国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

增材制造多孔金屬生物材料研究綜述

2022-05-16 01:48劉昊陳靚瑜張洪岳李楠
精密成形工程 2022年5期
關(guān)鍵詞:植入物增材力學(xué)性能

劉昊,陳靚瑜,張洪岳,李楠

增材制造

增材制造多孔金屬生物材料研究綜述

劉昊,陳靚瑜,張洪岳,李楠

(江蘇科技大學(xué) 材料學(xué)院,江蘇 鎮(zhèn)江 212003)

增材制造的多孔金屬生物材料廣泛應(yīng)用于植入物骨骼等生物醫(yī)用工業(yè)領(lǐng)域,具有很大的發(fā)展?jié)摿?,目前,?duì)多孔金屬生物材料的研究主要聚焦在多孔生物材料的設(shè)計(jì)、制造與表面處理等方面。對(duì)比了不同增材制造技術(shù)的特點(diǎn),并說(shuō)明了粉床熔融技術(shù)最適合多孔金屬生物材料的制造。同時(shí),討論了不同金屬生物材料(生物惰性材料與降解材料)制造多孔生物材料的利弊,包括束基單元設(shè)計(jì)、面基單元設(shè)計(jì)和梯度設(shè)計(jì),并簡(jiǎn)要說(shuō)明了孔隙對(duì)材料性能的影響,合適的熱處理與表面改性技術(shù)會(huì)提高材料的力學(xué)性能和生物相容性。在未來(lái)的研究中,TPMS結(jié)構(gòu)與分級(jí)設(shè)計(jì)將會(huì)作為研究的重點(diǎn)。生物降解材料也需要大量研發(fā)。為了達(dá)到增強(qiáng)多孔金屬生物材料力學(xué)性能與生物相容性的要求,未來(lái)的研究方向可以從研發(fā)新型合金體系與設(shè)計(jì)表面改性方法等方面著手。

增材制造;生物惰性金屬;生物降解性材料;拓?fù)湓O(shè)計(jì);表面改性

在過(guò)去的10年里,增材制造技術(shù)已經(jīng)從單純的原型制造技術(shù)發(fā)展成可以制造功能零件與復(fù)雜形狀零件的制造技術(shù)[1]。這項(xiàng)技術(shù)可以完成對(duì)金屬[2]、聚合物[3]和陶瓷[4]的加工。AM(Additive Manufacturing)具有多個(gè)優(yōu)點(diǎn),其中最為突出的有“批量差異性”[5]和“無(wú)復(fù)雜性”[6]。綜上所述,增材制造技術(shù)可以制造形狀復(fù)雜且具有特定功能的零件,如多孔生物材料。

現(xiàn)在對(duì)生物醫(yī)用植入物的需求越來(lái)越大,如膝蓋和臀部關(guān)節(jié)植入骨骼,增材制造技術(shù)促進(jìn)了生物材料的發(fā)展。植入材料的選擇應(yīng)符合特定種植體的要求,以確保植入物的無(wú)毒和生物相容性。植入物還應(yīng)避免應(yīng)力遮蔽效應(yīng),同時(shí)滿足足夠的機(jī)械支撐和疲勞壽命等要求。傳統(tǒng)的塊體金屬生物材料有不銹鋼[7]、鈷鉻合金[8]、鈦合金[9]。鈦合金的彈性模量較小,然而也要高于人骨5~10倍[10],而且密度也要遠(yuǎn)高于人骨。如果將塊體金屬生物材料植入人體,會(huì)造成應(yīng)力遮蔽現(xiàn)象,使植入物失效。多孔結(jié)構(gòu)因?yàn)槠滟|(zhì)量輕、可以促進(jìn)骨組織的生長(zhǎng)以及彈性模量低等優(yōu)點(diǎn),可以有效促進(jìn)骨整合,避免應(yīng)力遮蔽現(xiàn)象。與此同時(shí)多孔材料具有相互連接的孔隙,相互連接的孔隙可以使多孔生物材料內(nèi)部進(jìn)行營(yíng)養(yǎng)物質(zhì)的運(yùn)輸及細(xì)胞和氧的結(jié)合[11]。相比于其他類型的生物材料,多孔生物材料具有多種優(yōu)勢(shì),其優(yōu)勢(shì)如下:在材料力學(xué)性能方面的調(diào)整具有很大的靈活性[12];多孔材料具有很大的孔隙空間,可以利用其表面進(jìn)行生物功能化;較大的孔隙空間有利于藥物在植入物中的傳遞[13]。

文中主要對(duì)近10年來(lái)多孔材料的研究現(xiàn)狀進(jìn)行回溯,主要從制造方法、使用的金屬材料、拓?fù)浣Y(jié)構(gòu)設(shè)計(jì),以及表面處理方法等方面進(jìn)行總結(jié),并且探討多孔材料在未來(lái)的發(fā)展趨勢(shì)。

1 增材制造技術(shù)

增材制造技術(shù)是通過(guò)使用CAD(Computer Aided Design)模型來(lái)制造具有3D(3 Dimensions)結(jié)構(gòu)材料的過(guò)程。增材制造技術(shù)可以滿足以高分辨率打印復(fù)雜結(jié)構(gòu)的需求,最常見(jiàn)的增材制造技術(shù)是使用聚合物細(xì)絲的熔融沉積建模(Fused Deposition Modelling),還有噴墨印刷、立體光刻與粉床熔融,其技術(shù)的原理如圖1所示[14]。目前主要有4種AM技術(shù)適用于金屬材料的制造,4種技術(shù)分別為直接能量沉積(Direc-t-e-d Energy Deposition)、分層實(shí)體制造(Laminated Object Manufacturing)、選擇性激光熔融(Selective Laser Sintering)、電子束熔融(Electron Beam Melting)[15]。金屬與合金可以使用不同的AM技術(shù)進(jìn)行加工,如用于制造人體植入物的增材制造技術(shù)可以分為2類:粉床熔融技術(shù)與直接能量沉積[16]。在上述4種AM類型中,只有選擇性激光熔融和電子束熔融技術(shù)能夠制造復(fù)雜的拓?fù)浣Y(jié)構(gòu)與精細(xì)的微結(jié)構(gòu)。上述分析表明,選擇性激光熔融和電子束熔融技術(shù)在制造金屬生物多孔材料中占主導(dǎo)。2種技術(shù)的具體差別如表1所示[17]。

圖1 增材制造的4種主要方法的示意圖[14]

直接能量沉積是直接將金屬粉末置于熔化區(qū)域內(nèi)的技術(shù)。直接能量沉積所使用的能量為激光或者電子束,該技術(shù)擁有可以使用多種材料制造器官的優(yōu)點(diǎn)。直接沉積技術(shù)包括直接金屬沉積(Direct Metal deposition)、激光工程網(wǎng)成形(Laser Engineered Net Shaping)[18]。

分層實(shí)體制造(LOM)是結(jié)合了增材與減材過(guò)程的技術(shù)。該工藝具有成本低、不需要后期處理以及支撐結(jié)構(gòu)、可建造大型零件的優(yōu)點(diǎn),缺點(diǎn)則是表面粗糙度較低[19]。這4種不同增材制造技術(shù)的具體差別如表2所示[20]。

表1 SLM與EBM參數(shù)對(duì)比[17]

Tab.1 Comparison of SLM and EBM parameters[17]

表2 常見(jiàn)金屬增材制造技術(shù)的分類與應(yīng)用[20]

Tab.2 Classification and application of common metal additive manufacturing technologies[20]

CAD設(shè)計(jì)的三維模型與增材制造制備的多孔結(jié)構(gòu)存在偏差,其制造偏差是由粉末顆粒附著在支柱上以及熔化過(guò)程中的階梯效應(yīng)所造成的。對(duì)于AM,有許多因素會(huì)影響最終零件的性能,如粉末密度、掃描速度、層厚度[21]。不同的加工方法亦可能會(huì)造成組織上的差異,從而導(dǎo)致性能上的差異,如Ti?6Al?4V,在SLM工藝條件下會(huì)產(chǎn)生脆硬相α'相,該工藝提高了Ti?6Al?4V的強(qiáng)度,但會(huì)導(dǎo)致延展性下降[22]。

