陳雅瑜 許婉卿 陳芳川 戴秋婷 丁志雄 黃聰明 鄭丹萍 賴順霞
[摘要] 目的 牙科設(shè)備水管經(jīng)常被微生物膜污染,微生物膜中含大量有害微生物,大腸桿菌是其主要的微生物之一。蛋殼作為日常生活中的廢棄物,將其廢物利用負(fù)載納米氧化鋅。為尋找牙科設(shè)備水管的新型消毒劑,探討研究蛋殼負(fù)載納米氧化鋅對(duì)大腸桿菌的影響。方法 雞蛋殼溶解硝酸鉀溶液中,經(jīng)過(guò)過(guò)濾煅燒溶解冷卻,得到雞蛋殼負(fù)載的納米氧化鋅,電鏡觀察蛋殼及蛋殼負(fù)載的納米氧化鋅形態(tài)。選用大腸桿菌ATCC 25922作為實(shí)驗(yàn)菌株。測(cè)定蛋殼負(fù)載納米氧化鋅對(duì)大腸桿菌的最低抑菌濃度(MIC)和最低殺菌濃度(MBC)。結(jié)果 納米氧化鋅對(duì)大腸桿菌的最低抑菌濃度640 μg/ml,最低殺菌濃度為5120 μg/ml。結(jié)論 蛋殼負(fù)載的納米氧化鋅能抑制大腸桿菌的生長(zhǎng),可以作為牙科設(shè)備水管的新型消毒劑。
[關(guān)鍵詞] 雞蛋殼;納米氧化鋅;大腸桿菌;抑菌
[中圖分類(lèi)號(hào)] R378.2? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A? ? ? ? ? [文章編號(hào)] 1673-9701(2022)08-0016-04
In vitro antibacterial effect of eggshell-loaded nano-zinc oxide on Escherichia coli
CHEN Yayu XU Wanqing CHEN Fangchuan DAI Qiuting DING Zhixiong HUANG Congming ZHENG Danping LAI Shunxia
Department of Stomatology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou? ?362000, China
[Abstract] Objective The water pipe of dental equipment is often polluted by microbial membrane, which contains a large number of harmful microorganisms, and Escherichia coli is one of the main microorganisms. Eggshell as a waste in daily life, its waste is used to load nano-zinc oxide. The effect of eggshell-loaded nano-zinc oxide on Escherichia coli was studied in order to find a new disinfectant for the dental equipment water pipe. Methods The eggshell was dissolved in potassium nitrate solution, and eggshell-loaded nano-zinc oxide was obtained after filtration, calcination, dissolved and cooling. The morphology of eggshell and eggshell-loaded nano-zinc oxide was observed under the electron microscope. Escherichia coli ATCC 25922 was selected as the experimental strain. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration(MBC) of eggshell-loaded nano-zinc oxide on Escherichia coli were determined. Results The minimum inhibitory concentration and bactericidal concentration of nano-zinc oxide on Escherichia coli were 640 μg/ml and 5120 μg/ml respectively. Conclusion Eggshell-loaded nano-zinc oxide inhibits the growth of Escherichia coli and can be used as a new disinfectant for dental equipment water pipes.
