;纈氨酸、亮氨酸與異亮氨酸降解(Valine,leucine and isoleucine degradation)信號通路與氨基酸代謝相關,提示差異表達miRNA可能主要影響這7條KEGG信號通路,特別是脂質(zhì)代謝相關通路。
3 討論
隨著高通量測序技術(shù)的不斷進步,其應用領域逐漸廣泛,且測序結(jié)果的容量和質(zhì)量得到有效提高。本研究中small RNA測序獲得的Raw reads在10000000以上,與目前常用的small RNA測序數(shù)據(jù)量相當(孫瑞萍等,2020;Chen et al.,2021)。從Clean reads數(shù)據(jù)及其能注釋到的miRNA數(shù)據(jù)可看出,本研究的small RNA測序數(shù)據(jù)質(zhì)量及置信度均較高,可用于后續(xù)的進一步分析;其他非編碼RNA(rRNA、tRNA、snRNA和snoRNA)的所占比例也證明所測序列確實以miRNA為主。6個樣本(3個開產(chǎn)蛋雞樣本,3個未開產(chǎn)蛋雞樣本)能注釋到的miRNA均超過300個,約占miRBase中已鑒定雞miRNA的30.00%,則進一步證實miRNA在雞肝臟中的數(shù)量及含量均較多,也提示其發(fā)揮著重要作用。差異表達miRNA的實時熒光定量PCR檢測結(jié)果與small RNA高通量測序結(jié)果基本一致,說明轉(zhuǎn)錄組測序結(jié)果較可靠。對差異表達miRNA進行分析發(fā)現(xiàn),gga-miR-1682、gga-miR-132b-3p和gga-miR-2184a-3p等3個上調(diào)miRNA在未開產(chǎn)蛋雞樣本中不表達,提示其在高能飼喂蛋雞的肝臟中對蛋雞開產(chǎn)影響發(fā)揮著重要作用,但至今鮮見針對這3個miRNA的功能研究報道。此外,本研究發(fā)現(xiàn)gga-miR-132c-5p、gga-miR-132b-5p、gga-miR-2184a-5p、gga-miR-132c-3p、gga-miR-132b-3p及gga-miR-2184a-3p屬于同一miRNA基因簇,推測它們在表達和功能上具有相關性,但具體原理有待進一步探究。
以本課題組前期鑒定獲得高能飼喂下開產(chǎn)組與未開產(chǎn)組蛋雞肝臟的差異表達基因作為候選基因,進行差異表達miRNA靶基因預測,可有效縮小靶基因的預測范圍,同時提高預測陽性率,并已取得較理想的研究成果(Li et al.,2019;Yu et al.,2019;Nersisyan et al.,2020;Song et al.,2021),對gga-miR-132c-132b-2184a基因簇的靶基因預測同樣值得深入研究。在差異表達miRNA靶基因的GO功能注釋分析中,注釋到最多的是與脂質(zhì)代謝相關的GO功能條目,說明miRNA通過調(diào)控脂質(zhì)代謝相關基因進而調(diào)控這些生物學過程。本課題組前期分析育成期高能飼喂下開產(chǎn)與未開產(chǎn)蛋雞肝臟中差異表達基因的GO功能注釋情況,也發(fā)現(xiàn)大部分注釋到的GO功能條目都是與脂質(zhì)代謝相關,提示蛋雞的脂質(zhì)代謝相關過程受miRNA調(diào)控更多,與李紅(2016)的研究結(jié)果相似,即產(chǎn)蛋高峰期與產(chǎn)蛋前期蛋雞肝臟中差異表達miRNA的預測靶基因大部分與脂質(zhì)代謝相關,表明脂質(zhì)代謝與產(chǎn)蛋有直接或間接的聯(lián)系。
在KEGG信號通路富集分析中,顯著富集的KEGG信號通路均與代謝途徑相關,且以脂質(zhì)代謝相關通路為主,涉及的差異表達靶基因包括ACSBG2、FADS2、HMGCLL1、ACAA1、ACSL1、APOA1和BDH1B,且這些基因涉及脂質(zhì)代謝的多個方面。ACSBG2是一種乙酰輔酶A合成酶,參與雞的脂肪沉積(Guo et al.,2018);FADS2是一種脂肪酸脫氫酶,參與多種多不飽和脂肪酸的合成(陳興勇等,2017);HMGCLL1是類HMG輔酶A裂解酶,抑制其表達可升高膽固醇和甘油三酯水平(Perveen et al.,2020);ACAA1是乙酰輔酶A?;D(zhuǎn)移酶1,催化β-氧化途徑的關鍵酶,參與脂肪酸的延伸和降解(王延莉等,2019);ACSL1是一種長鏈乙酰輔酶A合成酶,可提高甘油三酯水平(Li et al.,2020);APOA1是載脂蛋白A1,調(diào)節(jié)高密度脂蛋白及膽固醇含量(Flores et al.,2019);BDH1B是一種羥丁酸脫氫酶,是脂肪酸降解過程中酮體降解的關鍵酶,有報道稱敲除其同源物BDH1后會導致脂肪肝形成(Otsuka et al.,2020)。除脂質(zhì)代謝相關通路,還存在與氨基酸代謝相關的KEGG信號通路,與李慧峰等(2017)對蛋雞產(chǎn)蛋前后肝臟差異表達基因的KEGG信號通路注釋分析結(jié)果一致??梢姡琺iRNA主要影響脂質(zhì)代謝相關信號通路,進而影響蛋雞開產(chǎn)。
