趙振國,朱和國
真空熱壓時(shí)間和壓力對(duì)CoCrCuFeNi高熵合金組織與力學(xué)性能的影響
趙振國,朱和國
(南京理工大學(xué) 材料科學(xué)與工程學(xué)院,南京 210094)
采真空熱壓法在900 ℃下制備CoCrCuFeNi高熵合金,研究熱壓時(shí)間和壓力對(duì)合金微觀組織及力學(xué)性能的影響。結(jié)果表明:燒結(jié)壓力為10 MPa時(shí),所有CoCrCuFeNi高熵合金均含雙FCC相和少量富Cr相。隨熱壓時(shí)間延長(zhǎng),富Cr相的尺寸增大,合金的抗壓強(qiáng)度和硬度先升高后降低。熱壓時(shí)間為1.5 h時(shí),隨熱壓壓力從10 MPa升高至30 MPa,合金中富Cu的FCC相與貧Cu相分離現(xiàn)象消失。隨熱壓壓力增大,高熵合金的抗壓強(qiáng)度先升高后降低,但硬度無明顯變化。當(dāng)熱壓時(shí)間為1.5 h、壓力為20 MPa時(shí),合金的抗壓強(qiáng)度最高,達(dá)到1 229 MPa,硬度(HV)為3136 MPa。
真空熱壓;高熵合金;微觀組織;抗壓強(qiáng)度;維氏硬度(HV)
高熵合金因具有獨(dú)特的成分和組織結(jié)構(gòu)以及良好的力學(xué)性能而受到廣泛研究[1?2]。YEH等[1]采用熔煉法制備了最初的CoCrCuFeNi體系高熵合金,后來研究者也大都采用熔煉法制備高熵合金,但熔煉鑄造法制備的高熵合金存在成分偏析和組織粗大等缺點(diǎn),抗壓強(qiáng)度低于900 MPa。粉末冶金法能有效抑制樹枝晶的形成以及晶粒長(zhǎng)大[3?5],得到組織細(xì)小的高熵合金,由于細(xì)晶強(qiáng)化作用,合金通常具有高強(qiáng)度。其中的放電等離子燒結(jié)、微波燒結(jié)和真空熱壓法為制備粉末冶金高熵合金的主要方法。微波燒結(jié)能使粉體快速加熱,燒結(jié)時(shí)間短,但無法做到在燒結(jié)的同時(shí)施加壓力,導(dǎo)致合金致密程度不高。YIM等[6]采用微波燒結(jié)法結(jié)合沖擊波壓實(shí)粉末制備的CoCrFeMnNi高熵合金,具有較高的致密度,但沖擊波壓實(shí)粉末的應(yīng)力超過1 GPa,難以應(yīng)用于大尺寸樣品的制備。放電等離子燒結(jié)與真空熱壓能在加熱的同時(shí)施加壓力,從而提高合金的致密度。PRAVEEN[7]采用放電等離子燒結(jié)法制備CoCrCuFeNi高熵合金,發(fā)現(xiàn)合金中出現(xiàn)兩種FCC相和少量富Cr相,此現(xiàn)象與Cu元素和Cr元素共存于合金中有關(guān)。RAO[8]采用放電等離子燒結(jié)法制備CoCrCuFeNi高熵合金,并研究了燒結(jié)溫度對(duì)合金微觀組織及力學(xué)性能的影響,結(jié)果表明燒結(jié)溫度升高可使Cu元素偏析程度降低,Cr元素偏析程度加劇。放電等離子燒結(jié)采用脈沖電流加熱,具有快速高效的優(yōu)點(diǎn),但對(duì)于大尺寸樣品,可能存在加熱不均勻現(xiàn)象,從而影響合金的力學(xué)性能。CHENG等[9]采用真空熱壓法制備CoCrFeMnNi高熵合金,與放電等離子燒結(jié)制備的同類型高熵合金相比,真空熱壓合金具有更高的強(qiáng)度和更好的塑性。熱壓法能夠均勻升溫,從而獲得元素分布均勻、致密程度高的合金,但目前關(guān)于熱壓工藝參數(shù)對(duì)CoCrFeMnNi高熵合金組織與性能的研究很少。本文作者采用真空熱壓法制備CoCrCuFeNi高熵合金,研究熱壓時(shí)間與壓力對(duì)合金微觀組織與硬度、強(qiáng)度等性能的影響,為CoCrFeMnNi高熵合金研究提供實(shí)驗(yàn)和理論參考。
所用原料為Co、Cr、Cu、Fe和Ni粉末,均為市購,純度大于99 %(質(zhì)量分?jǐn)?shù)),粉末粒度小于45 μm。按照等摩爾分?jǐn)?shù)稱取5種原料粉末,用XGB2行星球磨機(jī)進(jìn)行混合球磨,采用硬質(zhì)合金磨罐和高鉻合金磨球,球料質(zhì)量比為5:1,球磨轉(zhuǎn)速為250 r/min,球磨時(shí)間為8 h。將球磨后的混合粉末在110 ℃烘干1.5 h,裝入直徑為30 mm的石墨模具中進(jìn)行真空熱壓,然后隨爐冷卻至室溫,得到圓柱形CoCrCuFeNi高熵合金。真空熱壓爐內(nèi)真空度為0.1 Pa,熱壓溫度為900 ℃,調(diào)整熱壓時(shí)間和壓力,得到6組相同成分的合金。其中1#~4#合金的熱壓時(shí)間分別為0.5、1.0、1.5和2.0 h,壓力均為10 MPa,用于研究熱壓時(shí)間對(duì)合金組織與性能的影響。5#和6#合金的熱壓時(shí)間均為1.5 h,壓力分別為20 MPa和30 MPa,通過對(duì)比3#、5#和6#合金的組織與性能,研究熱壓壓力的影響。
