姚旭進 任近陽 孔祥一 孫江東 林韜 萬芪
[摘要]目的研究亮氨酸(Leu)對糖氧剝奪(OGD)損傷皮質(zhì)神經(jīng)元的神經(jīng)保護作用以及Leu對低氧誘導因子-1α(HIF-1α)水平的調(diào)節(jié)。方法將OGD處理的皮質(zhì)神經(jīng)元作為腦缺血體外模型。采用CCK-8比色法、乳酸脫氫酶(LDH)釋放實驗、臺盼藍染色法檢測Leu處理后損傷神經(jīng)元的存活變化;采用免疫印跡法(Western blot)檢測OGD損傷后、Leu處理后神經(jīng)元中HIF-1α蛋白表達水平;利用DMOG、BAY87-2243分別激動或抑制HIF-1α,觀察HIF-1α表達水平對Leu的神經(jīng)保護作用的影響。結(jié)果OGD損傷后,補充Leu能增加神經(jīng)元存活率,降低LDH釋放率和臺盼藍染色陽性率(F=76.69~236.30,P<0.01)。Leu能上調(diào)正常神經(jīng)元HIF-1α表達水平(t=11.03,P<0.05)。OGD損傷后,神經(jīng)元中HIF-1α的表達增加(F=183.40,P<0.01)。Leu能上調(diào)損傷皮質(zhì)神經(jīng)元HIF-1α的表達水平(F=241.80,P<0.01)。HIF-1α水平降低能抑制Leu上調(diào)的細胞存活率和下調(diào)的LDH釋放率、臺盼藍染色陽性率,HIF-1α水平升高能促進Leu上調(diào)的細胞存活率和下調(diào)的LDH釋放率、臺盼藍染色陽性率(F=84.30~320.70,P<0.01)。結(jié)論皮質(zhì)神經(jīng)元在OGD損傷后,補充Leu可通過提高HIF-1α表達水平增加神經(jīng)元存活率。
[關鍵詞]亮氨酸;低氧誘導因子1,α亞基;大腦皮質(zhì);神經(jīng)保護
[中圖分類號]R977.4;R338.2[文獻標志碼]A[文章編號]2096-5532(2022)02-0159-06
doi:10.11712/jms.2096-5532.2022.58.068[開放科學(資源服務)標識碼(OSID)]
[網(wǎng)絡出版]https://kns.cnki.net/kcms/detail/37.1517.R.20220320.1554.015.html;2022-03-2209:40:47
NEUROPROTECTIVE EFFECT OF LEUCINE ON OXYGEN-GLUCOSE DEPRIVATION-INJURED CORTICAL NEURONS THROUGH UPREGULATING HIF-1α EXPRESSION YAO Xujin, REN Jinyang, KONG Xiangyi, SUN Jiangdong, LIN Tao, WAN Qi (The Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao 266071, China)
[ABSTRACT]ObjectiveTo investigate the neuroprotective effect of leucine (Leu) on oxygen-glucose deprivation (OGD)-injured cortical neurons and the regulation of hypoxia-inducible factor 1, alpha subunit (HIF-1α) by Leu. MethodsOGD-treated cortical neurons were used as an in vitro model for cerebral ischemia. Cell Counting Kit-8 assay, lactate dehydrogenase (LDH) release assay, and trypan blue staining were performed to determine the neuron survival after Leu treatment. Western blot was used to measure the HIF-1α level in neurons after OGD injury and after Leu treatment. DMOG and BAY87-2243 were used as an agonist and an antagonist of HIF-1α, respectively, to observe the effect of HIF-1α level on the neuroprotective effect of Leu. ResultsAfter OGD injury, supplementation with Leu significantly increased neuronal viability and significantly reduced LDH release rate and trypan blue positive rate (F=76.69-236.30,P<0.01). Leu significantly upregulated HIF-1α expression in normal neurons (t=11.03,P<0.05). After OGD injury, HIF-1α expression in neurons significantly increased (F=183.40,P<0.01). Leu significantly upregulated HIF-1α expression in OGD injured neurons (F=241.80,P<0.01). Downregulating HIF-1α inhibited Leu-increased cell viability and Leu-reduced LDH release rate and trypan blue positive rate, while upregulating HIF-1α promoted Leu-increased cell viability and Leu-reduced LDH release rate and trypan blue positive rate (F=84.30-320.70,P<0.01). ConclusionAfter OGD injury of cortical neurons, supplementation with Leu can increase neuronal viability through upregulating HIF-1α expression.
