国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

一起重新構(gòu)想我們的未來

2022-04-28 15:44
關(guān)鍵詞:參與者工具數(shù)字

Expanding knowledge, data, and evidence

Successful knowledge production for the futures of education will need to become consciously inclusive, socially and culturally diverse, inter-disciplinary and inter-professional, and able to foster communication, collaboration, ownership and mutual learning.

Big data and the changing nature of knowledge

Technological advancements have generated new assumptions about what knowledge is and how it should be generated. Our current technologies have contributed to expectations that information, and the knowledge and understandings it gives rise to, will be big (drawn from multiple data points, not singular experiences), searchable (retrievable and easy to find), storable (able to be archived), transmissible (seamlessly sharable), and individualizable (optimized for personal consumption). Each of these qualities merit careful examination because they frame and mould ideas about education, including its purposes and processes, opening some possibilities and closing others.

Greater access to digital tools has given researchers unprecedented power to organize, synthesize, and process wider educational data sets than ever before. The power of digital methods, instruments, data collection and storage, and algorithmic data processing has kindled great enthusiasm in terms of how they can be used to advance understanding, practice and effectiveness of educational methods and approaches. Statistical data processing and charting, geographic mapping, network mapping, pattern seeking, and keyword tracing are among the tools that researchers can deploy. There is also great opportunity for research on the increasingly digitized aspects of our educational lives.

As with any tools, it is important for researchers to clarify what can and cannot be achieved through digital research instruments. Depending on the purpose of a given inquiry, more data is not necessarily better or more precise. The insights that computers can arrive at are not the same as those available to human beings. Sometimes software can reveal surprising and illuminating findings because of their ability to process data at greater scales and paces than humans ever could through analogue methods. Other times, human minds can understand contexts, meaning, values, and implications in ways far too sophisticated for AI.

As researchers draw on the immense potential of big data and digital tools in education, we must resist being enamoured with digital analytic software for the presentation of presumed objectivity. In particular, we need to continually evaluate the biases and blind spots of our digital research methods from a lens of justice and equity, to account for what lies beyond the purview of its programming. If these trends continue, there is considerable danger that in 2050 much of our knowledge will have become reshaped into quantitative, algorithm-friendly, molecular, easily storable, rapidly shareable forms that are only accessible through the mediation of digital devices. We should be concerned that the exploding field of AI seeks to make these properties self-sustaining, autonomous and independent of human management. The ethical risks of such ambitions will need vigilant attention over the next thirty years.

Innovating educational futures

Innovation in education reflects the ability to experiment, share, extend, and inspire others. It is possible at every site and scale, from a teacher working with an individual student or class, to school-wide or country-wide approaches. Innovation is often the fruit of much collaboration and inspiration from the experiences and successes of other educators, policy-makers, researchers, and schools in diverse contexts.

Actors within educational systems are also important sources of innovative approaches and insights. Innovations that are entirely imposed from ‘outside’ the field will necessarily be limited, or even distorted, in their insights and proposed solutions. Educational knowledge is produced and legitimated in a range of ways. Its central actors — teachers, students, principals, schools, etc. — are all participants in the production of research and innovation. Curriculum development and reform can be especially enriched through the contributions of those who use it, as they enter into deeper participation with the knowledge commons. Governments have an important role to play in this regard, providing adequate support for teachers and schools to participate in dialogue and revision of public education systems and processes.

譯文

擴(kuò)展知識(shí)、數(shù)據(jù)和證據(jù)

成功的面向教育未來的知識(shí)生產(chǎn)需要有意識(shí)地做到包容性、社會(huì)和文化多樣性、跨學(xué)科和跨專業(yè),并能夠促進(jìn)溝通、協(xié)作、知識(shí)所有權(quán)和相互學(xué)習(xí)。

大數(shù)據(jù)和本質(zhì)特征在不斷變化的知識(shí)

技術(shù)進(jìn)步促使產(chǎn)生了關(guān)于什么是知識(shí)以及如何產(chǎn)生知識(shí)的新假設(shè)。我們目前的技術(shù)有助于實(shí)現(xiàn)這樣的前景:信息及其帶來的知識(shí)和理解將是巨大的(來自多個(gè)數(shù)據(jù)點(diǎn),而不是單一的經(jīng)驗(yàn))、可搜索的(可檢索且易于找到)、可存儲(chǔ)的(能存檔)、可傳輸?shù)模軣o縫共享)、個(gè)性化的(針對(duì)個(gè)人消費(fèi)進(jìn)行了優(yōu)化)。這些品質(zhì)中的每一種都值得仔細(xì)檢查,因?yàn)樗鼈儤?gòu)成和塑造了關(guān)于教育的觀念,包括教育的目的和過程,創(chuàng)造了一些可能性,消除了另一些可能性。