[Key words] Eggshell; Nano-zinc oxide; Escherichia coli; Antibacterial
在口腔治療中,高速手機(jī)避免過(guò)熱,需要大量水降溫;這些水通過(guò)狹窄的塑料管、閥門(mén)流向牙椅,即牙科設(shè)備水管。研究表明,牙科設(shè)備水管經(jīng)常被生物膜污染,而大腸桿菌(Escherichia coli,E.coli)是生物膜主要檢出的微生物之一[1-4]。2009—2017年,共603篇文章報(bào)道,美國(guó)由大腸桿菌引起的疾病有7869例[5]。大腸桿菌是革蘭陰性短桿菌,是人和動(dòng)物腸道中的正常棲居菌,常引起腹瀉和敗血癥。
現(xiàn)代社會(huì)抗生素濫用,使抗生素耐藥性迅速增長(zhǎng)[6]。Nsima等[7]研究顯示,40%~100%的大腸桿菌分離株對(duì)氨芐西林、青霉素、四環(huán)素和頭孢噻肟耐藥。雖然化學(xué)消毒被認(rèn)為是最有效控制微生物污染的方法,但其對(duì)水路管道和患者的有害影響不容忽視[8]。因此需尋找一種新型材料既能抑菌又對(duì)人體無(wú)害。研究報(bào)道,蛋殼負(fù)載的鍶具有理想的熱穩(wěn)定性和生物活性[9]。氧化鋅被廣泛用作食品添加劑、食品補(bǔ)充劑和藥物成分[10],金屬納米材料已被證明是抗生素的安全有效替代材料,且不會(huì)引起耐藥[11]。納米氧化鋅以其催化效率、化學(xué)穩(wěn)定性和強(qiáng)大的吸附能力而聞名[12]。本篇研究觀察蛋殼負(fù)載的納米氧化鋅對(duì)大腸桿菌的體外抑制作用,現(xiàn)報(bào)道如下。
1 材料與方法
1.1材料
雞蛋殼由泉州師范學(xué)院化工學(xué)院楊大鵬教授提供。硝酸鋅(國(guó)藥集團(tuán)化學(xué)試劑有限公司)。大腸桿菌(ATCC 25922)由福建醫(yī)科大學(xué)中心實(shí)驗(yàn)室提供。營(yíng)養(yǎng)瓊脂和肉湯(上海博威生物技術(shù)有限公司)。
1.2方法
1.2.1 蛋殼負(fù)載的納米氧化鋅的合成? ①用自來(lái)水沖洗雞蛋殼,將所有雞蛋殼內(nèi)膜和所有附著物都去除。②去離子水將洗滌過(guò)的雞蛋殼沖洗兩次,并在室溫下干燥24 h。③用研磨機(jī)將干燥的雞蛋殼研磨成粉,并通過(guò)200目篩子過(guò)篩,保存于干燥器中以備進(jìn)一步研究。④取2 g雞蛋殼粉浸泡到100 ml的硝酸鋅溶液中,在磁力攪拌下攪拌均勻1 h,過(guò)濾得到濾液,再于500℃的馬弗爐煅燒3 h,自然冷卻至室溫,得到蛋殼負(fù)載的氧化鋅納米材料。通過(guò)場(chǎng)發(fā)射掃描電子顯微鏡(FESEM,蔡司,德國(guó))檢查樣品的形態(tài)結(jié)構(gòu)。見(jiàn)圖1。
1.2.2 大腸桿菌及菌懸液制備? 大腸桿菌在LB營(yíng)養(yǎng)瓊脂中培養(yǎng),隨后在37℃下孵育24 h。接種環(huán)取固體培養(yǎng)基上得單菌落,用無(wú)菌生理鹽水將細(xì)菌配制成密度為0.5麥?zhǔn)勘葷岬木鷳乙簜溆谩?/p>
1.2.3 蛋殼負(fù)載納米氧化鋅對(duì)大腸桿菌的體外抑制作用? ①最小抑菌濃度的測(cè)定。取對(duì)數(shù)生長(zhǎng)期細(xì)菌配制成0.5麥?zhǔn)勘葷岬木鷳乙海琇B肉湯1∶1000稀釋后,實(shí)驗(yàn)組每孔加入100 μl稀釋后的菌液;倍比稀釋法配置不同濃度的納米氧化鋅,使其最終的藥物濃度為5120、2560、1280、640、320、160、80、40 μg/ml。實(shí)驗(yàn)組:不同濃度的納米氧化鋅+菌液,陽(yáng)性對(duì)照組:含菌液的LB培養(yǎng)基,陰性對(duì)照組:LB培養(yǎng)基,密封后置培養(yǎng)箱培養(yǎng)24 h。在空白對(duì)照組澄清透亮的情況下,以肉眼觀察各個(gè)試管中細(xì)菌生長(zhǎng)情況,菌液澄清時(shí)的最低濃度為納米氧化鋅對(duì)大腸桿菌的最小抑菌濃度(MIC)。②大腸桿菌最小殺菌濃度的測(cè)定[13]。觀察24 h的大腸桿菌最小抑菌濃度,吸取大腸桿菌MIC、高于MIC 2個(gè)濃度梯度、陽(yáng)性對(duì)照組及陰性對(duì)照組的培養(yǎng)物1 μl接種于LB瓊脂培養(yǎng)基中,于培養(yǎng)箱中培養(yǎng)24 h觀察有無(wú)菌落生長(zhǎng)。以無(wú)菌落生長(zhǎng)的最低藥物濃度為納米氧化鋅對(duì)大腸桿菌最小殺菌濃度(MBC)。