[KEY WORDS]leucine;? hypoxia-inducible factor 1, alpha subunit; cerebral cortex; neuroprotection
缺血性腦卒中是一種高發(fā)病率、高致殘率、高致死率的腦血管疾病[1]。大腦局部的血液供應不足或停滯,會使相應部位的神經(jīng)元周圍形成低氧狀態(tài)。低氧誘導因子-1α(HIF-1α)將在低氧條件下表達積累。作為一種轉(zhuǎn)錄因子,HIF-1α通過對其下游靶基因的調(diào)控,在血管再生、炎癥、細胞增殖分化及腫瘤生長等方面均起到重要的調(diào)節(jié)作用。研究結(jié)果表明,穩(wěn)定HIF-1α具有一定的神經(jīng)保護作用[2]。亮氨酸(Leu)作為一種支鏈氨基酸發(fā)揮著重要作用,已有研究表明,Leu能促進顱腦損傷病人認知功能的康復以及營養(yǎng)水平的提高[3],但其在腦缺血中的研究甚少。本研究利用糖氧剝奪(OGD)處理的皮質(zhì)神經(jīng)元作為體外腦缺血模型,探究Leu對OGD損傷皮質(zhì)神經(jīng)元的神經(jīng)保護作用,以及Leu對HIF-1α水平的調(diào)節(jié)作用?,F(xiàn)將結(jié)果報告如下。
1材料與方法
1.1實驗材料
1.1.1實驗動物SPF級、孕18 d的健康SD大鼠購自濟南朋悅實驗動物繁育有限公司,動物合格證號SCXK(魯)2014007,飼養(yǎng)于青島大學醫(yī)學部實驗動物中心。
1.1.2主要試劑細胞培養(yǎng)試劑neurobasal me-dium、B-27 Supplement、DMEM-H-Glucose、Trypsin-EDTA、HEPES、glutaMax 100×、青霉素-鏈霉素(100×)均購自Gibico公司;胎牛血清購自四季青公司;抗HIF-1α兔單克隆抗體、抗β-actin兔單克隆抗體、抗MAP2小鼠單克隆抗體購自Cell Signaling Technology公司;臺盼藍、抗熒光衰減封片劑(含有DAPI)、二甲基亞砜(DMSO,細胞培養(yǎng)級)、DMOG購自CSNpharm公司;PMSF(0.1 mol/L)、蛋白磷酸酶抑制劑混合物(All-in-one,100×)購自北京索萊寶科技有限公司;多聚賴氨酸購自美國Sigma公司;BAY87-2243、RIPA裂解液以及乳酸脫氫酶(LDH)細胞毒性檢測試劑盒購自上海碧云天生物技術有限公司;增強型CCK-8試劑盒購自北京博奧森生物技術有限公司。
1.2實驗方法
1.2.1原代神經(jīng)元培養(yǎng)取孕18 d的健康SD大鼠,用異氟烷氣體麻醉后脫頸處死,取出胎鼠,用體積分數(shù)0.75的乙醇消毒后置于冰上。在光學顯微鏡下剝離顱骨、腦膜,機械分離大腦皮質(zhì),暫時存放于DMEM培養(yǎng)液中。以900 r/min離心5 min,棄上清,加入0.5 g/L胰蛋白酶消化20 min,加入胎牛血清終止消化。以900 r/min離心5 min,棄上清,加入無血清培養(yǎng)液(neurobasal medium 50 mL,含有B-27 Supplement 1 mL、glutaMax 100×0.5 mL、青霉素-鏈霉素(100×)0.5 mL),反復緩慢吹打,濾布過濾。將細胞以1.2×105/cm2 的密度接種于多聚賴氨酸包被的培養(yǎng)皿和孔板中,此后每3 d更換無血清培養(yǎng)液1次。
1.2.2OGD/再灌注損傷模型制備原代神經(jīng)元培養(yǎng)7 d后,以磷酸鹽緩沖液(PBS)輕輕沖洗 2 次,Sham組加入有糖細胞外液,OGD組加入無糖細胞外液。然后將OGD組神經(jīng)元置于 37 ℃厭氧箱中低氧處理1 h(氣體參數(shù)設置為體積分數(shù)0.01 O2+體積分數(shù)0.94 N2+體積分數(shù)0.05 CO2),將Sham組神經(jīng)元置于正常培養(yǎng)箱中。氧處理結(jié)束后,將各組培養(yǎng)液換為等體積無血清培養(yǎng)液。
