親愛的讀者朋友,請(qǐng)看一道去年某小學(xué)畢業(yè)測(cè)試卷的“壓軸題”(如圖1)。建議您閱讀全文前,先用幾分鐘時(shí)間“下水”試一試。
您的答案是多少?是不是4284元?
今年總復(fù)習(xí)時(shí),我讓學(xué)生練習(xí)這道題,班級(jí)正確率高達(dá)90%,挺令人滿意的結(jié)果。但班內(nèi)公認(rèn)的“數(shù)學(xué)大咖”王睿沒得分,原本“正確”的解答被他劃去了,讓人頗為意外和不解。憑他的實(shí)力,不應(yīng)該有困難的。因此,評(píng)講這道題時(shí),我特意讓他來說說想法。
王睿站起來就說:“這是一道錯(cuò)題,根本沒法做。”
“錯(cuò)題?”我和其他學(xué)生都有點(diǎn)懵。
他舉起他的答卷指給我看。我這才注意到,他的答卷上其實(shí)保留了一個(gè)示意圖(如圖2)。見我還是沒明白,他一邊指著弧線的拼接處,一邊自信地說:“這兒的‘彎度變了,這四塊陰影拼出來的根本就不是一個(gè)圓!”他這么一說,我終于明白了示意圖的意思,心想:“完了完了,攤上事了!”
臺(tái)下的學(xué)生依然一頭霧水。
王睿更來勁了,沒等我發(fā)話,就直接踏上講臺(tái),連講帶寫地開始了他的陳述:“你們的做法是不是把四塊陰影往中間一擠、一拼,然后求出這個(gè)半徑為3米的圓的周長(zhǎng),再加上8條3米的半徑,就以為求出了陰影的周長(zhǎng)?”
“是?。 倍鄶?shù)人都是這么想的,也有少數(shù)學(xué)生說是先算出一個(gè)90°扇形的周長(zhǎng),再乘4,求出陰影部分的總周長(zhǎng),進(jìn)而求出需要的錢數(shù)。
“你們的方法,都犯了一個(gè)同樣的錯(cuò)誤,那就是四塊陰影往中間一壓,得到的并不是一個(gè)標(biāo)準(zhǔn)的圓,而是一個(gè)不方不圓的圖形?!蓖躅?粗蠹也唤獾难凵?,迅速用投影展示了他的示意圖。接著,拿筆在兩段弧線的拼接處反復(fù)勾畫,強(qiáng)調(diào)那兒的“曲度”發(fā)生了改變。
教室里一片安靜。
但真正緊張的還是我——我選了一道“錯(cuò)題”讓學(xué)生做!去年那么多學(xué)生做了這道題,那么多老師講評(píng)了這道題!怎么收?qǐng)觯?/p>
是表?yè)P(yáng)王?!罢鎱柡Α保€是說“錯(cuò)題就不管了”?是努力摳摳字眼維護(hù)命題老師和我的權(quán)威,還是把題改得嚴(yán)謹(jǐn)一些再做一次?
好像都不合適。
平時(shí)工作中,這樣的“差錯(cuò)”并不少見,比如看錯(cuò)、算錯(cuò)。每當(dāng)發(fā)生這種情況,往往是教師的一句“搞錯(cuò)了”后,學(xué)生就用大度的笑聲化解尷尬。但今天是我和命題老師都“想錯(cuò)”了,還能回避嗎?