2 結(jié)果
2.1 掃描電鏡分析
掃描電鏡觀察到納米氧化鋅的形態(tài)。與具有光滑結(jié)構(gòu)的雞蛋殼相比,包裹在雞蛋殼表面氧化鋅的粒徑明顯小于200 nm。見(jiàn)圖2。
注 a:1 μm電鏡下雞蛋殼表面光滑,放大倍數(shù):10 000倍;b:200 nm電鏡觀察下,粒徑明顯<100nm的納米氧化鋅負(fù)載在雞蛋殼表面,放大倍數(shù):50 000倍
2.2 MIC
蛋殼負(fù)載納米氧化鋅對(duì)大腸桿菌的MIC為640 μg/ml。
2.3 MBC
蛋殼負(fù)載納米氧化鋅對(duì)大腸桿菌的MBC為5120 μg/ml。見(jiàn)封三圖1。
3 討論
蛋殼是日常生活中產(chǎn)生的一種普通的肥料,成本低,原料來(lái)源廣,且可通過(guò)蛋殼利用減少環(huán)境污染。蛋殼是日常生活中最常被廢棄的垃圾,但蛋殼材料已在不同領(lǐng)域中展現(xiàn)出其巨大的使用價(jià)值。蛋殼由于其多孔結(jié)構(gòu),且在高溫下的強(qiáng)穩(wěn)定性以及生物學(xué)特性常被用于骨組織工程[14-17]。蛋殼膜和蘆薈凝膠組成的納米纖維支架用于皮膚組織工程的再生[18]。Ota等[19]研究證實(shí),煅燒后的蛋殼主要粉末為氧化鈣(CaO),蛋殼衍生的CaO粉末可在3 min內(nèi)滅活法式囊病病毒(IBDV)、沙門(mén)菌和大腸桿菌,原因是CaO與水混合時(shí),水溶液變成氫氧化鈣,而其pH值超過(guò)12。納米顆粒的抗菌劑具有很多重要的應(yīng)用,如紡織工業(yè)、表面消毒、傷口敷料、水處理和食品保鮮。使用無(wú)機(jī)氧化物納米顆粒作為抗微生物的優(yōu)勢(shì)在于其對(duì)微生物病原體的耐藥菌株有更高的效力,同時(shí)毒性和耐熱性較低[20]。氧化鋅由于其理化特性和生物相容性而具有殺菌作用[21]。微米級(jí)和納米級(jí)的氧化鋅均有抗菌作用,而納米級(jí)氧化鋅對(duì)細(xì)菌有更高的抗菌活性,對(duì)人類(lèi)和動(dòng)物是安全的[22]。納米氧化鋅負(fù)載在雞蛋殼多孔表面,既能廢物利用,又能保持強(qiáng)穩(wěn)定性和生物相容性。
生物膜的形成已經(jīng)是牙科設(shè)備水管中的重要問(wèn)題。牙科設(shè)備水管中生物膜的形成和微生物的生長(zhǎng)導(dǎo)致用于噴霧、冷卻和超聲等使用過(guò)程的水中微生物數(shù)量過(guò)多[23]。如果水中含病原體,如大腸桿菌等,則年齡大且免疫力低的患者就很容易造成院內(nèi)感染;大腸桿菌是院內(nèi)感染常見(jiàn)的細(xì)菌之一,也是牙科設(shè)備水管的常駐菌之一。本研究發(fā)現(xiàn),蛋殼負(fù)載的納米氧化鋅對(duì)大腸桿菌的MIC為640 μg/ml,MBC為5120 μg/ml。眾多研究也表明納米氧化鋅粉末對(duì)大腸桿菌有明顯的抑制作用[22,24-27]。傳統(tǒng)觀點(diǎn)認(rèn)為,納米氧化鋅對(duì)大腸桿菌的抑制作用可能與活性氧的釋放量有關(guān)[27]。但是現(xiàn)在越來(lái)越多的觀點(diǎn)認(rèn)為,納米氧化鋅對(duì)大腸桿菌的毒性,是由于納米氧化鋅釋放的Zn離子;并且也證實(shí),納米氧化鋅對(duì)大腸桿菌的毒性與大腸桿菌內(nèi)Zn離子積累量是一致的。
綜上所述,蛋殼負(fù)載的納米氧化鋅對(duì)牙科設(shè)備水管的大腸桿菌有一定程度的抑制作用,也就是可以通過(guò)蛋殼負(fù)載的納米氧化鋅對(duì)牙科設(shè)備水管進(jìn)行消毒,同時(shí)可以廢物利用以保護(hù)環(huán)境。
[參考文獻(xiàn)]
[1]? ?Alkhulaifi MM,Alotaibi DH,Alajlan H,et al. Assessment of nosocomial bacterial contamination in dental unit waterlines:Impact of flushing[J].The Saudi Dental Journal,2020,32(2):68-73.