更多地使用數(shù)字工具,使研究人員擁有更前所未有的能力來組織、綜合和處理更廣泛的教育數(shù)據(jù)集。如何利用數(shù)字方法、儀器、數(shù)據(jù)收集和存儲(chǔ)以及算法數(shù)據(jù)處理的力量,來促進(jìn)對(duì)教育方法和方式的理解、實(shí)踐和有效性,激發(fā)了人們極大的熱情。統(tǒng)計(jì)數(shù)據(jù)處理和圖表、地理制圖、網(wǎng)絡(luò)制圖、模式搜索和關(guān)鍵詞追蹤都是研究人員可以部署的工具。這也為研究我們教育生活的日益數(shù)字化提供了很好的機(jī)會(huì)。

與任何工具一樣,研究人員必須明確,通過數(shù)字研究工具可以實(shí)現(xiàn)什么和不能實(shí)現(xiàn)什么,這一點(diǎn)很重要。根據(jù)給定調(diào)查的目的,更多的數(shù)據(jù)并不一定意味著更好或更精確。計(jì)算機(jī)所能獲得的洞察力與人類所能獲得的不同。有時(shí),軟件可以揭示令人驚訝和啟發(fā)性的發(fā)現(xiàn),因?yàn)樗鼈兡軌蛲ㄟ^模擬方法,以比人類更大的規(guī)模和更快的速度處理數(shù)據(jù)。其他時(shí)候,人類的大腦可以以人工智能無法理解的方式理解上下文、含義、價(jià)值觀和暗示。

當(dāng)研究人員利用大數(shù)據(jù)和數(shù)字工具在教育中的巨大潛力時(shí),我們必須抵制為呈現(xiàn)假定的客觀性而沉迷于數(shù)字分析軟件。特別是,我們需要從公正公平的角度不斷評(píng)估我們對(duì)數(shù)字研究方法的偏見和盲點(diǎn),以解釋其編程范圍外的內(nèi)容。如果任由這些趨勢(shì)繼續(xù)發(fā)展,那么在2050年,我們的許多知識(shí)將有相當(dāng)大的危險(xiǎn),它們將被重新塑造成定量的、算法友好的、分子的、易于存儲(chǔ)的、快速共享的形式,而這些形式只能通過數(shù)字設(shè)備來實(shí)現(xiàn)。我們應(yīng)該關(guān)注的是,人工智能領(lǐng)域的爆炸式發(fā)展試圖使這些知識(shí)屬性自我維持、自主并獨(dú)立于人類管理。在接下來的三十年里,我們需要警惕這種野心的道德風(fēng)險(xiǎn)。

創(chuàng)新教育的未來

教育創(chuàng)新反映了實(shí)驗(yàn)、分享、擴(kuò)展和激勵(lì)他人的能力。從與單個(gè)學(xué)生或班級(jí)合作的代課教師,再到全?;蛉珖?guó)的方式,任何地點(diǎn)和規(guī)模都有可能。創(chuàng)新往往來自大量合作的成果,以及來自其他教育工作者、決策者、研究人員和學(xué)校在不同背景下的經(jīng)驗(yàn)和成功的啟發(fā)。

教育系統(tǒng)中的參與者也是創(chuàng)新方法和見解的重要來源。完全來自領(lǐng)域“外部”的創(chuàng)新在其見解和提出的解決方案中必然會(huì)受到限制,甚至扭曲。教育知識(shí)是以一系列方式產(chǎn)生和合法化的,其核心參與者(教師、學(xué)生、校長(zhǎng)、學(xué)校等)都是研究和創(chuàng)新成果的參與者。課程開發(fā)和改革可以因使用它的人的貢獻(xiàn)得到豐富,因?yàn)樗麄兏钊氲貐⑴c知識(shí)共享。政府在這方面可以發(fā)揮重要作用,為教師和學(xué)校提供充分的支持,以參與公共教育系統(tǒng)和進(jìn)程的對(duì)話和修訂。

猜你喜歡
參與者工具數(shù)字
波比的工具
波比的工具
準(zhǔn)備工具:步驟:
答數(shù)字
“巧用”工具
當(dāng)心,說謊會(huì)上癮!
享受生活的老人活得長(zhǎng)
想象擁抱能減輕疼痛
數(shù)字看G20
成雙成對(duì)
南川市| 大安市| 碌曲县| 安龙县| 聂拉木县| 思南县| 辽阳县| 巴东县| 黄冈市| 故城县| 凌云县| 那曲县| 焉耆| 新泰市| 永平县| 贵南县| 涞源县| 安西县| 汶川县| 彭泽县| 嘉鱼县| 昂仁县| 梅州市| 监利县| 安福县| 启东市| 卢龙县| 湖南省| 财经| 德安县| 东乌| 霍邱县| 洪雅县| 吕梁市| 日照市| 左贡县| 高阳县| 如东县| 宝山区| 新晃| 乐都县|