Liu等[23]對(duì)比了由EBM加工而成的多孔β型Ti?24Nb?4Zr?8Sn(孔隙率為70%),在掃描速度為150、300、600、900 mm/s時(shí)彈性模量的差異。結(jié)果表明,在4種不同掃描速度下,其彈性模量分別為(0.93± 0.06)、(0.85±0.11)、(0.83±0.13)、(0.7±0.14)GPa。還發(fā)現(xiàn)在工藝條件相同的情況下,多孔型Ti?24Nb? 4Zr?8Sn的強(qiáng)度與彈性模量之比是Ti?6Al?4V的2倍。無(wú)毒且擁有較好的強(qiáng)度與彈性模量之比的多孔β型Ti?24Nb?4Zr?8Sn在未來(lái)將會(huì)有很大的發(fā)展空間。

在實(shí)際加工過(guò)程中,加工參數(shù)會(huì)對(duì)工件質(zhì)量與力學(xué)性能產(chǎn)生影響。Liu等[24]通過(guò)孔隙分布、幾何形狀的研究來(lái)確定工藝參數(shù)對(duì)生產(chǎn)精度的影響,該工作采用了500、750、1 000、1 250、1 500 mm/s這5種掃描速度,發(fā)現(xiàn)在掃描速度不同的情況下,孔隙的分布情況不同,如圖2所示。研究表明,掃描速度只會(huì)對(duì)多孔結(jié)構(gòu)建造方向的枝干厚度造成影響,隨著掃描速度的增加,枝干厚度降低。密度相同的情況下,在所有的掃描速度中,750 mm/s所形成零件的力學(xué)性能最好,這表明在制造過(guò)程中,應(yīng)注意掃描速度的選擇。

2 不同合金類型多孔材料的研究

多孔材料所使用的金屬與合金類型十分廣泛,現(xiàn)在使用的材料主要為生物惰性材料和生物降解材料。每種材料各有優(yōu)勢(shì),在實(shí)際應(yīng)用中應(yīng)合理選擇。

2.1 生物惰性金屬及其合金

在增材制造的多孔金屬生物材料中,常見(jiàn)的生物惰性材料有不銹鋼[7]、鈦合金[25]、鈷鉻合金[26]與鉭[27]。在將不銹鋼引入生物醫(yī)學(xué)行業(yè)之前,已經(jīng)制造出由純金屬制造的植入物,然而純金屬的植入物通常表現(xiàn)出較低的耐腐蝕性和機(jī)械強(qiáng)度[28]。在生物學(xué)領(lǐng)域,不銹鋼分為常規(guī)不銹鋼與無(wú)鎳不銹鋼2類。不銹鋼與鈦相比,生物相容性、骨整合性、耐腐蝕性較差,但是不銹鋼的價(jià)格較低[29]。鈦擁有較高的介電常數(shù),在鈦表面可以快速形成二氧化鈦層,二氧化鈦層具有促進(jìn)細(xì)胞融合的效用。鈦基植入物與組織之間的結(jié)合較為牢固。合金化的鈦相比于鈦擁有更高的強(qiáng)度[30]。與鈦相比,鈷基植入物具有更高的耐磨性,這使鈷基植入物常用于人工髖關(guān)節(jié)[31]。臨床上,Co?Cr?Mo是最常用的鈷基植入物之一,這是因?yàn)榇祟惡辖鹁哂懈邚?qiáng)度和良好延展性的特點(diǎn)[32]。鈷鉻合金相比于骨骼,具有更高的彈性模量、密度和剛度[33]。Co?Cr合金的生物相容性和骨整合能力也低于Ti[34]。鉭具有良好的生物相容性,甚至在酸性環(huán)境中也表現(xiàn)出良好的生物相容性與耐腐蝕性能[35]。鉭出色的抗腐蝕性歸因于在鉭的植入物表面會(huì)形成穩(wěn)定天然的Ta2O5保護(hù)膜[36]。鉭擁有十分優(yōu)越的生物相容性,然而其價(jià)格是純鈦的30多倍,而且其密度達(dá)到了16.6 kg/dm3,對(duì)其進(jìn)行機(jī)加工十分困難,其較高的彈性模量限制了鉭的使用[37],鉭的應(yīng)用十分受限。相關(guān)材料性能的具體對(duì)比如表3所示[38-56]。鈦合金因其質(zhì)量輕、強(qiáng)度高、生物相容性良好、耐腐蝕性良好等特點(diǎn)已經(jīng)廣泛用作生物材料。近些年來(lái)由AM生產(chǎn)的多孔鈦件已經(jīng)引起了相當(dāng)多的關(guān)注。例如,Wang等[57]用EBM制成的網(wǎng)狀結(jié)構(gòu)Ti?6Al?4V具有較高的比強(qiáng)度(約113 MPa)。Ti?6Al?4V因?yàn)榱W(xué)性能良好、生物相容性良好、價(jià)格低,具有十分廣泛的應(yīng)用。但相比于純鈦,Al會(huì)引起骨質(zhì)溶解、貧血以及神經(jīng)紊亂等癥狀,此外V會(huì)影響新陳代謝[58-59]。Ti?6Al?4V中的Al和V偏聚會(huì)造成細(xì)胞毒性,其生物相容性不如純鈦,疲勞性能不如鈷鉻合金。直徑相同的情況下,商業(yè)純鈦(CP?Ti)試樣的延展性約為Ti?6Al?4V試樣的3倍[60]。CP?Ti的價(jià)格要低于Ti?6Al?4V,CP?Ti的強(qiáng)度遠(yuǎn)不如Ti?6Al?4V。β鈦合金含有大量的β穩(wěn)定劑(如Mo、Ta和Zr),因此微觀結(jié)構(gòu)主要以β相為主。β鈦合金不僅具有較低的彈性模量,而且相比于其他類型鈦合金,具有良好的生物相容性[61]。由AM生產(chǎn)的具有超低彈性模量、高強(qiáng)度且無(wú)毒的β鈦合金有潛力成為下一代生物材料。Liu等[62]發(fā)現(xiàn)SLM生產(chǎn)的β型Ti?24Nb?4Zr?8Sn(Ti2448)具有良好的延展性(約14%),與人骨相近的彈性模量及低密度等特點(diǎn)。Hoffmann等[63]將SLM技術(shù)的靈活性與Ni?Ti合金的形狀記憶效應(yīng)相結(jié)合,使設(shè)計(jì)的移植物相比于傳統(tǒng)的Ti移植物更加適合骨骼修復(fù)部位的機(jī)械要求。綜上所述,先進(jìn)的Ni?Ti形狀記憶植入物能夠在植入部分施加再生機(jī)械刺激,可能對(duì)植入物融合期產(chǎn)生深遠(yuǎn)影響,從而使患者更快康復(fù)。

圖2 以不同掃描速度產(chǎn)生的每個(gè)單元的俯視圖與側(cè)視圖[24]

表3 常見(jiàn)惰性金屬生物材料力學(xué)性能

Tab.3 Mechanical properties of common inert metallic biomaterials

2.2 生物降解材料

生物降解材料是指一種在人體內(nèi)部發(fā)生降解,且降解速度保持在一定范圍內(nèi)的材料?,F(xiàn)階段研究的生物降解材料為鎂[64]、鐵[65]與鋅[66]以及它們的合金。多孔鎂的研究方向?yàn)橐浦补菚簳r(shí)替換[67],鎂所面臨的問(wèn)題為降解速度快,如果將鎂應(yīng)用于多孔結(jié)構(gòu),多孔結(jié)構(gòu)與體液發(fā)生接觸的面積較大,這會(huì)增加降解的反應(yīng)速率。Li等[67]的研究結(jié)果證明,可以使用合金化解決此問(wèn)題。Med等[68]所使用的MgZnCa表現(xiàn)出了低降解速率和高強(qiáng)度的優(yōu)點(diǎn)。稀土元素的添加可以改善鎂合金的機(jī)械強(qiáng)度和耐腐蝕性[69]。稀土鎂合金(Mg? RE,RE代表稀土元素)的生物降解速率還是令人滿意的,其中WE43(Mg?4Y?2.4Nd?3.3RE?0.5Zr)[70]被認(rèn)為很適合作為植入物[71]。Li等[67]研究了鉆石結(jié)構(gòu)的WE43,研究發(fā)現(xiàn),WE43經(jīng)過(guò)4周的生物降解,體積損失約為20%。此外根據(jù)體外實(shí)驗(yàn)所顯示的結(jié)果,WE43經(jīng)過(guò)生物降解所產(chǎn)生的細(xì)胞毒性不到25%。雖然WE43本身的表面不是理想的細(xì)胞黏附表面,然而可以通過(guò)設(shè)計(jì)涂層來(lái)彌補(bǔ)這一缺陷。現(xiàn)在對(duì)增材制造多孔鎂合金的研究也是日益增加。

