国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

黃丹木姜子葉綠體基因組特征分析

2022-04-21 15:14劉潮韓利紅彭悅樊瑞卿王宇默
南方農(nóng)業(yè)學(xué)報 2022年1期

劉潮 韓利紅 彭悅 樊瑞卿 王宇默

摘要:【目的】分析黃丹木姜子( Litsea elongata)葉綠體基因組特征,為木姜子屬物種鑒定、遺傳多樣性分析和資源保護(hù)提供理論參考。【方法】基于Illumina HiSeq 2000高通量測序平臺對黃丹木姜子葉綠體基因組進(jìn)行測序,利用GeSeq在線工具對葉綠體基因組進(jìn)行注釋,并利用REPuter、MISA、CodonW和IQ-TREE等生物信息學(xué)軟件對其基因組結(jié)構(gòu)、基因數(shù)目、序列重復(fù)、密碼子使用偏性和系統(tǒng)發(fā)育進(jìn)行分析?!窘Y(jié)果】黃丹木姜子葉綠體基因組全長為154028 bp,具有典型的四分結(jié)構(gòu),編碼126個基因,其中蛋白編碼基因82個,rRNA基因 8個,tRNA基因 36個。葉綠體基因組的注釋基因中,有9個基因含1個內(nèi)含子,有3個基因含有2個內(nèi)含子,其余基因均不含內(nèi)含子;44個基因編碼蛋白參與光合作用信號途徑,21個基因編碼蛋白構(gòu)成了核糖體大小亞基。黃丹木姜子葉綠體基因組含有32對長序列重復(fù)和90個SSR位點(diǎn),其中,正向重復(fù)和回文重復(fù)最多,均為12對,反向重復(fù)和互補(bǔ)重復(fù)分別為6和2對;95.56%的SSR位點(diǎn)位于單拷貝區(qū)[大單拷貝區(qū)(LSC)和小單拷貝區(qū)(SSC)],僅4.44%的SSR位點(diǎn)位于反向重復(fù)區(qū)(IR)。黃丹木姜子葉綠體蛋白編碼基因GC含量為39.14%,GC3s為27.95%,平均有效密碼子數(shù)(ENC)為49.04,說明其密碼子偏性弱;相對同義密碼子使用度(RSCU)大于1.00的密碼子31個,其中13個以A結(jié)尾,16個以U(T)結(jié)尾。系統(tǒng)發(fā)育進(jìn)化樹分析結(jié)果顯示,木姜子屬的14個物種聚為兩組,其中黃丹木姜子和10種木姜子屬植物聚在一個組,與日本木姜子的親緣關(guān)系最近?!窘Y(jié)論】黃丹木姜子葉綠體基因組結(jié)構(gòu)保守,偏好A或U(T)結(jié)尾的密碼子,鑒定的SSR位點(diǎn)可用于物種鑒定和群體遺傳學(xué)研究。

關(guān)鍵詞: 黃丹木姜子;葉綠體基因組;SSR;密碼子使用性;系統(tǒng)發(fā)育分析

中圖分類號: S718.46? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號:2095-1191(2022)01-0012-09

Characteristics of chloroplast genome of Litsea elongata

(Wall. ex Nees) Benth. et Hook. f.

LIU Chao, HAN Li-hong*, PENG Yue, FAN Rui-qing, WANG Yu-mo

( College of Biological Resource and Food Engineering/Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Yunnan, Qujing, Yunnan? 655011, China)