4 結(jié)論
育成期高能飼喂下開產(chǎn)與未開產(chǎn)蛋雞中共存在12個差異表達miRNA,涉及129個差異表達潛在靶基因,且主要為肝臟脂質(zhì)代謝相關過程和信號通路,說明miRNA是通過調(diào)控脂質(zhì)代謝及其相關基因表達而影響蛋雞開產(chǎn)。
參考文獻:
陳興勇,趙寧,張燕,耿照玉. 2017. 皖西白鵝育肥期肌肉脂肪酸組成及肝PPARα、FADS2和ME1基因表達規(guī)律的研究[J]. 畜牧獸醫(yī)學報,48(10):1912-1919. [Chen X Y,Zhao N,Zhang Y,Geng Z Y. 2017. The fatty acid profile in muscles and expression of PPARa,F(xiàn)ADS2 and ME1 genes in liver of Chinese Wanxi white geese in fattening period[J]. Acta Veterinaria et Zootechnica Sinica,48(10):1912-1919.] doi:10.11843/j.issn.0366-6964.2017. 10.014.
方書寶,彭簫,王夢霖,趙曉鈺,王俊花,吳盈萍,段玉青,李海英. 2020. 飼糧能量水平對京紅蛋雞產(chǎn)蛋后期生產(chǎn)性能、蛋品質(zhì)及脂代謝的影響[J]. 飼料工業(yè),41(7):44-49. [Fang S B,Peng X,Wang M L,Zhao X Y,Wang J H,Wu Y P,Duan Y Q,Li H Y. 2020. Effects of dietary energy level on production performance,egg quality and lipid metabolism of Jinghong layers in late laying period[J]. Feed Industry,41(7):44-49.] doi:10.13302/j.cnki.fi.2020.07.008.
費強. 2013. 蛋雞產(chǎn)蛋性能下降的原因及對策[J]. 家禽科學,(2):32-33. [Fei Q. 2013. Reasons and strategies of performance decrease of laying hens[J]. Poultry Science,(2):32-33.] doi:10.3969/j.issn.1673-1085.2013.02.010.
李崇奇,沈文濤,言普,黎小瑛,周鵬. 2014. 巨桉miRNA及其靶基因生物信息學預測[J]. 南方農(nóng)業(yè)學報,45(9):1532-1538. [Li C Q,Shen W T,Yan P,Li X Y,Zhou P. 2014. Bioinformatic analysis of microRNA and their target genes in Eucalyptus grandis[J]. Journal of Southern Agri-culture,45(9):1532-1538.] doi:10.3969/j.issn.2095-1191. 2014.9.1532.
李飛翔,王文建,卞紅星,蔣輝勝. 2017. 蛋雞飼養(yǎng)管理及營養(yǎng)方面存在的誤區(qū)[J]. 中國禽業(yè)導刊,34(13):65. [Li F X,Wang W J,Bian H X,Jiang H S. 2017. Errors in ma-nagement and nutrition of laying hens[J]. Guide to Chinese Poultry,34(13):65.]