1.2.3實驗分組為了探討Leu對OGD損傷神經(jīng)元存活的作用,實驗分為Control組、OGD 3 h組、OGD 3 h+Leu組、OGD 6 h組、OGD 6 h+Leu組。為了探討Leu對正常皮質(zhì)神經(jīng)元HIF-1α蛋白表達的作用,實驗分為Control組、Leu組。為了探討OGD損傷神經(jīng)元HIF-1α蛋白表達的變化,實驗分為Control組、Sham 3 h組、OGD 3 h組、Sham 6 h組和OGD 6 h組。為了探討Leu對OGD損傷皮質(zhì)神經(jīng)元HIF-1α蛋白表達的作用,實驗分為Control組、OGD組和OGD+Leu組。為了探討HIF-1α水平對Leu調(diào)節(jié)的損傷神經(jīng)元存活的影響,實驗分為Control組(A組)、OGD組(B組)、OGD+Leu組(C組)、OGD+Leu+DMOG組(D組)、OGD+Leu+BAY87-2243組(E組)。50 μmol/L Leu在復氧時加入;100 μmol/L DMOG和BAY87-2243在復氧開始時加入。后面兩個實驗蛋白質(zhì)含量及免疫熒光檢測均在OGD后3 h進行。
1.2.4HIF-1α蛋白的免疫印跡法(Western blot)檢測相應各組在復氧 3、6 h時提取蛋白質(zhì)。用RIPA裂解液在冰上裂解細胞,離心后取上清,提取各組神經(jīng)元細胞蛋白,用BCA法檢測蛋白濃度。配制相應的分離膠和濃縮膠,按每孔10 μg 蛋白計算上樣量,電泳后轉(zhuǎn)移至PDVF膜上。以含50 g/L脫脂奶粉的TBST溶液室溫封閉1 h,再分別加入抗HIF-1α兔單克隆抗體、抗β-actin兔單克隆抗體(均1∶1 000稀釋),4 ℃孵育過夜。以TBST溶液清洗PDVF膜3次,每次10 min,然后加入相應的辣根過氧化物酶標記的二抗(1∶10 000稀釋)室溫孵育1 h。以TBST溶液清洗PDVF膜3次,每次10 min,用ECL發(fā)光劑顯影。采用Image J 軟件對蛋白條帶進行半定量分析,以HIF-1α和β-actin條帶灰度值的比值表示蛋白表達水平。實驗重復 3 次,取平均值。
1.2.5神經(jīng)元存活檢測分別采用免疫熒光染色法、CCK-8比色法、LDH釋放實驗、臺盼藍染色法檢測神經(jīng)元存活變化。
1.2.5.1免疫熒光染色法用PBS漂洗細胞片3次,每次5 min,每孔加入40 g/L細胞組織固定液200 μL,室溫固定20 min;以PBS漂洗細胞片3次,每次5 min,每孔加入含有2.5 g/L Triton X-100、30 g/L牛血清清蛋白(BSA)的封閉液200 μL,室溫封閉1 h;每孔加封閉液200 μL并加入抗MAP2小鼠單克隆抗體(1∶500稀釋), 4 ℃孵育過夜。次日于室溫下以PBST 漂洗3次,每次5 min;每孔加入約 200 μL 熒光二抗避光室溫孵育2 h后,以PBS漂洗 3次,每次5 min。封片,在熒光顯微鏡下觀察并采集圖像。
1.2.5.2CCK-8比色法在復氧24 h后檢測神經(jīng)元存活率。更換新培養(yǎng)液后,每孔加入CCK-8溶液(避免氣泡產(chǎn)生)10 μL,將培養(yǎng)板置于培養(yǎng)箱中孵育4 h。用酶標儀測定450 nm波長處的吸光度,計算細胞存活率。
1.2.5.3LDH釋放實驗在復氧24 h后檢測神經(jīng)元LDH釋放率。更換新培養(yǎng)液后,每孔加入 10 μL的LDH釋放劑,搖勻,繼續(xù)放回細胞培養(yǎng)箱中孵育。1 h后將細胞培養(yǎng)板用多孔離心機離心 5 min,分別取上清120 μL,加入到一新的96孔板相應孔中,隨即進行樣品測定,判斷細胞死亡變化。
1.2.5.4臺盼藍染色法在復氧24 h后檢測神經(jīng)元臺盼藍染色陽性率。皮質(zhì)神經(jīng)元經(jīng)臺盼藍染色后,死亡細胞被染成藍色,未著色細胞為存活細胞。隨機計數(shù)15個細胞視野,計算臺盼藍染色陽性率。臺盼藍染色陽性率=(藍色細胞數(shù)/細胞總數(shù))×100%。
1.3統(tǒng)計學分析
應用GraphPad Prism 7.0軟件對所得數(shù)據(jù)結(jié)果進行統(tǒng)計學分析。計量數(shù)據(jù)以x±s表示,兩組比較采用t檢驗;多組比較采用單因素方差分析,組間兩兩比較采用LSD-t檢驗。以 P<0.05為差異有統(tǒng)計學意義。
2結(jié)果
2.1Leu對OGD損傷神經(jīng)元存活的影響