相對(duì)于多孔鎂,鐵與鋅的問(wèn)題則是降解速率偏慢。多孔結(jié)構(gòu)接觸面積大這一特點(diǎn)正適合解決這一問(wèn)題。Li等[72]研究了由DMP(Direct Metal Printing)制造的多孔鐵,DMP制成的多孔鐵擁有和人骨相近的力學(xué)性能、較快的降解速度及合理的生物相容性。DMP多孔鐵基材料在骨移植領(lǐng)域有潛力成為新一代的功能降解材料。Zn基合金擁有中等降解速率,有研究通過(guò)合金化的方法提高了Zn的降解速率[73]。在Hou等[74]的研究中,Zn?3Cu的壓縮性能與降解速率都要高于純Zn,這是因?yàn)镃u在基體中發(fā)生了溶解與CuZn5第二相的析出?,F(xiàn)在對(duì)多孔鐵與多孔鋅已經(jīng)有了一定的研究。

3 多孔金屬的結(jié)構(gòu)與性能的聯(lián)系

理想的多孔金屬生物材料應(yīng)滿足以下幾個(gè)特點(diǎn):良好的生物相容性;適合細(xì)胞附著的表面與形狀;孔隙相互連接,并且利于營(yíng)養(yǎng)物質(zhì)的運(yùn)輸;力學(xué)性能與人骨相近,以減少或消除應(yīng)力遮蔽現(xiàn)象,達(dá)到人骨的承載能力,避免失效。多孔金屬材料常用于修復(fù)確定尺寸的骨缺陷,多數(shù)情況下作為承載骨。人骨在每個(gè)方向的硬度與強(qiáng)度是不同的,且沒(méi)有特別脆弱的方向[75]。理想的多孔金屬生物材料接近附近人骨的硬度,可以有效傳遞載荷,消除應(yīng)力遮蔽現(xiàn)象。多孔金屬生物材料的結(jié)構(gòu)與力學(xué)性能、生物相容性和降解速率相聯(lián)系。拓?fù)浣Y(jié)構(gòu)是由單位結(jié)構(gòu)在不同方向不斷重復(fù)構(gòu)成的,單元結(jié)構(gòu)分為2種:束基單元結(jié)構(gòu)和面基單元結(jié)構(gòu)。

3.1 束基單元結(jié)構(gòu)

束基單元結(jié)構(gòu)枝干的參數(shù)通常是固定的,而且單元結(jié)構(gòu)的形狀很少是規(guī)則的,多數(shù)為不規(guī)則形狀,如菱形十二面體結(jié)構(gòu)、鉆石結(jié)構(gòu)等。規(guī)則的單元形狀為立方結(jié)構(gòu)。束基結(jié)構(gòu)單元類型如表4所示[76]。

不同單元結(jié)構(gòu)類型會(huì)引起力學(xué)性能的差異,Liu等[77]研究了由SLM制造的3種不同單元結(jié)構(gòu)(立方結(jié)構(gòu)、優(yōu)化結(jié)構(gòu)、菱形十二面體結(jié)構(gòu))的多孔β型Ti?24Nb?4Zr?8Sn,分析了3種模型在早期形變時(shí)的能量吸收與它們的應(yīng)力分布和應(yīng)力集中特點(diǎn)。研究發(fā)現(xiàn),3種不同的結(jié)構(gòu)在應(yīng)變?yōu)?%~6%時(shí),菱形十二面體表現(xiàn)出最低的能量吸收,其原因?yàn)榱庑问骟w結(jié)構(gòu)相比于另外2種結(jié)構(gòu)所承受最大應(yīng)力最小。拓?fù)鋬?yōu)化結(jié)構(gòu)與立方體結(jié)構(gòu)擁有相近的總能量吸收,但是它們的塑性與彈性能量吸收是不同的。拓?fù)鋬?yōu)化結(jié)構(gòu)相比于立方結(jié)構(gòu)擁有較高的彈性能量吸收和較低的塑性能量吸收,造成能量吸收差異的原因?yàn)閼?yīng)力分布與應(yīng)力集中的差異。在應(yīng)變?yōu)?%時(shí),菱形十二面體最大應(yīng)力為786 MPa,拓?fù)鋬?yōu)化結(jié)構(gòu)的最大應(yīng)力為482 MPa,立方體的最大應(yīng)力為434 MPa。該團(tuán)隊(duì)[41]也對(duì)優(yōu)化拓?fù)浣Y(jié)構(gòu)進(jìn)行了分析,比較了優(yōu)化結(jié)構(gòu)與菱形十二面體結(jié)構(gòu)疲勞性能之間的差異,此外探究了裂紋萌生的方向。拓?fù)鋬?yōu)化結(jié)構(gòu)應(yīng)力多分布于水平枝干上,所以疲勞裂紋常萌生在水平枝干上。比較不同結(jié)構(gòu)的疲勞性能,優(yōu)化拓?fù)浣Y(jié)構(gòu)的疲勞性能較為優(yōu)異。優(yōu)化的拓?fù)浣Y(jié)構(gòu)擁有更高的比強(qiáng)度和比剛度[78],優(yōu)化拓?fù)浣Y(jié)構(gòu)在未來(lái)將有很大的潛力發(fā)展成最受歡迎的拓?fù)浣Y(jié)構(gòu)。在固定孔隙率的情況下,優(yōu)化的多孔結(jié)構(gòu)相比于未優(yōu)化的結(jié)構(gòu)擁有更大的體積模量和剪切模量[79]。優(yōu)化的單位結(jié)構(gòu)是通過(guò)雙向進(jìn)化結(jié)構(gòu)優(yōu)化技術(shù)(BESO)獲得的。BESO算法是在體積固定的情況下,在周期性的基本單元中尋求最佳材料分布的優(yōu)化方法[80]。常見(jiàn)的面基單位優(yōu)化結(jié)構(gòu)和束基單元優(yōu)化結(jié)構(gòu)如圖3所示。

表4 束基結(jié)構(gòu)單元類型[76]

Tab.4 Types of beam base structural units[76]

3.2 面基單元結(jié)構(gòu)

與束基單元結(jié)構(gòu)相比,面基單元結(jié)構(gòu)擁有良好的力學(xué)性能,如疲勞強(qiáng)度。對(duì)于組織再生的生物材料,孔結(jié)構(gòu)應(yīng)完全相互連通,保證細(xì)胞依附與物質(zhì)交換。曲率是影響組織再生的關(guān)鍵因素,而且相比于凸面與平面,凹面擁有較大的表面積,可以供細(xì)胞依附,其中三重周期最小曲面(Triply Periodic Minimal Surface,TPMS)的單元結(jié)構(gòu),由于其曲率特性受到越來(lái)越多的關(guān)注。Speirs等[81]的研究結(jié)果表明,TPMS存在的曲率解決了由缺陷造成的應(yīng)力集中。TPMS在3個(gè)獨(dú)立的方向呈周期性變化,曲面的平均曲率為0。TPMS多孔結(jié)構(gòu)是以最小面積的結(jié)構(gòu)單元重復(fù)而成,可以用隱函數(shù)定義,并用數(shù)學(xué)方程式表達(dá),如表5所示[82]。典型的TPMS結(jié)構(gòu)有陀螺表面、施瓦茨鉆石表面、尼奧維烏斯表面、D?prime曲面。圖4[83]為典型的陀螺結(jié)構(gòu)與鉆石結(jié)構(gòu)。TMPS結(jié)構(gòu)復(fù)雜,傳統(tǒng)的制造方法難以完成,增材制造技術(shù)解決了此項(xiàng)難題。

圖3 典型的單位優(yōu)化結(jié)構(gòu)[80]

表5 三維最小曲面(TPMS)類型與其對(duì)應(yīng)的隱函數(shù)[82]

Tab.5 Three-dimensional minimum surface (TPMS) types and their corresponding implicit functions[82]

圖4 2種三維最小曲面結(jié)構(gòu)圖[83]

3.3 拓?fù)浣Y(jié)構(gòu)的分級(jí)設(shè)計(jì)