采用線切割從圓柱形CoCrCuFeNi高熵合金上取尺寸為15 mm×10 mm×5 mm的樣品,砂紙打磨,機(jī)械拋光處理后,用X射線衍射儀(XRD, Bruker-AXS D8 Advance)、掃描電鏡及其配備的能譜儀(SEM, FEI Quanta 250 FEG)對(duì)合金進(jìn)行形貌和微觀組織分析。用HVS-1000維氏顯微硬度計(jì)測(cè)定合金的硬度,載荷1.96 N、加載時(shí)間15 s,每個(gè)樣品選取5個(gè)區(qū)域進(jìn)行測(cè)試,取平均值。用電子萬能試驗(yàn)機(jī)(UTM5105)測(cè)試合金的室溫壓縮性能,壓縮試樣為直徑3 mm、高度4.5 mm的圓柱形,下壓速率為0.27 mm/min,每組合金取3個(gè)樣品進(jìn)行測(cè)試。
圖1 球磨后的CoCrCuFeNi粉末和不同熱壓時(shí)間的高熵合金XRD譜
圖2所示為不同熱壓時(shí)間的CoCrCuFeNi高熵合金顯微組織的SEM照片。所有合金組織中都能觀察到顆粒狀相,如圖2(c)中標(biāo)出的相,對(duì)其進(jìn)行EDS成分分析,結(jié)果表明該顆粒相中Cr含量遠(yuǎn)高于其他元素含量,這表明高熵合金中存在Cr元素偏析。隨熱壓時(shí)間從0.5 h延長(zhǎng)至1.5 h,富Cr相的尺寸無明顯變化,而熱壓時(shí)間為2 h的高熵合金中富Cr相尺寸明顯增大(見圖2(d))。
圖3所示為不同熱壓時(shí)間的CoCrCuFeNi合金經(jīng)過王水腐蝕后的顯微組織金相照片。在圖3(c) 所示熱壓1.5 h的高熵合金中有A和B兩種不同的形貌,A為深色區(qū)域,B為淺色區(qū)域,其EDS能譜和元素含量分別如圖3(e)和(f)所示。A區(qū)域的Cr含量高于Cu含量,B區(qū)域的Cr含量低于Cu含量,為富Cu相。這表明高熵合金中Cu元素與Cr元素之間僅有少量互溶。合金中不同區(qū)域的Cu含量差異導(dǎo)致各區(qū)域的耐腐蝕性能不同[13],經(jīng)過王水腐蝕后呈現(xiàn)不同的腐蝕形貌。從圖3(a)~(c)可見,隨熱壓時(shí)間從0.5 h延長(zhǎng)至1.5 h,淺色區(qū)域面積增大,但當(dāng)熱壓時(shí)間延長(zhǎng)至2.0 h時(shí),淺色區(qū)域大幅減少,腐蝕形貌差異基本消失,這表明合金內(nèi)Cu元素偏析程度降低。從表1可知,Cr元素與Fe、Co和Ni元素之間形成原子對(duì)的ΔABmix較小,但根據(jù)Cu-Cr二元合金相圖[14],在900 ℃下Cr在Cu中的固溶度只有0.21%(摩爾分?jǐn)?shù)),因此當(dāng)熱壓時(shí)間達(dá)到2 h時(shí),Cu元素的偏析減少,富Cr相增加。
表1 高熵合金中原子對(duì)的混合焓ΔHABmix
(a) 0.5 h; (b) 1.0 h; (c) 1.5 h; (d) 2.0 h; (e) EDS spectrum of the Cr-rich phase in Fig.2 (c)
(a), (b), (c), (d) SEM images of CoCrCuFeNi alloys with hot-pressing time of 0.5 ,1.0, 1.5 and 2.0 h, respectively; (e), (f) EDS spectrums of the A and B areas in Fig.3 (c)
圖4所示為不同熱壓時(shí)間的CoCrCuFeNi合金壓縮性能。由圖可知,隨熱壓時(shí)間延長(zhǎng),合金的抗壓強(qiáng)度和硬度先增大后減小。隨熱壓時(shí)間從0.5 h延長(zhǎng)至1.5 h,富Cr相的尺寸增加,而富Cr相為硬脆相,當(dāng)合金承受壓應(yīng)力時(shí),彌散分布的富Cr相作為應(yīng)力承載相可以提高合金的抗壓強(qiáng)度[15?17]。但當(dāng)熱壓時(shí)間為2.0 h時(shí),富Cr相過多,由于其塑性變形能力差,導(dǎo)致合金的抗壓強(qiáng)度和塑性降低。因富Cr相硬度較大,在進(jìn)行合金硬度測(cè)定時(shí)選擇避開富Cr相區(qū)域,以保證所測(cè)硬度的偏差較小。CoCrCuFeNi合金的硬度與Cu元素的分布相關(guān),隨熱壓時(shí)間延長(zhǎng),Cu元素分布更均勻,高熵合金中的晶格畸變程度提高,合金硬度隨之提高。當(dāng)熱壓時(shí)間達(dá)到2.0 h時(shí),晶粒過度長(zhǎng)大,導(dǎo)致合金硬度降低。當(dāng)熱壓時(shí)間為1.5 h時(shí),高熵合金具有最佳性能,抗壓強(qiáng)度和應(yīng)變分別為1 073 MPa和41.94%,硬度(HV)為3 126 MPa。