OGD損傷及加入Leu后,培養(yǎng)神經(jīng)元的存活變化見圖1。各組神經(jīng)元存活率、LDH釋放率、臺盼藍染色陽性率比較差異均有顯著性(F=76.69~236.30,P<0.01)。OGD 3 h+Leu組與OGD 3 h組相比較,細胞存活率增加(t=14.82,P<0.05),LDH釋放率和臺盼藍染色陽性率降低(t=5.31、4.54,P<0.05)。OGD 6 h+Leu組與OGD 6 h組相比,細胞存活率增加(t=5.78,P<0.05),LDH釋放率和臺盼藍染色陽性率降低(t=3.64、3.07,P<0.05)。見表1。
2.2Leu對正常神經(jīng)元HIF-1α表達的影響
Control組和Leu組正常皮質(zhì)神經(jīng)元的HIF-1α蛋白表達水平分別為0.27±0.05和0.66±0.07(n=6),Leu組HIF-1α蛋白表達水平較Control組明顯上升(t=11.03,P<0.05)。見圖2。
2.3OGD損傷神經(jīng)元內(nèi)HIF-1α水平變化
Western blot檢測結(jié)果顯示,各組皮質(zhì)神經(jīng)元HIF-1α蛋白的表達水平比較差異有顯著性(n=6,F(xiàn)=183.40,P<0.01)。OGD 3 h組(0.97±0.14)與Sham 3 h組(0.23±0.04)相比,HIF-1α蛋白表達明顯上升(t=13.74,P<0.05);OGD 6 h組(1.35±0.13)與Sham 6 h組(0.27±0.05)相比, HIF-1α蛋白表達也明顯上升(t=20.03,P<0.05)。見圖3。
2.4Leu對OGD損傷神經(jīng)元HIF-1α表達的影響
Western blot檢測結(jié)果顯示,各組皮質(zhì)神經(jīng)元HIF-1α蛋白的表達水平比較差異有顯著性(n=6,F(xiàn)=241.80,P<0.01)。在OGD 3 h后,OGD+Leu組的HIF-1α蛋白表達水平(1.52±0.104)與OGD組(1.09±0.15)相比明顯上升(t=5.84,P<0.05)。見圖4。
2.5HIF-1α水平對Leu調(diào)節(jié)的損傷神經(jīng)元存活的影響
利用DMOG、BAY87-2243作為HIF-1α的激動劑和抑制劑分別激動和抑制HIF-1α,檢測Leu保護作用的變化[4-5]。各組培養(yǎng)神經(jīng)元的存活變化見圖5。各組神經(jīng)元存活率、LDH釋放率、臺盼藍染色陽性率比較差異有顯著性(F=84.30~320.70,P<0.01)。與OGD+Leu 組相比較,OGD+Leu+DMOG組的細胞存活率升高(t=6.37,P<0.05),LDH釋放率和臺盼藍染色陽性率均明顯降低(t=3.56、3.84,P<0.05);OGD+Leu+BAY87-2243組細胞存活率進一步降低(t=18.22,P<0.05),LDH釋放率和臺盼藍染色陽性率增高(t=5.67、7.15,P<0.05)。見表2。
3討論
缺血性腦卒中是一種極易致殘、致死的腦血管疾病[1]。一直以來,雖有大量的研究,但該病仍未有理想的治療方案。目前,除了靜脈溶栓、血管內(nèi)介入外,神經(jīng)保護治療也取得很大的進展[6]。
Leu是人體必需的支鏈氨基酸。食物補充的Leu能通過血-腦脊液屏障進入中樞神經(jīng)系統(tǒng)[7]。在中樞神經(jīng)系統(tǒng)里,Leu通過調(diào)節(jié)谷氨酸/谷氨酰胺的氮質(zhì)傳遞,參與神經(jīng)遞質(zhì)的合成。有研究表明,血液中水平升高的Leu會通過激活下丘腦區(qū)域的神經(jīng)元內(nèi)的mTOR通路,調(diào)控食欲與攝食[8-9]。持續(xù)補充Leu可以提高骨骼肌細胞內(nèi)的合成代謝,并提高肌肉質(zhì)量。臨床研究發(fā)現(xiàn),高Leu營養(yǎng)補充有助于癌癥病人運動能力的改善[10-12]。在C2C12細胞內(nèi),Leu通過SIRT1-AMPK通路促進線粒體內(nèi)的生物合成。已知Leu能有效干預腦缺血損傷后的自噬病變[13-14]。Leu作為mTOR信號通路的重要調(diào)控因子,在小腸表皮細胞中能降低活性氧(ROS)水平,并通過mTOR-HIF-1α通路使氧化磷酸化轉(zhuǎn)向糖酵解[15-17]。