李紅. 2016. 轉(zhuǎn)錄組分析揭示雞產(chǎn)蛋期肝臟脂質(zhì)代謝調(diào)控的分子機制[D]. 鄭州:河南農(nóng)業(yè)大學. [Li H. 2016. Tanscriptome analysis reveals the molecular mechanism of hepatic lipid metabolism regulation in egg-laying hen[D]. Zhengzhou:Henan Agricultural University.]
李慧鋒,張臻,朱文進,張同玉,郭文婕,蔡永強,朱芷葳,張利環(huán). 2017. 白來航蛋雞產(chǎn)蛋前后肝轉(zhuǎn)錄組功能分析[J]. 畜牧獸醫(yī)學報,48(9):1624-1634. [Li H F,Zhang Z,Zhu W J,Zhang T Y,Guo W J,Cai Y Q,Zhu Z W,Zhang L H. 2017. Functional analysis of liver transcriptome before and after White Leghorn hen begin laying eggs[J]. Acta Veterinaria et Zootechnica Sinica,48(9):1624-1634.] doi:10.11843/j.issn.0366-6964.2017.09.007.
李娜,徐廷生,雷雪芹,劉寧,文鳳云,吳秋玨,高靈照. 2019. 盧氏綠殼蛋雞育成期適宜能量水平的研究[J]. 中國農(nóng)學通報,35(5):154-159. [Li N,Xu T S,Lei X Q,Liu N,Wen F Y,Wu Q J,Gao L Z. 2019. Appropriate energy level for Lushi green-shell egg laying pullets during growing period[J]. Chinese Agricultural Science Bulletin,35(5):154-159.] doi:10.11924/j.issn.1000-6850.casb18 010034.
李永峰. 2017. 育成期能量攝入量對蘇禽綠殼蛋雞母本早期蛋用性能的影響[D]. 北京:中國農(nóng)業(yè)科學院. [Li Y F. 2017. The impact of energy intake during growing period on early laying performance of Suqin green eggshell layer female parent[D]. Beijing:Chinese Academy of Agricultural Sciences.]
劉振. 2016. 飼糧類型對雞脂肪肝形成的影響及表觀調(diào)控機制[D]. 北京:中國農(nóng)業(yè)科學院. [Liu Z. 2016. Study of the effect of diets type on fatty liver syndrome in chicken and the underlying epigenetic mechanisms in chicken[D]. Beijing:Chinese Academy of Agricultural Sciences.]
孫瑞萍,王峰,晁哲,劉海隆,鄭心力,劉圈煒,黃麗麗,邢漫萍,魏立民. 2020. 1月齡五指山豬與長白豬骨骼肌mi-RNA轉(zhuǎn)錄組比較[J]. 江蘇農(nóng)業(yè)學報,36(3):620-625. [Sun R P,Wang F,Chao Z,Liu H L,Zheng X L,Liu Q W,Huang L L,Xing M P,Wei L M. 2020. Comparative analysis on miRNA transcriptomes of skeletal muscle between one-month-old Wuzhishan pig and Landrace[J]. Jiangsu Journal of Agricultural Sciences,36(3):620-625.] doi:10.3969/j.issn.10000-4440.2020.03.013.
王璟,白獻曉,張家慶,高彬文,陳俊峰,高原,任巧玲,馬強,郭紅霞,梁永紅,邢寶松. 2016. 去勢對淮南豬皮下脂肪PPAR信號通路基因表達量的影響[J]. 華北農(nóng)學報,31(2):92-97. [Wang J,Bai X X,Zhang J Q,Gao B W,Chen J F,Gao Y,Ren Q L,Ma Q,Guo H X,Liang Y H,Xing B S. 2016. Effect of castration on PPAR signal pathway expression in Huainan pig subcutaneous fat tissue[J]. Acta Agriculturae Boreali-Sinica,31(2):92-97.] doi:10.7668/hbnxb.2016.02.016.
王星果,盧建,關樹勇,曲亮,孫平江,郭軍,胡玉萍,竇套存,馬猛,李永峰,王克華. 2021. 高能飼糧對育成期蛋雞肝臟miRNA表達譜的影響[J]. 動物營養(yǎng)學報,33(2):1081-1090. [Wang X G,Lu J,Guan S Y,Qu L,Sun P J,Guo J,Hu Y P,Dou T C,Ma M,Li Y F,Wang K H. 2021. Effect of high energy diet on liver miRNAs of la-ying hens during growing period[J]. Chinese Journal of Animal Nutrition,33(2):1081-1090.] doi:10.3969/j.issn. 1006-267x.2021.02.048.