現(xiàn)有多種方法設(shè)計(jì)拓?fù)浣Y(jié)構(gòu),最簡(jiǎn)單的方法則是保持單元結(jié)構(gòu)的類型、大小和單元常數(shù),僅改變枝干的直徑或者片狀元素的厚度,這允許在孔的孔徑與孔隙率方面創(chuàng)造階梯設(shè)計(jì),其中變化的方向可以是軸向或者是徑向,亦可以通過(guò)改變單元的尺寸來(lái)實(shí)現(xiàn)分級(jí)設(shè)計(jì),晶胞尺寸改變的方向在對(duì)角線或者軸線方向。多孔材料之所以能很好地模仿人骨,是因?yàn)槎嗫撞牧系目紫赌軌虼龠M(jìn)組織的生長(zhǎng)與體液的循環(huán)。在生物體內(nèi),多孔生物支架較高的孔隙率和較大的孔徑可產(chǎn)生較大的骨向內(nèi)生長(zhǎng)速度。與之相反,較高的孔隙率會(huì)降低支架的力學(xué)性能,因此在孔徑與孔隙率上設(shè)定了功能上限。較高的孔隙率會(huì)促進(jìn)營(yíng)養(yǎng)物質(zhì)的交換與滲透,會(huì)明顯降低結(jié)構(gòu)的強(qiáng)度,增大與人體液的接觸面積,加大腐蝕速率。Zhao等[84]研究了2種不同孔徑(500 μm、1 000 μm)的八面體結(jié)構(gòu)與四面體結(jié)構(gòu),發(fā)現(xiàn)具有較低孔徑的結(jié)構(gòu)擁有良好的壓縮性能與疲勞壽命,與之相反,500 μm孔徑的結(jié)構(gòu)與1 000 μm孔徑的結(jié)構(gòu)相比,細(xì)胞密度不高。因此可以嘗試研究分級(jí)設(shè)計(jì),以此將良好的生物相容性與力學(xué)性能相結(jié)合,完成一種性能綜合的結(jié)構(gòu),可以設(shè)計(jì)出核心孔隙率較低而外圍孔隙率較高的多孔結(jié)構(gòu),達(dá)到承載與細(xì)胞依附的優(yōu)點(diǎn)。Zhao等[85]以分級(jí)設(shè)計(jì)為原則,通過(guò)改變孔隙率與孔徑尺寸,設(shè)計(jì)出了低密度(0.5~ 2 g/cm3)、高疲勞強(qiáng)度與高能量吸收能力的多孔結(jié)構(gòu),分級(jí)設(shè)計(jì)將作為多孔結(jié)構(gòu)設(shè)計(jì)的一個(gè)發(fā)展方向。最為困難的結(jié)構(gòu)設(shè)計(jì)則是通過(guò)改變單元結(jié)構(gòu)類型的方式,將不同類型的結(jié)構(gòu)進(jìn)行連接的設(shè)計(jì)。如圖5所示,圖5將G7結(jié)構(gòu)與立方體結(jié)構(gòu)進(jìn)行連接,然后重復(fù)進(jìn)行[86],該結(jié)構(gòu)的設(shè)計(jì)具有一定挑戰(zhàn)性。優(yōu)化后的結(jié)構(gòu)較為復(fù)雜,可以使用增材制造技術(shù)制造。Li等[87]開(kāi)發(fā)了共型各向異性設(shè)計(jì)與優(yōu)化結(jié)構(gòu)的設(shè)計(jì)。首先,分布式單元結(jié)構(gòu)密度逐漸變化,從而使每個(gè)組件相互適應(yīng)。其次,每個(gè)單元結(jié)構(gòu)的取向都沿著主應(yīng)力的方向,使晶格結(jié)構(gòu)擁有最大的力學(xué)性能。不同密度區(qū)域中單位晶格結(jié)構(gòu)的尺寸尺度不同,這反過(guò)來(lái)有助于提高整體剛度。

3.4 拓?fù)浣Y(jié)構(gòu)的各向異性對(duì)性能的影響

結(jié)構(gòu)單元取向的各向異性會(huì)導(dǎo)致其力學(xué)性能發(fā)生變化[88],Wei?mann等[89]研究了SLM制備的Ti-6Al-4V在不同方向的力學(xué)性能。結(jié)構(gòu)單元取向會(huì)對(duì)整體結(jié)構(gòu)的力學(xué)性能產(chǎn)生影響,結(jié)構(gòu)單元方向的改變會(huì)導(dǎo)致整體結(jié)構(gòu)的力學(xué)性能發(fā)生改變,這主要是因?yàn)榻Y(jié)構(gòu)單元的幾何條件發(fā)生了變化,特別是長(zhǎng)度比,而且支柱在制造過(guò)程中的方向和相對(duì)于影響力的位置也會(huì)影響整體結(jié)構(gòu)的力學(xué)性能。Torres?Sanchez等[90]使用EBM制成了螺旋狀Ti?6Al?4V,相比于建造方向,垂直建造的方向擁有較高的屈服強(qiáng)度與彈性模量,這取決于支架結(jié)構(gòu)各向異性的比率,具有最小結(jié)構(gòu)單元的支架表現(xiàn)出最高的各向異性,而具有最大結(jié)構(gòu)單元的支架在不同條件下的力學(xué)性能變化最小[90]。在進(jìn)行多孔結(jié)構(gòu)設(shè)計(jì)時(shí),各向異性也應(yīng)作為設(shè)計(jì)的一項(xiàng)重要因素。

圖5 分級(jí)設(shè)計(jì)結(jié)構(gòu)示意圖[86]

4 熱處理與表面改性

AM制備的多孔金屬生物材料可以通過(guò)熱處理與表面改性技術(shù)改善工件的微觀結(jié)構(gòu)、力學(xué)性能、表面質(zhì)量和生物相容性。熱處理可以改變材料的微觀組織結(jié)構(gòu),釋放殘余應(yīng)力,改善材料的力學(xué)性能,降低力學(xué)性能的各向異性[91]。高溫與高壓相結(jié)合的熱等靜壓技術(shù)(Hot Isostatic Pressing)可以封閉AM所產(chǎn)生的孔洞,提高致密度,從而提高工件的力學(xué)性能[92]。適當(dāng)?shù)臒崽幚砜梢院艽蟪潭忍岣逜M所制造材料的力學(xué)性能。Sallica?Leva等[93]將SLM制成的多孔Ti?6Al?4V進(jìn)行退火處理,研究發(fā)現(xiàn),經(jīng)過(guò)退火處理后,試樣的硬度與強(qiáng)度明顯下降,但是延展率明顯增強(qiáng),這主要?dú)w因于α相轉(zhuǎn)化為α相。