華應(yīng)龍老師說過:“人生自古誰無錯(cuò)?錯(cuò)若化開,成長(zhǎng)自來。”我們應(yīng)主動(dòng)接納“差錯(cuò)”,并努力將這些“差錯(cuò)”轉(zhuǎn)化為學(xué)習(xí)資源,進(jìn)而“化錯(cuò)養(yǎng)正”。
冷靜下來的我,決定試著請(qǐng)學(xué)生來“化”這個(gè)“錯(cuò)”。
“同學(xué)們,這真不是老師故意設(shè)置的陷阱!去年六年級(jí)的學(xué)生和老師,包括命題的老師都掉進(jìn)去了,說明這道題值得我們好好討論。而且能發(fā)現(xiàn)它有問題,說明你們很厲害?。 蔽业奶拐\(chéng),獲得了學(xué)生的認(rèn)可。于是,我把話語(yǔ)權(quán)徹底交給了學(xué)生:“關(guān)于這道題,我們最應(yīng)討論哪些方面?”一番交流,大家認(rèn)為“老師為什么會(huì)出錯(cuò)?”和“遇上這樣的錯(cuò)題該怎么辦?”這兩個(gè)問題應(yīng)好好討論。雖然我心里沒底,還是點(diǎn)頭同意了。經(jīng)過幾分鐘的獨(dú)立思考和組內(nèi)交流,開始了全班分享。
首先,交流問題“老師為什么會(huì)出錯(cuò)”。同為“數(shù)學(xué)大咖”的李思遠(yuǎn)邊畫示意圖(如圖3)邊說:“老師,我知道命題老師為什么會(huì)出這樣的錯(cuò)了,他應(yīng)該是受了這道題的影響?!?img src="https://cimg.fx361.com/images/2024/07/14/qkimages27062706202208270620220808-3-l.jpg"/>
李思遠(yuǎn)一手指著他畫的示意圖,一手舉起試卷,接著說道:“命題老師應(yīng)該是覺得這道題中的圓也可以像長(zhǎng)方形一樣,往中間一壓就會(huì)組成一個(gè)新的圓。但環(huán)島是一個(gè)圓,鋪了兩條小路后,圓周就只剩下4條曲線了。曲線的彎曲度并不會(huì)因?yàn)殇伮范淖儯瑢?duì)應(yīng)的半徑還是原來的4米,而不是現(xiàn)在看到的3米,也就是說,以圖中的直角頂點(diǎn)為圓心,以3米為半徑畫出的弧線不是這樣的。因此,這四塊陰影是拼不成一個(gè)圓的,我們也不能用3米為半徑來計(jì)算曲線的長(zhǎng)。”
李思遠(yuǎn)的思路很清晰,但多數(shù)學(xué)生還是迷茫地看著他。
發(fā)現(xiàn)臺(tái)下的學(xué)生還是不明白,他在黑板上又畫了一個(gè)示意圖(如圖4),邊指邊說:“這段曲線對(duì)應(yīng)的半徑是虛線標(biāo)出的這兩段,而不是實(shí)線表示的這兩段,而這樣的四段曲線拼出來的,就是王睿剛才畫的那個(gè)有點(diǎn)畸形的圓?!?img src="https://cimg.fx361.com/images/2024/07/14/qkimages27062706202208270620220808-4-l.jpg"/>
教室里響起了掌聲,看來,大部分學(xué)生明白了“拼不成”的原因。
我及時(shí)小結(jié):“看來,經(jīng)驗(yàn)是我們解決新問題的好幫手,但有時(shí)候也會(huì)幫倒忙。對(duì)待新問題,我們需要思考得更細(xì)一些。如果時(shí)間充足的話,也可以動(dòng)手驗(yàn)證驗(yàn)證,動(dòng)手又動(dòng)腦,才能有創(chuàng)造!”學(xué)生紛紛點(diǎn)頭??磥?,大家都體會(huì)到了“錯(cuò)題”的價(jià)值。
“老師,我突然覺得這道題不一定錯(cuò)了呢!”王睿語(yǔ)出驚人,“拼接后肯定不能當(dāng)成一個(gè)標(biāo)準(zhǔn)圓來算,但我們可以不拼啊。我們可以先算出半徑是4米的圓的周長(zhǎng),再減去4段“路口”小曲線的長(zhǎng)。每段小曲線的長(zhǎng)度不好算,但與路寬2米的差距也就一點(diǎn)點(diǎn),我們可以當(dāng)作2米,題目中問的是‘至少要多少錢,至少就可以是近似數(shù)吧。”
教室里瞬間就炸鍋了,“就是,近似!”“只要差得不多就行了!”“這不算是錯(cuò)題!”
這其實(shí)也是我意識(shí)到這道題有問題時(shí),想到的應(yīng)對(duì)辦法之一,現(xiàn)在由學(xué)生自己提出來,真好。我做出為難的樣子問道:“那這道題究竟是不是錯(cuò)的?”
“我覺得這道題沒錯(cuò),但不是近不近似的原因?!币恢睕]發(fā)言的沈思竹說道,“大家現(xiàn)在都理解為是在半徑為4米的圓形環(huán)島中鋪了兩條路,所以剩下的部分拼不成一個(gè)圓。但也可能本身就是一個(gè)半徑為3米的圓形綠地,先分成四個(gè)扇形,然后再用這四個(gè)扇形鋪成的這個(gè)環(huán)島,所以,這道題沒錯(cuò)啊?!?/p>
學(xué)生紛紛點(diǎn)頭,再次認(rèn)為這道題沒錯(cuò)。
這個(gè)答案也完全在我預(yù)料中。我微笑著說:“解鈴還須系鈴人,正解得問出題人。究竟是什么意思,還是問問出題老師吧?”