王星果,曲亮,竇套存,郭軍,胡玉萍,馬猛,李永峰,王克華. 2020. 育成期高能飲食對蛋雞肝臟轉(zhuǎn)錄組的影響[J]. 南方農(nóng)業(yè)學報,51(8):1864-1871. [Wang X G,Qu L,Dou T C,Guo J,Hu Y P,Ma M,Li Y F,Wang K H. 2020. Effects of high energy diet on liver transcriptome of laying hens during growing period[J]. Journal of Southern Agriculture,51(8):1864-1871.] doi:10.3969/j.issn.2095-1191. 2020.08.010.
王延莉,曹陽,梁祎凡,肖成,金花子,金海國. 2019. 乙酰輔酶A?;D(zhuǎn)移酶1基因研究進展[J]. 中國畜牧雜志,55(10):42-46. [Wang Y L,Cao Y,Liang Y F,Xiao C,Jin H Z,Jin H G. 2019. Advance in acetyl-CoA acyltransfe-rase 1 gene[J]. Chinese Journal of Animal Science,55(10):42-46.] doi:10.19556/j.0258-7033.20190115-05.
謝冬微,孫健. 2020. 不同發(fā)育時期亞麻莖稈中木質(zhì)素積累相關miRNA及其靶基因的挖掘分析[J]. 南方農(nóng)業(yè)學報,51(10):2321-2330. [Xie D W,Sun J. 2020. Mining and analysis of miRNAs and target genes related to lignin accumulation in flax stalks at different developmental stages[J]. Journal of Southern Agriculture,51(10):2321-2330.] doi:10.3969/j.issn.2095-1191.2020.10.002.
閆尊強,姜天團,孫文陽,王鵬飛,黃曉宇,楊巧麗,胡慧艷,李守湖,滾雙寶. 2020. 環(huán)狀RNA及其在豬上的研究進展[J]. 甘肅農(nóng)業(yè)大學學報,55(6):1-9. [Yan Z Q,Jiang T T,Sun W Y,Wang P F,Huang X Y,Yang Q L,Hu H Y,Li S H,Gun S B. 2020. Circular RNA and its research progress in pig[J]. Journal of Gansu Agricultural University,55(6):1-9.] doi:10.13432/j.cnki.jgsau.2020.06.001.
姚俊峰,王曉亮,黃紅梅,張飛,涂盈盈,楊長鎖. 2016. 復合礦物質(zhì)添加劑對蛋雞生產(chǎn)性能及蛋品質(zhì)的影響[J]. 中國家禽,38(24):58-59. [Yao J F,Wang X L,Huang H M,Zhang F,Tu Y Y,Yang C S. 2016. Effects of compound mineral additives on production performance and egg quality of laying hens[J]. China Poultry,38(24):58-59.] doi:10.16372/j.issn.1004-6364.2016.24.013.
于小飛. 2020. 蛋雞自配飼料的能量調(diào)控[J]. 當代畜禽養(yǎng)殖業(yè),(5):8-9. [Yu X F. 2020. Energy regulation of laying hens by self mixed feed[J]. Modern Livestock and Poultry Breeding Industry,(5):8-9.] doi:10.3969/j.issn.1005-5959.2020.05.003.
袁超,徐志剛,蔣媛婧,嚴華祥,馬婷,鄒曉庭. 2013. 新楊綠殼蛋雞育成期能量和蛋白質(zhì)的需要量[J]. 動物營養(yǎng)學報,25(4):735-742. [Yuan C,Xu Z G,Jiang Y J,Yan H X,Ma T,Zou X T. 2013. Energy and protein requirements of growing Xinyang green shell hens[J]. Chinese Journal of Animal Nutrition,25(4):735-742.] doi:10.3969/j.issn.1006-67x.2013.04.010.
張金偉. 2009. 能量來源對產(chǎn)蛋雞肝臟脂肪代謝的影響及其機制研究[D]. 雅安:四川農(nóng)業(yè)大學. [Zhang J W. 2009. Effects of dietary energy sources on lipid metabolism and deposition in the liver of laying hens[D]. Yaan:Sichuan Agricultural University.]