在正常情況下,HIF的α亞基可被脯氨酰-羥化酶快速羥基化[18],進而進一步被降解。因此,正常狀態(tài)下HIF-1α的含量低[19]。在低氧條件下,HIF-1α降解受阻,可在細胞核內(nèi)調(diào)節(jié)各種下游靶基因轉(zhuǎn)錄。HIF-1α神經(jīng)細胞特定缺陷的小鼠常伴有腦積水、記憶衰退等癥狀[20]。在腫瘤中,HIF-1α可通過調(diào)節(jié)血管內(nèi)皮生長因子(VEGF)的表達,引起腫瘤血管的生長,促進腫瘤細胞的侵襲與轉(zhuǎn)移[21]。在顱腦損傷中,低氧預處理可通過上調(diào)HIF-1α的表達,提高腦組織對低氧耐受能力及血管內(nèi)皮細胞功能活化,進而減輕損傷[22-23]。有實驗結(jié)果表明,低氧適應通過激活上調(diào)HIF-1α表達,明顯降低OGD導致的SH-SY5Y細胞凋亡,具有保護作用[24]??傊趽p傷早期,HIF-1α被認為具有保護作用[25]。
本研究通過培養(yǎng)原代皮質(zhì)神經(jīng)元,采用OGD/再灌注建立體外模型,證實了Leu對缺血性腦損傷神經(jīng)元的作用及其靶點。OGD損傷后,神經(jīng)元中HIF-1α蛋白水平隨時間延長而增加。Leu處理進一步上調(diào)了HIF-1α表達水平,使神經(jīng)元存活率上升。并且利用HIF-1α抑制劑和激動劑證明了Leu通過HIF-1α發(fā)揮神經(jīng)保護作用。已知Leu具有促進蛋白質(zhì)合成和抑制蛋白質(zhì)降解的功能,它可能通過激活mTOR,進一步促進HIF-1α的轉(zhuǎn)錄[26],上調(diào)HIF-1α的表達水平。蓄積的HIF-1α能夠觸發(fā)與糖酵解、葡萄糖代謝、線粒體功能、細胞生存等相關的基因的表達。還有研究表明,HIF-1α可以促進紅細胞生成素(Epo)和VEGF的表達[27],而Epo、VEGF已知對缺血性腦損傷具有明顯的神經(jīng)保護作用,能減少細胞凋亡,促進細胞存活,縮小腦梗死體積。另一種可能是,上調(diào)的HIF-1α通過抑制P53介導的細胞凋亡減少OGD引起的神經(jīng)元死亡[28]。補充Leu也可能通過促進mTOR、減弱LC3-Ⅱ的表達,對自噬起一定抑制作用,從而發(fā)揮神經(jīng)保護作用[29]。Leu還有許多其他作用,例如作為一種特殊的生酮氨基酸,Leu會被代謝成乙酰輔酶A,而后者是一種直接供應三羧酸循環(huán)的能源物質(zhì)。乙酰輔酶A是組蛋白乙酰化中乙?;膩碓矗虼?,Leu也可能通過影響細胞表觀遺傳對OGD損傷后的神經(jīng)元產(chǎn)生作用[30]。
綜上所述,本實驗表明Leu通過上調(diào)HIF-1α表達對OGD/再灌注損傷的皮質(zhì)神經(jīng)元發(fā)揮了神經(jīng)保護作用。Leu作為人體必需的氨基酸,廣泛存在于各種蛋白類食物中,并且是術后腸外營養(yǎng)的必要成分之一。深入研究Leu對缺血性腦損傷的作用及潛在機制對該病病人的早期藥物治療以及營養(yǎng)補充具有重要意義。但是本研究僅在細胞層面初步探究了Leu對腦缺血后神經(jīng)元的作用及可能機制,其具體作用機制以及動物實驗還有待進一步研究。
[參考文獻]
[1]YUAN M Z, LI F, FANG Q, et al. Research on the cause of death for severe stroke patients[J].? Journal of Clinical Nur-sing, 2018,27(1/2):450-460.
[2]ZHU T N, ZHAN L X, LIANG D H, et al. Hypoxia-indu-cible factor 1α mediates neuroprotection of hypoxic postconditioning against global cerebral ischemia[J].? Journal of Neuropathology & Experimental Neurology, 2014,73(10):975-986.
[3]AQUILANI R, IADAROLA P, CONTARDI A, et al. Branched-chain amino acids enhance the cognitive recovery of patients with severe traumatic brain injury[J].? Archives of Physical Medicine and Rehabilitation, 2005,86(9):1729-1735.