表面改性在增強(qiáng)表面生物活性方面起著重要作用,特別是生物活性和生物相容性。為了確保合金植入物與骨骼相互連接,表面改性對(duì)提高移植器官的生物相容性起著很大的作用,可以通過(guò)各種技術(shù)實(shí)現(xiàn)植入物表面改性與活化,例如等離子噴涂、電弧氧化、物理與化學(xué)氣相沉積、離子注入與氧化、電化學(xué)氧化、表面機(jī)械加工、酸性與堿性蝕刻。酸堿法不僅可以使多孔材料形成足夠的抗壓強(qiáng)度,還可以在其表面形成納米結(jié)構(gòu)與活化結(jié)構(gòu),以此來(lái)用于骨修復(fù)和骨整合[94]。多孔結(jié)構(gòu)的大表面積可以使用表面生物功能化處理,提高骨骼再生能力,常用的生物功能化表面處理有酸堿處理、堿金屬熱處理及陽(yáng)極氧化處理,3種表面處理對(duì)磷石灰的形成有很大的影響。Yavari等[95]對(duì)3種表面處理方式進(jìn)行了深入研究,發(fā)現(xiàn)它們引起的反應(yīng)是不同的。酸堿處理提高了磷灰石的形成能力,同時(shí)不影響生物材料體外細(xì)胞反應(yīng)。相比之下,陽(yáng)極氧化顯著改善了體外細(xì)胞反應(yīng),但是不影響磷石灰的形成能力。相比于酸堿處理,陽(yáng)極氧化擁有更好的機(jī)械穩(wěn)定性,其再生骨的體積明顯小于酸堿處理。AM制造鈦合金的表面形貌取決于加工過(guò)程,AM的加工方式會(huì)導(dǎo)致工件表面粗糙并且存在殘留的粉末顆粒。這些松散連接的粉末顆??梢酝ㄟ^(guò)噴砂或者其他表面處理去除。如圖6所示[96],通過(guò)SLM制成的螺旋結(jié)構(gòu)的Ti?6Al?4V表面存在許多附著的金屬粉末顆粒,在經(jīng)過(guò)噴砂與熱處理之后,發(fā)現(xiàn)多孔結(jié)構(gòu)枝干上的粉末顆粒明顯減少,但會(huì)產(chǎn)生許多大小不等的微小裂紋,在經(jīng)過(guò)HCl改性后,獲得了平滑與相對(duì)均勻的表面,最后通過(guò)NaOH去誘導(dǎo)磷灰石的形成。Pyka等[97]使用酸性蝕刻與電化學(xué)拋光相結(jié)合的方法清理了SLM制成的多孔Ti?6Al?4V表面的粉末顆粒,并改善了表面的粗糙度與均勻性,但發(fā)現(xiàn)其枝干厚度明顯下降,強(qiáng)度明顯下降,經(jīng)過(guò)化學(xué)蝕刻與電化學(xué)拋光8 min(CHE?ECP?8)得到的樣品強(qiáng)度下降了約50%。經(jīng)過(guò)上述的表面改性方法,雖然樣品得到了更加光滑的表面,相反支架平均支柱厚度減少了22%,使力學(xué)性能下降。多孔結(jié)構(gòu)的表面處理可以分為2種方式:表面腐蝕與表面涂層。電泳沉積技術(shù)為典型的表面涂層技術(shù),可以產(chǎn)生均勻、完整的涂層,使其適合功能化的多孔結(jié)構(gòu)。Gorgin等[98]開(kāi)發(fā)了一種含有絲素蛋白、磷酸三鈣(TCP)和萬(wàn)古霉素的多功能涂料,通過(guò)電泳沉積包被在直接打印的多孔鈦支架上,可以有效預(yù)防細(xì)菌,并促進(jìn)支架中的細(xì)胞向成骨分化。陽(yáng)極氧化則可以有效控制多孔結(jié)構(gòu)表面的形貌,使用該工藝可以在支架表面生成納米結(jié)構(gòu),產(chǎn)生的納米管擁有良好的生物穩(wěn)定性[99]。

圖6 SLM制造的Ti?6Al?4V螺旋形格子結(jié)構(gòu)表面的SEM圖像[96]

5 挑戰(zhàn)與未來(lái)的發(fā)展趨勢(shì)

目前增材制造多孔金屬生物材料還有很多問(wèn)題需研究。金屬AM技術(shù)預(yù)計(jì)會(huì)在未來(lái)幾年內(nèi)保持增長(zhǎng)的趨勢(shì),根本原因?yàn)锳M技術(shù)具有高效率、適應(yīng)制造醫(yī)療設(shè)備需求的特點(diǎn)。粉床熔融技術(shù)作為先進(jìn)的AM技術(shù)之一,可用于制造高質(zhì)量的金屬模型,在金屬移植器官的制造上,擁有很大的潛力。SLM與EBM已經(jīng)應(yīng)用于生物材料的研究制備。人類有些骨骼的機(jī)械與生物特性還有待確定,應(yīng)該建立一個(gè)全面并且可靠的數(shù)據(jù)庫(kù),該數(shù)據(jù)庫(kù)還應(yīng)該包含不同年齡與不同性別的信息。拓?fù)浣Y(jié)構(gòu)的優(yōu)化設(shè)計(jì)將會(huì)是研究多孔結(jié)構(gòu)的重要方向,TPMS這種新型的結(jié)構(gòu)可以支持細(xì)胞活性并提供優(yōu)越的力學(xué)性能,TPMS結(jié)構(gòu)應(yīng)該引起關(guān)注。對(duì)于TPMS結(jié)構(gòu),曲率將作為以后研究的重點(diǎn)。拓?fù)浣Y(jié)構(gòu)的梯度設(shè)計(jì)、不同單元結(jié)構(gòu)的相互連接、尺寸變化的拓?fù)湓O(shè)計(jì)可以將生物相容性與良好的力學(xué)性能相結(jié)合。另外,需要研發(fā)大量可降解材料。目前對(duì)此類材料數(shù)量和性質(zhì)的研究極其有限。對(duì)AM制造的多孔金屬生物材料的生物功能化需要進(jìn)一步的研究,以解決植入物與骨骼的連接和植入物相關(guān)的感染,從而為滿足的臨床需求提供新的解決方案。為了達(dá)到增強(qiáng)多孔金屬生物材料力學(xué)性能與生物相容性的要求,未來(lái)的研究方向可以從研發(fā)新型合金體系與設(shè)計(jì)表面改性方法等方面著手。

[1] 湯海波, 吳宇, 張述泉, 等. 高性能大型金屬構(gòu)件激光增材制造技術(shù)研究現(xiàn)狀與發(fā)展趨勢(shì)[J]. 精密成形工程, 2019, 11(4): 58-63.

TANG Hai-bo, WU Yu, ZHANG Shu-quan, et al. Research Status and Development Trendof High Performance Large Metallic Components by Laser Additive Manufacturing Technique[J]. Journal of Netshape Forming Engineering, 2019, 11(4): 58-63.

[2] 謝瑞山, 陳高強(qiáng), 史清宇. 金屬增材制造零件變形研究現(xiàn)狀[J]. 精密成形工程, 2019, 11(4): 15-20.

XIE Rui-shan, CHEN Gao-qiang, SHI Qing-yu. Review on the Thermal Distortion in Metal Additive Manufacturing[J]. Journal of Netshape Forming Engineering, 2019, 11(4): 15-20.

[3] LIGON S C, LISKA R, STAMPFL J, et al. Polymers for 3D Printing and Customized Additive Manufacturing[J]. Chemical Reviews, 2017, 117(15): 10212-10290.

[4] Seitz H, Rieder W, Irsen S, et al. Three-Dimen-sional Printing of Porous Ceramic Scaffolds for Bone Tissue Engineering[J]. Journal of Biomedical Materials Resarch Part B Applied Biomaterials, 2005, 74(2): 782-788.

[5] 鄧懷波, 陳玉華, 陳偉, 等. 銅合金增材制造技術(shù)研究進(jìn)展[J]. 精密成形工程, 2018, 10(5): 95-101.

DENG Huai-bo, CHEN Yu-hua, CHEN Wei, et al. Research Progress in Additive Manufacturing Technology of Copper Alloy[J]. Journal of Netshape Forming Engineering, 2018, 10(5): 95-101.

[6] ZADPOOR A A. Design for Additive Bio-Manu-fa-cturing: From Patient-Specific Medical Devices to Rationally Designed Meta-Biomaterials[J]. International Journal of Molecular Sciences, 2017, 18(8): 1607.

[7] 舒宗富, 黃春平, 林鑫, 等. 鋼的激光增材制造研究進(jìn)展及前景展望[J]. 精密成形工程, 2019, 11(4): 81-88.

SHU Zong-fu, HUANG Chun-ping, LIN Xin, et al. Research Progress and Prospect of Laser Additive Manufacturing of Steel[J]. Journal of Netshape Forming Engineering, 2019, 11(4): 81-88.

[8] 梁莉, 陳偉, 喬先鵬, 等. 鈷基高溫合金增材制造研究現(xiàn)狀及展望[J]. 精密成形工程, 2018, 10(5): 102- 106.

LIANG Li, CHEN Wei, QIAO Xian-peng, et al. Research Status and Prospect of Cobalt Based Superalloy Additive Manufacturing[J]. Journal of Netshape Forming Engineering, 2018, 10(5): 102-106.

[9] 許明方, 陳玉華, 鄧懷波, 等. 超聲輔助CMT電弧增材制造TC4鈦合金微觀組織和力學(xué)性能研究[J]. 精密成形工程, 2019, 11(5): 142-148.

XU Ming-fang, CHEN Yu-hua, DENG Huai-bo, et al. Microstructure and Mechanical Properties of TC4 Titanium Alloy Made by UVA-CMT WAAM[J]. Journal of Netshape Forming Engineering, 2019, 11(5): 142-148.

[10] LONG M, RACK H J. Titanium Alloys in Total Joint Replacement-a Materials Science Perspective[J]. Biomaterials, 1998, 19(18): 1621-1639.