[2]? ?Lal S,Singhrao SK,Achilles-Day UE,et al. Risk asses- sment for the spread of serratia marcescens within dental-unit waterline systems using vermamoeba vermiformis[J].Current Microbiology,2015,71(4):434-442.
[3]? ?Szymańska J,Sitkowska J,Dutkiewicz J. Microbial conta- mination of dental unit waterlines[J].Annals of Agricultural and Environmental Medicine:AAEM,2008,15(2):173-179.
[4]? ?Wirthlin MR,Marshall GW Jr,Rowland RW. Formation and decontamination of biofilms in dental unit waterlines[J]. Journal of Periodontology,2003,74(11):1595-1609.
[5]? ?Hughes AC,Patfield S,Rasooly R,et al. Validation of a cell-based assay for detection of active shiga toxins produced by Escherichia coli in water[J].International Journal of Environmental Research and Public Health,2020,17(21):7901.
[6]? ?Peters L,Olson L,Khu DTK,et al. Multiple antibiotic re- sistance as a risk factor for mortality and prolonged hospital stay:A cohort study among neonatal intensive care patients with hospital-acquired infections caused by gram-negative bacteria in Vietnam[J].PLOS ONE,2019, 14(5):e0215 666.
[7]? ?Nsima B,Adegoke AA,Ofon UA,et al. Resistotyping and extended-spectrum beta-lactamase genes among Esche- richia coli from wastewater treatment plants and recipient surface water for reuse in South Afria[J].New Microbes New Infect,2020,38:100 803.
[8]? ?Demajo JK,Cassar V,F(xiàn)arrugia C,et al. Effectiveness of disinfectants on antimicrobial and physical properties of dental impression materials[J].The International Journal of Prosthodontics,2016,29(1):63-67.
[9]? ?Geng Z,Cheng Y,Ma L,et al. Nanosized strontium subs- tituted hydroxyapatite prepared from egg shell for enhanced biological properties[J].Journal of Biomaterials Applications,2018,32(7):896-905.
[10]? Lansdown AB,Mirastschijski U,Stubbs N,et al. Zinc in wo- und healing:Theoretical,experimental,and clinical aspects[J].Wound Repair and Regeneration,2007,15(1):2-16.