張李俊,魏清宇,葉紅心,李溫. 2005. 育成期白殼蛋雞不同能量飼料的試驗[J]. 養(yǎng)禽與禽病防治,(11):4-5. [Zhang L J,Wei Q Y,Ye H X,Li W. 2005. Experiment on white shell layer fed by different energy feed during growing period[J]. Poultry Husbandry and Disease Control,(11):4-5.]
張利敏,姚軍虎,董延. 2012. 產(chǎn)蛋雞粗蛋白質(zhì)與代謝能需要量研究進展與應用[J]. 飼料工業(yè),33(3):13-16. [Zhang L M,Yao J H,Dong Y. 2012. Research progress and application on crude protein and metabolic energy requirement in laying hens[J]. Feed Industry,33(3):13-16.] doi:10.3969/j.issn.1001-991X.2012.03.004.
張曉怡,馬秋剛,計成,趙麗紅,張建云. 2019. 日糧代謝能水平對“京粉1號”蛋雞產(chǎn)蛋高峰期生產(chǎn)性能的影響[J]. 中國畜牧雜志,55(7):128-131. [Zhang X Y,Ma Q G,Ji C,Zhao L H,Zhang J Y. 2019. Effects of dietary metabolizable energy level on production performance of Jingfen No.1 laying hens during peak laying period[J]. Chinese Journal of Animal Science,55(7):128-131.] doi:10.19556/j.0258-7033.2019-07-128.
趙振福,曲長海. 2009. 維生素在蛋雞生產(chǎn)中的應用[J]. 養(yǎng)殖技術(shù)顧問,(4):42. [Zhao Z F,Qu C H. 2009. Application of vitamin in laying hen production[J]. Technical Advisor for Animal Husbandry,(4):42.] doi:10.3969/j.issn.1673-1921.2009.04.041.
鄭瑞,王馨悅,馬秋剛,趙麗紅,計成,張建云. 2017. 日糧代謝能水平對“京紅1號”商品代蛋雞育成期(10~16周齡)生長性能的影響[J]. 飼料研究,(23):24-27. [Zheng R,Wang X Y,Ma Q G,Zhao L H,Ji C,Zhang J Y. 2017. Effects of dietary metabolizable energy level on growth performance of Jinghong No.1 laying hens during gro-wing period (10-16 Weeks)[J]. Feed Research,(23):24-27.] doi:10.13557/j.cnki.issn1002-2813.2017.23.006.
Chen Y L,Wan S M,Li Q,Dong X R,Diao J,Liao Q,Wang G Y,Gao Z X. 2021. Genome-wide integrated analysis revealed functions of incRNA-miRNA-mRNA interaction in growth of intermuscular bones in Megalobrama amblycephala[J]. Frontiers in Cell and Developmental Biology,8:603815. doi:10.3389/fcell.2020.603815.
Flores R,Jin X T,Chang J,Zhang C,Cogan D G,Schaefer E J,Kruth H S. 2019. LCAT,ApoD,and ApoA1 expression and review of cholesterol deposition in the cornea[J]. Biomolecules,9(12):785. doi:10.3390/biom9120785.
Guo L P,Cui H X,Zhao G P,Liu R R,Li Q H,Zheng M Q,Guo Y M,Jie W. 2018. Intramuscular preadipocytes impede differentiation and promote lipid deposition of muscle satellite cells in chickens[J]. BMC Genomics,19(1):838. doi:10.1186/s12864-018-5209-5.
Li H,Ma Z,Jia L J,Li Y M,Xu C L,Wang T A,Han R L,Jiang R R,Li Z J,Sun G R,Kang X T,Liu X J. 2016. Systematic analysis of the regulatory functions of micro-RNAs in chicken hepatic lipid metabolism[J]. Scientific Reports,6:31766. doi:10.1038/srep31766.
Li T T,Li X D,Meng H Y,Chen L L,Meng F B. 2020. ACSL1 affects triglyceride levels through the PPAR? pathway[J]. International Journal of Medical Sciences,17(6):720-727. doi:10.7150/ijms.42248.
Li Y F,Chen Y,Jin W J,F(xiàn)u S Y,Li D H,Zhang Y H,Sun G R,Jiang R R,Han R L,Li Z J,Kang X T,Li G X. 2019. Analyses of microRNA and mRNA expression profiles reveal the crucial interaction networks and pathways for regulation of chicken breast muscle development[J]. Frontiers in Genetics,10:197. doi:10.3389/fgene.2019.00197.