[11] KARANDE T S, ONG J L, AGRAWAL C M. Diffusion in Musculoskeletal Tissue Engineering Scaffolds: Design Issues Related to Porosity, Permeability, Architecture, and Nutrient Mixing[J]. Annals of Biomedical Engineering, 2004, 32(12): 1728-1743.

[12] LI S J, XU Q S, WANG Z, et al. Influence of Cell Shape on Mechanical Properties of Ti-6Al-4V Meshes Fabricated by Electron Beam Melting Method[J]. Acta Biomaterialia, 2014, 10(10): 4537-4547.

[13] VAN DER STOK J, KOOLEN M K E, DE MAAT M P M, et al. Full Regeneration of Segmental Bone Defects Using Porous Titanium Implants Loaded with BMP-2 Containing Fibrin Gels[J]. European Cells & Materials, 2015, 29: 141-153.

[14] WANG Xin, JIANG Man, ZHOU Zuo-wan, et al. 3D Printing of Polymer Matrix Composites: A Review and Prospective[J]. Composites, Part B Engineering, 2017, 110B(2): 442-458.

[15] Gokuldoss P K, Kolla S, Eckert J. Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting-Selection Guidelines[J]. Materials, 2017, 10(6): 672.

[16] Pa?ka K, Pokrowiecki R. Porous Titanium Implants: A Review[J]. Advanced Engineering Materials, 2018, 20(5): 1700648.

[17] Bhavar V, Kattire P, Patil V, et al. A Review on Powder Bed Fusion Technology of Metal Additive Manufacturing[J]. Additive Manufacturing Handbook, 2017: 251-253.

[18] Gibson I, Rosen D, Stucker B. Directed Energy Deposition Processes[M]. Additive Manufacturing Technologies, 2015: 245-268.

[19] Wong K V, Hernandez A. A Review of Additive Manufacturing[J]. ISRN Mechanical Engineering, 2012, 2012: 208760.

[20] Ngo T D, Kashani A, Imbalzano G, et al. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges[J]. Composites Part B: Engineering, 2018, 143: 172-196.

[21] Pandithevan P, Saravana Kumar G. Reconstruction of Subject-Specific Human Femoral Bone Model with Cortical Porosity Data Using Macro-CT[J]. Virtual and Physical Prototyping, 2009, 4(3): 115-129.

[22] SALLICA-LEVA E, CARAM R, JARDINI A L, et al. Ductility Improvement Due to Martensite Α' Decomposition in Porous Ti-6Al-4V Parts Produced by Selective Laser Melting for Orthopedic Implants[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54: 149-158.

[23] LIU Yu-jing, LI Shu-jun, HOU Wen-tao, et al. Electron Beam Melted Beta-Type Ti-24Nb-4Zr-8Sn Porous Structures with High Strength-to-Modulus Ratio[J]. Journal of Materials Science & Technology, 2016(6): 505-508.

[24] Liu Y, Li X, Zhang L C, et al. Processing and Properties of Topologically Optimised Biomedical Ti-24Nb- 4Zr-8Sn Scaffolds Manufactured by Selective Laser Melting[J]. Materials Science and Engineering: A, 2015, 642: 268-278.

[25] GUO Tian-qi, GULATI K, ARORA H, et al. Orchestrating Soft Tissue Integration at the Transmucosal Region of Titanium Implants[J]. Acta Biomaterialia, 2021, 124: 33-49.

[26] Wang K K, Berlin R M, Gustavson L J. A Dispersion Strengthened Co-Cr-Mo Alloy for Medical Implants[M]. ASTM International, 1999: 89-97.

[27] QIAN Hu, LEI Ting, LEI Peng-fei, et al. Additively Manufactured Tantalum Implants for Repairing Bone Defects: A Systematic Review[J]. Tissue Engineering Part B, Reviews, 2021, 27(2): 166-180.

[28] UHTHOFF H K, POITRAS P, BACKMAN D S. Internal Plate Fixation of Fractures: Short History and Recent Developments[J]. Journal of Orthopaedic Science, 2006, 11(2): 118-126.

[29] Sumita M. Present Status and Future Trend of Metallic Materials Used in Orthopedics[J]. Orthop Surg, 1997(48): 927-934.

[30] ZHAO Xiao-li, NIINOMI M, NAKAI M, et al. Development of High Zr-Containing Ti-Based Alloys with Low Young's Modulus for Use in Removable Implants[J]. Materials Science & Engineering C, 2011, 31(7): 1436-1444.

[31] Alvarez-Vera M, Ortega-Saenz J A, Hernandez-Rodríguez M a L. A Study of the Wear Performance in a Hip Simulator of a Metal-Metal Co-Cr Alloy with Different Boron Additions[J]. Wear, 2013, 301(1): 175-181.

[32] NIINOMI M. Recent Metallic Materials for Biomedical Applications[J]. Metallurgical and Materials Transactions A, 2002, 33(3): 477-486.

[33] LI Yu-hua, YANG Chao, ZHAO Hai-dong, et al. New Developments of Ti-Based Alloys for Biomedical Applications[J]. Materials, 2014, 7(3): 1709-1800.

[34] NAYAK S, BHUSHAN B, JAYAGANTHAN R, et al. Strengthening of Mg Based Alloy through Grain Refin-ement for Orthopaedic Application[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 59: 57-70.

[35] SANSON N R, MIRIAM R K, BRUNO M C E. Growth and Electrochemical Stability of Compact Tantalum Oxides Obtained in Different Electrolytes for Biomedical Applications[J]. Materials Research, 2015, 18(2): 91-97.

[36] WANG Na, LI Hong-yi, WANG Jin-shu, et al. Study on the Anticorrosion, Biocompatibility, and Osteoinductivity of Tantalum Decorated with Tantalum Oxide Nanotube Array Films[J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4516-4523.

[37] BALLA V K, BANERJEE S, BOSE S, et al. Direct Laser Processing of a Tantalum Coating on Titanium for Bone Replacement Structures[J]. Acta Biomaterialia, 2010, 6(6): 2329-2334.

[38] ATTAR H, CALIN M, ZHANG L C, et al. Manufacture by Selective Laser Melting and Mechanical Behavior of Commercially Pure Titanium[J]. Materials Science & Engineering A, 2014, 593: 170-177.

[39] MARI K, KELLY M, LILLY G, et al. Evaluation of Titanium Alloy Fabricated Using Electron Beam Melting System for Dental Applications[J]. Journal of Materials Processing Tech, 2011, 211(8): 1400-1408.

[40] VRANCKEN B, THIJS L, KRUTH J P, et al. Heat Treatment of Ti6Al4V Produced by Selective Laser Melting: Microstructure and Mechanical Properties[J]. Journal of Alloys and Compounds, 2012, 541: 177-185.

[41] Abdelaal O A, Darwish S M. Fabrication of Tissue Engineering Scaffolds Using Rapid Prototyping Techniques[J]. World Academy of Science, Engineering and Technology, 2011, 59: 577-585.

[42] Zhai Y, Galarraga H, Lados D A. Microstructure Evolution, Tensile Properties, and Fatigue Damage Mechanisms in Ti-6Al-4V Alloys Fabricated by Two Additive Manufacturing Techniques[J]. Procedia Engineering, 2015, 114: 658-666.

[43] Ho W F. A Comparison of Tensile Properties and Corrosion Behavior of Cast Ti-7.5Mo with c.p. Ti, Ti-15Mo and Ti-6Al-4V alloys[J]. Journal of Alloys and Compounds, 2008, 464(1): 580-583.

[44] ZHANG L C, KLEMM D, ECKERT J, et al. Manufacture by Selective Laser Melting and Mechanical Behavior of a Biomedical Ti-24Nb-4Zr-8Sn Alloy[J]. Scripta Materialia, 2011, 65(1): 21-24.

[45] Hernandez J, Li S J, Martinez E, et al. Microstructures and Hardness Properties for β-Phase Ti-24Nb- 4Zr-7.9Sn Alloy Fabricated by Electron Beam Melting[J]. Journal of Materials Science & Technology, 2013, 29(11): 1011-1017.

[46] Li S J, Cui T C, Hao Y L, et al. Fatigue Properties of a Metastable β-Type Titanium Alloy with Reversible Phase Transformation[J]. Acta Biomaterialia, 2008, 4(2): 305-317.