圖4 熱壓時(shí)間對(duì)CoCrCuFeNi高熵合金性能的影響
(a) Compressive stress-strain curves; (b) Compressive strength and hardness (HV)
圖5 不同熱壓壓力的CoCrCuFeNi合金XRD譜和腐蝕前與腐蝕后的顯微組織SEM照片
(a) XRD patterns; (b), (d) Microstructures of alloys before and after corrosion with 20 MPa hot-pressing pressure;(c), (e) Microstructures of alloys before and after corrosion with 30 MPa hot-pressing pressure
對(duì)比圖5(b)、(c)和圖2(c)發(fā)現(xiàn),隨熱壓壓力由10 MPa增加至20 MPa和30 MPa,富Cr相無明顯變化。熱壓壓力為20 MPa的高熵合金經(jīng)王水腐蝕后(圖5(d)所示),淺色區(qū)域的面積相對(duì)于熱壓壓力為10 MPa的合金(見圖3(c))增加,表明Cu的偏析增加,而熱壓壓力為30 MPa時(shí)(圖5(e)所示),淺色區(qū)域消失,即Cu的偏析程度降低。這表明提高熱壓壓力能降低Cu的偏析程度。
圖6所示為熱壓壓力對(duì)CoCrCuFeNi合金壓縮性能與硬度的影響。圖6(a)和(b)顯示,隨熱壓壓力增大,CoCrCuFeNi高熵合金的抗壓強(qiáng)度先增大后減小,硬度和斷裂應(yīng)變變化不明顯。這是由于隨熱壓壓力增大,合金的致密化程度提高,但同時(shí)合金晶粒稍有長(zhǎng) 大[21]。在塑性變形時(shí),致密度高的合金內(nèi)部組織間協(xié)同程度高,從而提高合金的抗壓強(qiáng)度,但晶粒長(zhǎng)大會(huì)減弱晶界對(duì)位錯(cuò)的阻礙作用,合金的抗壓強(qiáng)度降低。在兩種機(jī)制的協(xié)同作用下,在熱壓時(shí)間為1.5 h和壓力為20 MPa條件下得到的CoCrCuFeNi高熵合金性能最好,抗壓強(qiáng)度為1 229 MPa,硬度(HV)為3 136 MPa。
1) 采用真空熱壓法,在900 ℃制備CoCrCuFeNi高熵合金。熱壓壓力為10 MPa時(shí),合金含雙FCC相和少量富Cr相。隨熱壓時(shí)間延長(zhǎng),富Cr相增加。在燒結(jié)時(shí)間為1.5 h時(shí),熱壓壓力增大對(duì)富Cr相無明顯影響,當(dāng)燒結(jié)壓力為30 MPa時(shí),高熵合金為單一FCC相和少量富Cr相。
圖6 熱壓壓力對(duì)CoCrCuFeNi合金性能的影響
(a) Compressive stress-strain curves; (b) Compressive strength and hardness (HV)
2) 在熱壓壓力為10 MPa條件下,隨熱壓時(shí)間延長(zhǎng),CoCrCuFeNi高熵合金的抗壓強(qiáng)度和硬度先升高后降低。熱壓時(shí)間為1.5 h的高熵合金抗壓強(qiáng)度為1 073 MPa,硬度(HV)為3 126 MPa。
3) 在熱壓時(shí)間為1.5 h條件下,隨熱壓壓力升高,高熵合金的抗壓強(qiáng)度先升高后降低,但硬度變化較小。熱壓壓力為20 MPa的高熵合金抗壓強(qiáng)度達(dá)到最大值,為1 229 MPa。
[1] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299?303.
[2] CANTOR B,CHANG I T H, KNIGHT P, et al. Microstructure development in equiatomic multicomponent alloys[J]. Materials Science and Engineering A, 2004, 375/377: 213?218.
[3] 王桂芳, 劉忠俠, 張國鵬. 球磨時(shí)間對(duì)熱壓燒結(jié)制備TiC-CoCrFeNi復(fù)合材料微觀組織及力學(xué)性能的影響[J].材料工程, 2019, 47(6): 94?100.