[11]? Alekish M,Ismail ZB,Albiss B,et al. In vitro antibacte rial effects of zinc oxide nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Escherichia coli:An alternative approach for antibacterial therapy of mastitis in sheep[J].Veterinary World,2018,11(10):1428-1432.
[12]? Banoee M,Seif S,Nazari ZE,et al. ZnO nanoparticles enh- anced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli[J].Journal of Biomedical Materials Research Part B:Applied Biomater-ials,2010,93(2):557-561.
[13]? Chang L,F(xiàn)eng Y,Wang B,et al. Dual functional oyster s-hell-derived Ag/ZnO/CaCO3 nanocomposites with enh-anced catalyticand antibacterial activities for water purification[J].RSC Advance,2019,9:41 336-41 344.
[14]? Sayed M,El-Maghraby HF,Bondioli F,et al. 3D carbox- ymethyl cellulose/hydroxyapatite(CMC/HA)scaffold com-posites based on recycled eggshell[J].Journal of Applied Pharmaceutical Science,2018,8(3):23-30.
[15]? Shih-ChingWu,Hsueh-ChuanHsu,Shih-KuangHsu,et al. Synthesis of hydroxyapatite from eggshell powders through ball milling and heat treatment[J].Journal of Asian Ceramic Societies,2018,4(1):604-610.
[16]? Sampath Kumar TS,Madhumathi K,Rajkamal B,et al. Enh- anced protein delivery by multi-ion containing eggshell derived apatitic-alginate composite nanocarriers[J].Coll-oids Surf B Biointerfaces,2014,123(1):542-548.
[17]? Siva Rama Krishna D,Siddharthan A,Seshadri SK,et al. A novel route for synthesis of nanocrystalline hydroxy-apatite from eggshell waste[J].Journal of Materials Science:Materials in Medicine,2007,18(9):1735-1743.
[18]? Mohammadzadeh L,Rahbarghazi R,Salehi R,et al. A novel egg-shell membrane based hybrid nanofibrous scaffold for cutaneous tissue engineering[J].Journal of Biological Eng-ineering,2019,13:79-85.
[19]? Ota M,Toyofuku C,Thammakarn C,et al. Calcinated egg- shell as a candidate of biosecurity enhancement material[J].Veterinary Week,2016,78(5):831-836.
[20]? Zhang L,Jiang Y,Ding Y,et al. Mechanistic investiga- tion into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli[J].Journal of Nanoparticle Research,2010,12(5):1625-1636.
[21]? Mirzaei H,Darroudi M. Zinc oxide nanoparticles:Biolo- gical synthesis and biomedical applications[J].Ceramics International,2017,43(1):907-914.
[22]? Luo Z,Wu Q,Xue J,et al. Selectively enhanced antibac-terial effects and ultraviolet activation of antibiotics with ZnO nanorods against Escherichia coli[J].Journal of Biom-edical Nanotechnology,2013,9(1):69-76.
[23]? Dahlen G. Biofilms in dental unit water lines[J].Monogr Oral Sci,2021,29:12-18.
[24]? Song K,Zhang W,Sun C,et al. Dynamic cytotoxicity of ZnO nanoparticles and bulk particles to Escherichia coli:A view from unfixed ZnO particle:Zn2+ ratio[J].Aquat Tox-icol,2020,220:105 407.
[25]? Zhang R,Carlsson F,Edman M,et al. Escherichia coli bac- teria develop adaptive resistance to antibacterial ZnO nanoparticles[J].Advanced Biosystems,2018,2(5):e180 019.
[26]? Li M,Zhu L,Lin D. Toxicity of ZnO nanoparticles to Esch- erichia coli:Mechanism and the influence of medium components[J].Environmental Science&Technology,2011, 45(5):1977-1983.
[27]? Banoee M,Seif S,Nazari ZE,et al. ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli[J].Journal of Biomedical Materials Research Part B:Applied Bioma- terials, 2010,93(2):557-561.
(收稿日期:2021-07-12)