[47] Wang J C, Liu Y J, Qin P, et al. Selective Laser Melting of Ti-35Nb Composite from Elemental Powder Mixture: Microstructure, Mechanical Behavior and Corrosion Behavior[J]. Materials Science and Engineering: A, 2019, 760: 214-224.

[48] Fu J, Hu Z, Song X, et al. Micro Selective Laser Melting of NiTi Shape Memory Alloy: Defects, Microstructures and Thermal/Mechanical Properties[J]. Optics & Laser Technology, 2020, 131: 106374.

[49] PRASHANTH K G, SCUDINO S, CHATTERJEE R P, et al. Additive Manufacturing: Reproducibility of Metallic Parts[J]. Technologies, 2017, 5(1): 8.

[50] SONG Chang-hui, YANG Yong-qiang, WANG Yun-da, et al. Research on Rapid Manufacturing of CoCrMo Alloy Femoral Component Based on Selective Laser Melting[J]. The International Journal of Advanced Manufacturing Technology, 2014, 75(1): 445-453.

[51] Kircher R S, Christensen A M, Wurth K W, et al. Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications[C]// 2009 International Solid Freeform Fabrication Symposium, University of Texas at Austin, 2009: 428-436.

[52] SPIERINGS A B, STARR T L, WEGENER K. Fatigue Performance of Additive Manufactured Metallic Parts[J]. Rapid Prototyping Journal, 2013, 19(2): 88-94.

[53] ZHONG Yuan, R?NNAR L E, LIU Lei-feng, et al. Additive Manufacturing of 316L Stainless Steel by Electron Beam Melting for Nuclear Fusion Applications[J]. Journal of Nuclear Materials, 2017, 486: 234-245.

[54] SABOORI A, PAVESE M, BADINI C, et al. Effect of Sample Preparation on the Microstructural Evaluation of Al-GNPS Nanocomposites[J]. Metallography, Microstructure, and Analysis, 2017, 6(6): 619-622.

[55] R?TTGER A, BOES J, THEISEN W, et al. Microstructure and Mechanical Properties of 316L Austenitic Stainless Steel Processed by Different SLM Devices[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(3): 769-783.

[56] SAEIDI K, GAO X, LOFAJ F, et al. Transformation of Austenite to Duplex Austenite-Ferrite Assembly in Annealed Stainless Steel 316L Consolidated by Laser Melting[J]. Journal of Alloys and Compounds, 2015, 633: 463-469.

[57] WANG Di, YANG Yong-qiang, LIU Rui-cheng, et al. Study on the Designing Rules and Processability of Porous Structure Based on Selective Laser Melting (SLM)[J]. Journal of Materials Processing Tech, 2013, 213(10): 1734-1742.

[58] HAVLIKOVA J, STRASKY J, VANDROVCOVA M, et al. Innovative Surface Modification of Ti-6Al-4V Alloy with a Positive Effect on Osteoblast Proliferation and Fatigue Performance[J]. Materials Science & Engineering C, 2014, 39: 371-379.

[59] BIRCH M A, JOHNSON-LYNN S, NOURAEI S, et al. Effect of Electrochemical Structuring of Ti6Al4V on Osteoblast Behaviour in Vitro[J]. Biomedical Materials, 2012, 7(3): 035016.

[60] LIU Y J, REN D C, LI S J, et al. Enhanced Fatigue Characteristics of a Topology-Optimized Porous Titanium Structure Produced by Selective Laser Melting[J]. Additive Manufacturing, 2020, 32(C): 101060.

[61] CHEN Liang-yu, CUI Yu-wei, ZHANG Lai-chang. Recent Development in Beta Titanium Alloys for Biomedical Applications[J]. Metals, 2020, 10(9): 1139.

[62] LIU Y J, WANG H L, LI S J, et al. Compressive and Fatigue Behavior of Beta-Type Titanium Porous Structures Fabricated by Electron Beam Melting[J]. Acta Materialia, 2017, 126: 58-66.

[63] Hoffmann W, Bormann T, Rossi A, et al. Rapid Prototyped Porous Nickel-Titanium Scaffolds as Bone Substitutes[J]. Journal of Tissue Engineering, 2014, 5: 1-14.

[64] WITTE F. The History of Biodegradable Magnesium Implants: A Review[J]. Acta Biomaterialia, 2010, 6(5): 1680-1692.

[65] ZHANG Er-lin, CHEN Hai-yan, SHEN Feng. Biocorrosion Properties and Blood and Cell Compatibility of Pure Iron as a Biodegradable Biomaterial[J]. Journal of Materials Science: Materials in Medicine, 2010, 21(7): 2151-2163.

[66] Katarivas L G, Goldman J, Aghion E. The Prospects of Zinc as a Structural Material for Biodegradable Implants-A Review Paper[J]. Metals, 2017, 7(10):402.

[67] LI Y, ZHOU J, PAVANRAM P, et al. Additively Manufactured Biodegradable Porous Magnesium[J]. Acta Biomaterialia, 2018, 67: 378-392.

[68] MED F W D, REIFENRATH J, MüLLER P P, et al. Cartilage Repair on Magnesium Scaffolds Used as a Subchondral Bone Replacement[J]. Materialwissenschaft Und Werkstofftechnik, 2006, 37(6): 504-508.

[69] LI Zhen, SUN Shi-zhao, CHEN Min-fang, et al. In Vitro and in Vivo Corrosion, Mechanical Properties and Biocompatibility Evaluation of MgF2-Coated Mg-Zn-Zr Alloy as Cancellous Screws[J]. Materials Science & Engineering C, Materials for Biological Applications, 2017, 75: 1268-1280.

[70] Rzychoń T, Kielbus A. Microstructure of WE43 Casting Magnesium Alloy[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2007,21(1): 31-34.

[71] DI M C, GRIFFITHS H, GOKTEKIN O, et al. Drug-Eluting Bioabsorbable Magnesium Stent[J]. Journal of Interventional Cardiology, 2004, 17(6): 391-395.

[72] LI Y, JAHR H, LIETAERT K, et al. Additively Manufactured Biodegradable Porous Iron[J]. Acta Biomaterialia, 2018, 77: 380-393.

[73] YANG Hong-tao, JIA Bo, ZHANG Ze-chuan, et al. Alloying Design of Biodegradable Zinc as Promising Bone Implants for Load-Bearing Applications[J]. Nature Communications, 2020, 11(1): 401.

[74] Hou Y, Jia G, Yue R, et al. Synthesis of Biodegradable Zn-Based Scaffolds Using NaCl Templates: Relationship Between Porosity, Compressive Properties and Degradation Behavior[J]. Materials Characterization, 2018, 137: 162-169.

[75] BERNARD S, GRIMAL Q, LAUGIER P. Accurate Measurement of Cortical Bone Elasticity Tensor with Resonant Ultrasound Spectroscopy[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 18: 12-19.

[76] CHANTARAPANICH N, PUTTAWIBUL P, SUCHAR-ITP--WATSKUL S, et al. Scaffold Library for Tissue Engineering: A Geometric Evaluation[J]. Computational and Mathematical Methods in Medicine, 2012, 2012: 407805.

[77] Liu Y J, Li S J, Zhang L C, et al. Early Plastic Deformation Behaviour and Energy Absorption in Porous β-Type Biomedical Titanium Produced by Selective Laser Melting[J]. Scripta Materialia, 2018, 153: 99-103.

[78] Challis V J, Xu X, Zhang L C, et al. High Specific Strength and Stiffness Structures Produced Using Selective Laser Melting[J]. Materials & Design, 2014, 63: 783-788.

[79] WANG Xiao-jian, XU Shan-qing, ZHOU Shi-wei, et al. Topological Design and Additive Manufacturing of Porous Metals for Bone Scaffolds and Orthopaedic Implants: A Review[J]. Biomaterials, 2016, 83: 127-141.

[80] HUANG X, RADMAN A, XIE Y M. Topological Design of Microstructures of Cellular Materials for Maximum Bulk or Shear Modulus[J]. Computational Materials Science, 2011, 50(6): 1861-1870.

[81] SPEIRS M, VAN HOOREWEDER B, VAN HUMB-E-ECK J, et al. Fatigue Behaviour of NiTi Shape Memory Alloy Scaffolds Produced by SLM, a Unit Cell Design Comparison[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 70: 53-59.