[4]DUSCHER D, JANUSZYK M, MAAN Z N, et al. Comparison of the hydroxylase inhibitor dimethyloxalylglycine and the iron chelator deferoxamine in diabetic and aged wound healing[J].? Plastic and Reconstructive Surgery, 2017,139(3):695e-706e.
[5]ELLINGHAUS P, HEISLER I, UNTERSCHEMMANN K, et al. BAY 87-2243, a highly potent and selective inhibitor of
hypoxia-induced gene activation has antitumor activities by inhibition of mitochondrial complex Ⅰ[J].? Cancer Medicine, 2013,2(5):611-624.
[6]LY J V, ZAVALA J A, DONNAN G A. Neuroprotection and thrombolysis: combination therapy in acute ischaemic stroke[J].? Expert Opinion on Pharmacotherapy, 2006,7(12):1571-1581.
[7]TRLUNGEANU D C, DELIU E, DOTTER C P, et al. Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder[J].? Cell, 2016,167(6):1481-1494.e18.
[8]LAEGER T, REED S D, HENAGAN T M, et al. Leucine acts in the brain to suppress food intake but does not function as a physiological signal of low dietary protein[J].? American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2014,307(3):R310-R320.
[9]VIEIRA E E S, PEREIRA I C, BRAZ A F, et al. Food consumption of branched chain amino acids and insulin resistance: a systematic review of observational studies in humans[J].? Clinical Nutrition Espen, 2020,40:277-281.
[10]STORCK L J, RUEHLIN M, GAEUMANN S, et al. Effect of a leucine-rich supplement in combination with nutrition and physical exercise in advanced cancer patients: a randomized controlled intervention trial[J].? Clinical Nutrition (Edinburgh, Scotland), 2020,39(12):3637-3644.
[11]BALSTAD T R, BRUNELLI C, PETTERSEN C H, et al. Power comparisons and clinical meaning of outcome measures in assessing treatment effect in cancer cachexia: secondary analysis from a randomized pilot multimodal intervention trial[J].? Frontiers in Nutrition, 2020,7:602775.