我的話音剛落,就有學(xué)生插嘴道:“不用問,就是錯(cuò)的!第一句話就說了,這是一個(gè)‘圓形的環(huán)島。”
這下鐵證如山了,“圓中鋪路”,這果然是一道“錯(cuò)題”。
“其實(shí),這樣的‘錯(cuò)題平時(shí)也不少啊。特別是那些判斷題,好多毛病哦!我覺得老師應(yīng)該給我們說理由的機(jī)會(huì)。比如‘圓的半徑都一樣長(zhǎng)這道題,如果都不是同一個(gè)圓,還有比較的必要嗎?就像我問你‘正方形的四條邊一樣長(zhǎng),算對(duì)還是錯(cuò)呢?要是我當(dāng)老師,一定不出這樣的題去為難學(xué)生,只要他真正明白道理就行了?!崩钏歼h(yuǎn)思考得果然很遠(yuǎn)。
聽聽學(xué)生的“真心話”,做一個(gè)安靜的欣賞者,真好。
見時(shí)機(jī)已成熟,我問學(xué)生:“各位同學(xué),我們花了這么多時(shí)間,討論這道‘錯(cuò)題,到底有沒有意義呢?”
“有意義,其實(shí)剛才沈思竹都已經(jīng)幫出題老師改掉了,就改成‘這是4個(gè)半徑為3米的90°扇形組成的環(huán)島就行了,改后的題還是很有挑戰(zhàn)性的?!睆堉敲骱芸隙ǖ卣f。
“我也覺得很有意義。如果是在生活中解決真實(shí)問題,就算不改題,也是可以通過近似計(jì)算來處理的——先算出大圓的周長(zhǎng),再減去4個(gè)缺口,每個(gè)缺口算作2米。但考試時(shí)、學(xué)習(xí)時(shí)可不行,數(shù)學(xué)必須嚴(yán)謹(jǐn),當(dāng)成圓來算,是對(duì)題意的理解有誤?!鄙蛩贾窈?jiǎn)直就是我的代言人。
“那考試時(shí)遇到這樣的問題,我們究竟應(yīng)該怎么做呢?”我接過話題,對(duì)學(xué)生進(jìn)行“靈魂拷問”。
“當(dāng)然要做啊,萬一是我們自己想偏了,豈不是白白丟分。只是,如果覺得題目有問題,我們可以在下面寫上我們的疑問,說不準(zhǔn)老師還會(huì)給附加分呢!”張智明的回答獲得一片掌聲。我也適時(shí)補(bǔ)充道:“是的,出錯(cuò)題、做錯(cuò)題都不可怕,可怕的是輕易放棄,不去反思錯(cuò)因?!?/p>
后來的課堂,還談到了“按原題的表述有沒有辦法計(jì)算出準(zhǔn)確的結(jié)果?”“當(dāng)成圓來算與精確結(jié)果之間有多大的差距?”“圖中標(biāo)注大圓的直徑8米是不是規(guī)范?”“題目中的圖是不是誤導(dǎo)了我們?”等問題。
事情已過去快一個(gè)月了,一些細(xì)節(jié)已開始變得模糊。但每每回味,總會(huì)有新的體悟和想法,我對(duì)“化錯(cuò)”的感悟也愈加深刻。
平等的課堂最精彩。這是一堂充滿意外的課,卻無比精彩。究其原因,一定程度上緣于這道“錯(cuò)題”(實(shí)則是一道超出小學(xué)生知識(shí)范圍的題,利用勾股定理和三角函數(shù)可求解,學(xué)生最初的答案應(yīng)算作錯(cuò)解)。因?yàn)槭恰板e(cuò)題”,學(xué)生就有了敢于“冒犯”教師的勇氣;因?yàn)槭恰板e(cuò)題”,教師就少了“聽我講”的霸氣?!板e(cuò)題”,客觀上促成了課堂的平等。
講理的課堂最精彩。因?yàn)榻處煛爸v理”,學(xué)生才能充分地“講理”,最終,讓教師和學(xué)生看到課堂的精彩。
“化錯(cuò)”的課堂最精彩。我們不僅要鼓勵(lì)學(xué)生勇敢地站起來、勇敢地說出來,更應(yīng)多一些“化差錯(cuò)為資源”的大氣,自覺地“化錯(cuò)為正”,讓學(xué)生更多一份質(zhì)疑的勇氣。
不論誰的“錯(cuò)”,皆可“化”出精彩。
(沈勇,特級(jí)教師,四川大學(xué)附屬實(shí)驗(yàn)小學(xué),郵編:610047)