WANG Guifang, LIU Zhongxia, ZHANG Guopeng. Effect of milling time on microstructure and mechanical properties of TiC-CoCrFeNi composites prepared by hot pressing sintering[J]. Journal of Materials Engineering, 2019, 47(6): 94?100.
[4] 趙堃, 艾桃桃, 馮小明, 等. 高強(qiáng)高韌非等原子(FeCoNiCr)100?xMn高熵合金的組織結(jié)構(gòu)和力學(xué)性能[J]. 中國有色金屬學(xué)報(bào), 2021, 31(1): 1?9.
ZHAO Kun, AI Taotao, FENG Xiaoming, et al. Microstructure and mechanical properties of (FeCoNiCr)100?xMnnon- equiatomic high-entropy alloys with high strength and ductility [J]. The Chinese Journal of Nonferrous Metals, 2021, 31(1): 1?9.
[5] 劉詠, 曹遠(yuǎn)奎, 宋旼, 等. 粉末冶金高熵合金進(jìn)展研究[J]. 中國有色金屬學(xué)報(bào), 2019, 29(9): 2155?2184.
LIU Yong, CAO Yuankui, SONG Min, et al. Progress of powder metallurgical high entropy alloys[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 2155?2184.
[6] YIM D, KIM W, PRSVEEN S, et al. Shock wave compaction and sintering of mechanically alloyed CoCrFeMnNi high- entropy alloy powders[J]. Materials Science & Engineering A, 2017, 708: 291?300.
[7] PRAVEEN S, MURTY B S, KOTTADA S R. Phase evolution and densification behavior of nanocrystalline multicomponent high entropy alloys during spark plasma sintering[J]. The Minerals, Metals & Materials Society, 2013, 65(12): 1797?1804.
[8] RAO K R, SINHA S K. Effect of sintering temperature on microstructural and mechanical properties of SPS processed CoCrCuFeNi based ODS high entropy alloy[J]. Materials Chemistry and Physics, 2020, 256: 123709.
[9] CHENG H, XIE Y C, TANG Q H, et al. Microstructure and mechanical properties of FeCoCrNiMn high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering [J]. Transactions of Nonferrous Metals Socirty of China, 2018, 28(7): 1360?1367.
[10] WU B, XIE Z Y, HUANG J C, et al. Microstructures and thermodynamic properties of high-entropy alloys CoCrCuFeNi [J]. Intermetallics, 2018, 93: 40?46.
[11] CHEN X, ZHAI S D, GAO D, et al. Microstructural transition of (CuFeMnNi)1?xCr(=0?0.25) high-entropy alloys[J]. Journal of Materials Engineering and Performance, 2019, 28: 4502? 4509.