[82] SYCHOV M M, LEBEDEV L A, DYACHENKO S V, et al. Mechanical Properties of Energy-Absorbing Structures with Triply Periodic Minimal Surface Topology[J]. Acta Astronautica, 2017, 150: 81-84.

[83] YUAN Li, DING Song-lin, WEN Cui-e. Additive Manufacturing Technology for Porous Metal Implant Applications and Triple Minimal Surface Structures: A Review[J]. Bioactive Materials, 2019, 4(1): 56-70.

[84] ZHAO Dan-lei, HUANG Yu-tian, AO Yong, et al. Effect of Pore Geometry on the Fatigue Properties and Cell Affinity of Porous Titanium Scaffolds Fabricated by Selective Laser Melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88: 478-487.

[85] ZHAO S, LI S J, WANG S G, et al. Compressive and Fatigue Behavior of Functionally Graded Ti-6Al-4V Meshes Fabricated by Electron Beam Melting[J]. Acta Materialia, 2018, 150: 1-15.

[86] DUMAS M, TERRIAULT P, BRAILOVSKI V. Modelling and Characterization of a Porosity Graded Lattice Structure for Additively Manufactured Biomaterials[J]. Materials & Design, 2017, 121: 383-392.

[87] LI Da-wei, LIAO Wen-he, DAI Ning, et al. Anisotropic Design and Optimization of Conformal Gradient Lattice Structures[J]. Computer-Aided Design, 2020, 119(C): 102787.

[88] 張安峰, 張金智, 張曉星, 等. 激光增材制造高性能鈦合金的組織調(diào)控與各向異性研究進(jìn)展[J]. 精密成形工程, 2019, 11(4): 1-8.

ZHANG An-feng, ZHANG Jin-zhi, ZHANG Xiao-xing, et al. Research Progress in Tissue Regulation and Anisotropy of High-Performance Titanium Alloy by Laser Additive Manufacturing[J]. Journal of Netshape Forming Engineering, 2019, 11(4): 1-8.

[89] WEI?MANN V, BADER R, HANSMANN H, et al. Influence of the Structural Orientation on the Mechanical Properties of Selective Laser Melted Ti6Al4V Open-Porous Scaffolds[J]. Materials & Design, 2016, 95: 188-197.

[90] TORRES-SANCHEZ C, AL MUSHREF F R A, NORRITO M, et al. The Effect of Pore Size and Porosity on Mechanical Properties and Biological Response of Porous Titanium Scaffolds[J]. Materials Science & Engineering C, Materials for Biological Applications, 2017, 77: 219-228.

[91] 李福泉, 孟祥旭, 董志宏, 等. 激光增材制造鋼的后熱處理研究現(xiàn)狀[J]. 精密成形工程, 2018, 10(1): 97- 108.

LI Fu-quan, MENG Xiang-xu, DONG Zhi-hong, et al. Research Status of Post-Heat Treatment of Steel Fabricated by Laser Additive Manufacturing[J]. Journal of Netshape Forming Engineering, 2018, 10(1): 97-108.

[92] Cai C, Gao X, Teng Q, et al. Hot Isostatic Pressing of a Near α-Ti Alloy: Temperature Optimization, Microstructural Evolution and Mechanical Performance Evaluation[J]. Materials Science and Engineering: A, 2021, 802: 140426.

[93] Sallica-Leva E, Caram R, Jardini A, et al. Ductility Improvement Due to Martensite α′ Decomposition in Porous Ti-6Al-4V Parts Produced by Selective Laser Melting for Orthopedic Implants[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 54: 149-158.

[94] CHEN Yue-jun, FENG Bo, ZHU Ya-ping, et al. Preparation and Characterization of a Novel Porous Titanium Scaffold with 3D Hierarchical Porous Structures[J]. Journal of Materials Science: Materials in Medicine, 2011, 22(4): 839-844.

[95] YAVARI S A, DER S J V, CHAI Y C, et al. Bone Regeneration Performance of Surface-Treated Porous Titanium[J]. Biomaterials, 2014, 35(24): 6172- 6181.

[96] YAN Chun-ze, HAO Liang, HUSSEIN A, et al. Microst-r-uctural and Surface Modifications and Hydroxyapatite Coating of Ti-6Al-4V Triply Periodic Minimal Surface Lattices Fabricated by Selective Laser Melting[J]. Materials Science & Engineering C, 2017, 75: 1515-1524.

[97] PYKA G, BURAKOWSKI A, KERCKHOFS G, et al. Surface Modification of Ti6Al4V Open Porous Structures Produced by Additive Manufacturing[J]. Advanced Engineering Materials, 2012, 14(6): 363-370.

[98] GORGIN K Z, JAHANMARD F, MIRZAEI A H, et al. A Multifunctional Silk Coating on Additively Manu-fa-ctured Porous Titanium to Prevent Implant-Associated Infection and Stimulate Bone Regeneration[J]. Biomedical Materials (Bristol, England), 2020, 15(6): 065016.

[99] YAVARI S A, WAUTHLE R, B?TTGER A J, et al. Crystal Structure and Nanotopographical Features on the Surface of Heat-Treated and Anodized Porous Titanium Biomaterials Produced Using Selective Laser Melting[J]. Applied Surface Science, 2014, 290: 287-294.

Additively Manufactured Porous Metallic Biomaterials

LIU Hao, CHEN Liang-yu, ZHANG Hong-yue, LI Nan

(School of Materials, Jiangsu University of Science and Technology, Jiangsu Zhenjiang 212003, China)

Biomedical porous metallic materials manufactured by the additive manufacturing technologies have great potentials and are widely used for implant bones and other industrial sectors. For the investigation of biomedical porous metallic materials, it mainly focuses on the design, manufacturing and surface modification of biomaterial porous materials. This review compares the characteristics of different additive manufacturing technologies and illustrates that the powder bed fusion is most suitable technology for the manufacture of biomedical porous metallic materials. The advantages and disadvantages of different metallic biomaterials (bioinert and biodegradable materials) are discussed, including beam-based unit design, sheet-based unit design, and gradient design, and briefly explained the influence of pores on the properties of materials. Moreover, suitable heat treatment and surface modification technologies increase the mechanical properties and biocompatibility of materials. In the future research, TPMS structure and hierarchical design will be the focus of the research. Biodegradable materials also require a lot of research and development. In order to enhance the mechanical properties and biocompatibility of porous metallic biomaterials, the future research direction can start from the development of new alloy systems and design of surface modification methods.

additive manufacturing; bioinert material; biodegradable material; topology design; surface modification

10.3969/j.issn.1674-6457.2022.05.018

TG146.2

A

1674-6457(2022)05-0121-13

2021?06?21

江蘇省六大人才高峰(XCL-117)

劉昊(1998—),男,碩士生,主要研究方向?yàn)樵霾闹圃於嗫租伜辖稹?/p>

陳靚瑜(1982—),男,博士,副教授,主要研究方向?yàn)榻饘俨牧细g。

責(zé)任編輯:蔣紅晨

猜你喜歡
植入物增材力學(xué)性能
優(yōu)化流程對(duì)消毒供應(yīng)中心植入物的干燥效果
三維管理模式在無(wú)錫市人民醫(yī)院骨科植入物管理中的效果研究
反擠壓Zn-Mn二元合金的微觀組織與力學(xué)性能
基于損傷力學(xué)的增材制造金屬材料疲勞壽命預(yù)測(cè)
石材增材制造技術(shù)研究
金屬粉末增材在飛行器發(fā)動(dòng)機(jī)的應(yīng)用及挑戰(zhàn)
多科室合作規(guī)范管理外來(lái)手術(shù)器械及植入物的效果分析
裝有假牙能做磁共振檢查嗎?
粉末粒度對(duì)純Re坯顯微組織與力學(xué)性能的影響
一種新型鋁合金附著式升降腳手架的力學(xué)性能分析
如皋市| 清河县| 利津县| 阆中市| 洪雅县| 社旗县| 鄱阳县| 平遥县| 河西区| 丘北县| 长乐市| 台中市| 连城县| 江川县| 武清区| 平乡县| 孝义市| 嘉善县| 义马市| 巩义市| 利津县| 洪湖市| 西峡县| 汨罗市| 平和县| 公安县| 临海市| 阿合奇县| 新乐市| 岳阳县| 克拉玛依市| 和硕县| 莲花县| 江孜县| 长兴县| 龙里县| 伊宁县| 吉安县| 渝北区| 连山| 巩留县|