[12]GOMES-MARCONDES M C, VENTRUCCI G, TOLEDO M T, et al. A leucine-supplemented diet improved protein content of skeletal muscle in young tumor-bearing rats[J].? Revista Brasileira De Pesquisas Medicas e Biologicas, 2003,36(11):1589-1594.
[13]MEIJER A J, LORIN S, BLOMMAART E F, et al. Regulation of autophagy by amino acids and MTOR-dependent signal transduction[J].? Amino Acids, 2015,47(10):2037-2063.
[14]FRUMAN D A. mTOR signaling: new networks for ALL[J].? Blood, 2016,127(22):2658-2659.
[15]HU J, NIE Y F, CHEN S F, et al. Leucine reduces reactive oxygen species levels via an energy metabolism switch by activation of the mTOR-HIF-1α pathway in porcine intestinal epithelial cells[J].? The International Journal of Biochemistry & Cell Biology, 2017,89:42-56.
[16]SHAO Y R, WANG K X, XIONG X, et al. The landscape of interactions between hypoxia-inducible factors and reactive oxygen species in the gastrointestinal tract[J].? Oxidative Me-dicine and Cellular Longevity, 2021,2021:8893663.
[17]KIERANS S J, TAYLOR C T. Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular phy-siology[J].? The Journal of Physiology, 2021,599(1):23-37.
[18]APPELHOFF R J, TIAN Y M, RAVAL R R, et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor[J].? Journal of Biological Chemistry, 2004,279(37):38458-38465.
[19]FALLAH J, RINI B I. HIF inhibitors: status of current clinical development[J].? Current Oncology Reports, 2019,21(1):6.
[20]TOMITA S, UENO M, SAKAMOTO M, et al. Defective brain development in mice lacking the Hif-1alpha gene in neural cells[J].? Molecular and Cellular Biology, 2003,23(19):6739-6749.
[21]CHEN M C, HSU W L, HWANG P A, et al. Low molecular weight fucoidan inhibits tumor angiogenesis through downre-gulation of HIF-1/VEGF signaling under hypoxia[J].? Marine Drugs, 2015,13(7):4436-4451.
[22]SHARP F R, RAN R Q, LU A G, et al. Hypoxic preconditioning protects against ischemic brain injury[J].? NeuroRX, 2004,1(1):26-35.
[23]JETER C B, HERGENROEDER G W, WARD N H Ⅲ, et al. Human mild traumatic brain injury decreases circulating branched-chain amino acids and their metabolite levels[J].? Journal of Neurotrauma, 2013,30(8):671-679.
[24]LU N, LI X X, TAN R L, et al. HIF-1α/Beclin1-mediated autophagy is involved in neuroprotection induced by hypoxic preconditioning[J].? Journal of Molecular Neuroscience: MN, 2018,66(2):238-250.
[25]HAASE V H. HIF-prolyl hydroxylases as therapeutic targets in erythropoiesis and iron metabolism[J].? Hemodialysis International, 2017,21:S110-S124.
[26]DUR?N R V, MACKENZIE E D, BOULAHBEL H, et al. HIF-independent role of prolyl hydroxylases in the cellular response to amino acids[J].? Oncogene, 2013,32(38):4549-4556.
[27]LIANG X, LIU X M, LU F X, et al. HIF1α signaling in the endogenous protective responses after neonatal brain hypoxia-ischemia[J].? Developmental Neuroscience, 2019,40(5/6):617-626.
[28]WANG L, YANG J J, XIAO X, et al. VEGF modulates the neural dynamics of hippocampal subregions in chronic global cerebral ischemia rats[J].? NeuroMolecular Medicine, 2021. doi:10.1007/s12017-020-08642-y.
[29]LIU H, WANG Q, SHI G, et al. Emodin ameliorates renal damage and podocyte injury in a rat model of diabetic nephro-pathy via regulating AMPK/mTOR-mediated autophagy signaling pathway[J].? Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2021,14:1253-1266.
[30]QURESHI I A, MEHLER M F. Emerging role of epigenetics in stroke[J].? Archives of Neurology, 2010,67(11):1316-1322.
(本文編輯馬偉平)