[12] KIM Y K, LEE J B, HONG S K, et al. Strengthening and fracture of deformation-processed dual fee-phase CoCrFeCuNi and CoCrFeCu1.71Ni high entropy alloys[J]. Materials Science & Engineering A, 2020, 781: 139241.
[13] THORHALLSSON A I, CSáKI I, GEAMBAZU L E, et al. Effect of alloying ratios and Cu-addition on corrosion behaviour of CoCrFeNiMo high-entropy alloys in superheated steam containing CO2, H2S and HCl[J]. Corrosion Science, 2021, 178: 109083.
[14] 梁基謝夫. 金屬二元系手冊(cè)[M]. 郭青蔚, 譯. 北京: 化學(xué)工業(yè)出版社, 2008: 440?442.
LIANG Jixiefu. Handbook of Metal Binary System[M]. GUO Qingwei, trans. Beijing: Chemical Industry Press, 2008: 440?442.
[15] KOCKS U F, MECKING H. Physics and phenomenology of strain hardening: the FCC case[J]. Progress in Materials Science, 2003, 4(3): 171?273.
[16] BAI Y J, JIANG H, YAN K, et al. Phase transition and heterogeneous strengthening mechanism in CoCrFeNiMn high-entropy alloy fabricated by laser-engineered net shaping via annealing at intermediate-temperature[J]. Journal of Materials Science & Technology, 2021, 92: 129?137.
[17] REN B, LIU Z X, LI D M, et al. Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system[J]. Journal of Alloy and Compounds, 2010, 493(1/2): 148?153.
[18] TSAI K Y, TSAI M H, THE J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[J]. Acta Material, 2013, 61(13): 4887?4897.
[19] WANG R, CHEN W M, ZHONG J, et al. Experimental and numerical studies on the sluggish diffusion in face centered cubic Co-Cr-Cu-Fe-Ni high-entropy alloy[J]. Journal of Material Science & Technology, 2018, 34(10): 1791?1798.
[20] 果世駒. 粉末燒結(jié)理論[M]. 北京: 冶金工業(yè)出版社, 1998, 254?256.
GUO Shiju. Powder Sintering Theory[M]. Beijing: Metallurgical Industry Press, 1998, 254?256.
[21] 龍雁, 彭亮, 張偉華, 等. 放電等離子燒結(jié)Fe50Mn30 Co10Cr10高熵合金的顯微組織演化[J]. 稀有金屬, 2021, 45(7): 769?777.
LONG Yan, PENG Liang, ZHANG Weihua, et al. Microstructure evolution of Fe50Mn30Co10Cr10 high-entropy alloy fabricated by spark plasma sintering[J]. Chinese Journal of Rare Metals, 2021, 45(7): 769?777.
Effects of vacuum hot-pressing time and pressure on the microstructure and mechanical properties of CoCrCuFeNi high-entropy alloy
ZHAO Zhenguo, ZHU Heguo
(College of Material Science and Engineering, Nanjing University of Science and Technolegy, Nanjing 210094, China)
The CoCrCuFeNi high-entropy alloy was prepared by vacuum hot-press sintering. The effects of hot-pressing time and pressure on the microstructure and mechanical properties of the CoCrCuFeNi high-entropy alloy were studied. The results show that when the pressure is 10 MPa, all high-entropy alloys contain dual FCC phases and a small amount of Cr-rich phase. With the increase of hot-pressing time, the size of the Cr-rich phase increases and the compressive strength and hardness of the high-entropy alloy first increase and then decrease. When the hot-pressing time is 1.5 h, and the pressure increases from 10 MPa to 30 MPa, the separation phenomenon of Cu-rich FCC phase and Cu-poor phase disappears in the alloy. With the increase of hot-pressing pressure, the compressive strength of the high-entropy alloy first increases and then decreases, but there is no significant change in hardness. When the hot-pressing time is 1.5 h and the pressure is 20 MPa, The alloy has the highest compressive strength of 1 229 MPa and a hardness (HV) of 3 136 MPa.
vacuum hot-pressing; high-entropy alloy; microstructure; compressive strength; vickers hardness (HV)
10.19976/j.cnki.43-1448/TF.2021102
TG113
A
1673-0224(2022)02-180-07
國家自然科學(xué)基金資助項(xiàng)目(51571118)
2021?11?28;
2022?01?04
朱和國,教授,博士。電話:13605182940;E-mail: zhg1200@sina.com
(編輯 湯金芝)