Nersisyan S,Shkurnikov M,Turchinovich A,Knyazev E,To-nevitsky A. 2020. Integrative analysis of miRNA and mRNA sequencing data reveals potential regulatory me-chanisms of ACE2 and TMPRSS2[J]. PLoS One,15(7):e0235987. doi:10.1371/journal.pone.0235987.
Otsuka H,Kimura T,Ago Y,Nakama M,Aoyama Y,Abdelkreem E,Matsumoto H,Ohnoshi H,Sasai H,Osawa M,Yamaguchi S,Mitchell G A,F(xiàn)ukao T. 2020. Deficiency of 3-hydroxybutyrate dehydrogenase (BDH1) in mice causes low ketone body levels and fatty liver during fas-ting[J]. Journal of Inherited Metabolic Disease,43(5):960-968. doi:10.1002/jimd.12243.
Perveen S,Ashfaq H,Shahjahan M,Manzoor A,Tayyeb A. 2020. Citrullus colocynthis regulates de novo lipid biosynthesis in human breast cancer cells[J]. Journal of Cancer Research and Therapeutics,16(6):1294-1301. doi:10. 4103/jcrt.JCRT_206_20.
Schutte J B,van Weerden E J. 1978. Requirement of the hen for sulphur-containing amino acids[J]. British Poultry Science,19(5):573-581. doi:10.1080/0007166780841 6516.
Shao F,Wang X,Yu J,Shen K,Qi C,Gu Z. 2019. Expression of miR-33 from an SREBP2 intron inhibits the expression of the fatty acid oxidation-regulatory genes CROT and HADHB in chicken liver[J]. British Poultry Science,60(2):115-124. doi:10.1080/00071668.2018.1564242.
Siersb?k R,Nielsen R,Mandrup S. 2010. PPAR? in adipocyte differentiation and metabolism—Novel insights from genome-wide studies[J]. FEBS Letter,584(15):3242-3249. doi:10.1016/j.febslet.2010.06.010.
Song P Y,Yue Q X,F(xiàn)u Q,Li X Y,Li X J,Zhou R Y,Chen XY,Tao C Y. 2021. Integrated analysis of miRNA-mRNA interaction in ovaries of Turpan black sheep du-ring follicular and luteal phases[J]. Reproduction in Domestic Animals,56(1):46-57. doi:10.1111/rda.13848.
Wang X G,Li Y F,Qu L,Guo J,Dou T C,Hu Y P,Ma M,Wang K H. 2021. Lipolytic gene DAGLA is targeted by miR-223 in chicken hepatocytes[J]. Gene,767:145184. doi:10.1016/j.gene.2020.145184.
Wang X G,Shao F,Yu J F,Jiang H L,Gong D Q,Gu Z L. 2015. microRNA-122 targets genes related to liver meta-bolism in chickens[J]. Comparative Biochemistry and Physiololy. Part B:Biochemistry and Molecular Biology,184:29-35. doi:10.1016/j.cbpb.2015.02.002.
Wang X G,Yang L,Wang H J,Shao F,Yu J F,Jiang H L,Han Y P,Gong D P,Gu Z L. 2014. Growth hormone-re-gulated mRNAs and miRNAs in chicken hepatocytes[J]. PLoS One,9(11):e112896. doi:10.1371/journal.pone. 0112896.
Wang X G,Yu J F,Shao F,Zhang Y P,Li Y Y,Lu X Y,Gong D Q,Gu Z L. 2019. microRNA-122 targets the P4HA1 mRNA and regulates its expression in chicken hepatocytes[J]. Italian Journal of Animal Science,18(1):587-593. doi:10.1080/1828051X.2018.1548912.
Yu N,Yong S,Kim H K,Choi Y L,Jung Y,Kim D,Seo J,Lee Y E,Baek D,Lee J,Lee S,Lee J E,Kim J,Kim J,Lee S. 2019. Identification of tumor suppressor miRNAs by integrative miRNA and mRNA sequencing of matched tumor-normal samples in lung adenocarcinoma[J]. Molecular Oncology,13(6):1356-1368. doi:10.1002/1878-0261.12478.
(責任編輯 蘭宗寶)