Abstract:【Objective】 Research of Litsea elongata (Wall. ex Nees) Benth. et Hook. f. chloroplast genome possessed essential theoretical and practical significance for species identification, analysis of genetic diversity, and resource protection of Litsea. 【Method】The chloroplast genome of L. elongata was sequenced and annotated based on Illumina HiSeq 2000? high-throughput sequencing platform. The chloroplast genome was annotated using GeSeq. The genome structure,gene number, repeats, codon usage bias, phylogenetic development were analyzed by using the bioinformatics softwares such as REPuter, MISA, codonW and IQ-TREE. 【Result】The size of chloroplast genome of L. elongata was 154028 bp, with a typical quadripartite structure. The genome contained 126 genes, including 82 protein coding genes, 8 rRNA genes, and 36 tRNA genes.Among the annotated genes of chloroplast genome, nine genes contained one intron, three genes contained two introns. None of the remaining genes contained introns. Forty-four proteins were involved in the photosynthetic signal pathway, and 21 proteins constituted large/small subunit ribosome. The chloroplast genome of L. elongata contained 32 long repeats, and 90 simple sequence repeats (SSR). Among them, the forward repeats (12) and palindrome repeats (12) were the most, followed by the reverse repeats (6) and complementary repeats (2). 95.56% of the SSR loci were located in the single copy regions [large single copy region (LSC) and small single copy region(SSC)], and only 4.44% of SSR loci were located in the reverse repeat regions (IR). The guanine and cytosine (GC) content and synonymous third codons positions (GC3s) of chloroplast protein coding genes of L. elongata were 39.14% and 27.95%, respectively. And the average effective codon number (ENC) was 49.04, indicating that the codon bias of the chloroplast genome was weak. There were 31 codons with relative synonymous codon usage (RSCU) was greater than 1.00, of which 13 ended with A and 16 ended with U (T).? Phylogenetic analysis showed that 14 Litseas pecies were clustered into two clades, and L. elongata gathered together with other ten Litsea species and shared the closest genetic relationship with L. japonica. 【Conclusion】The chloroplast genome structure of L. elongata is conservative and prefers codons ending in A or U(T). The identified SSR loci can be used for species identification and population genetics.06FB152F-66F4-4942-81C5-601FA2AEF053

Key words: Litsea elongata (Wall. ex Nees) Benth. et Hook. f.; chloroplast genome; SSR; codon usage; phylogenetic analysis

Foundation items: National Natural Science Foundation of China(32060710)

0 引言

【研究意義】黃丹木姜子[Litsea elongata (Wall. ex Nees) Benth. et Hook. f.]為樟科木姜子屬(Litsea)常綠喬木,在我國華中、華東、華南和西南地區(qū)廣泛分布,在尼泊爾、印度等國家也有分布,常生于山坡路旁或灌叢中,其木材和種子具有重要的應(yīng)用價值。葉綠體是植物重要的細(xì)胞器,擁有相對獨(dú)立的遺傳系統(tǒng),尤其是高等植物的葉綠體基因組具有較高的保守性,但不同物種間又存在局部的變異,故葉綠體基因組被廣泛應(yīng)用于植物分類和進(jìn)化研究(Song et al.,2017a;Tian et al.,2019;Song et al.,2020;Zhang et al.,2021)。因此,開展黃丹木姜子葉綠體基因組特征分析,對木姜子屬物種鑒定、遺傳多樣性分析及資源保護(hù)具有重要意義?!厩叭搜芯窟M(jìn)展】葉綠體作為光合作用場所,在綠色植物生長發(fā)育和響應(yīng)逆境過程中發(fā)揮作用(Pogson et al.,2015),因此,葉綠體基因組被廣泛應(yīng)用于樟科(Song et al.,2020)、雙六道木屬(Diabelia)(Wang et al.,2020)和木蘭屬(Magnolia)(Dong et al.,2021)等植物系統(tǒng)進(jìn)化分析、物種鑒定、遺傳多樣性分析等方面。研究發(fā)現(xiàn),大多數(shù)陸生植物的葉綠體基因組大小無明顯差異(120~160 kb),并存在典型的四分結(jié)構(gòu),包括大單拷貝區(qū)(Large single copy ,LSC)、小單拷貝區(qū)(Small single copy,SSC)和2個反向重復(fù)區(qū)(Inverted repeat,IR)(Wicke et al.,2011)。目前,樟科(Song et al.,2020)、錦葵科(Wang et al.,2021)、楊屬(Zong et al.,2019)、雙六道木屬(Wang et al.,2020)、木蘭屬(Dong et al.,2021)、辣椒屬(劉潮等,2022)等多個科屬的植物葉綠體基因組序列特征得到解析。大部分陸生植物進(jìn)化過程中存在葉綠體基因組內(nèi)的基因丟失、增加、重排和重復(fù),葉綠體基因組中基因含量未發(fā)生顯著變化(Wicke et al.,2011;Li et al.,2017;Song et al.,2017b;Li et al.,2021)。Song等(2020)利用120個樟科物種葉綠體基因組序列構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹,將樟科分為9個單系,木姜子屬歸為月桂—新木姜子組?;诮馄蕦W(xué)、形態(tài)學(xué)和分子數(shù)據(jù)分析,發(fā)現(xiàn)木姜子屬與山胡椒屬植物在形態(tài)和分布上存在較多相似之處,基于核糖體ITS和葉綠體matK的分子系統(tǒng)分析顯示,木姜子屬與山胡椒屬均表現(xiàn)為多系類群(Li and Christophel,2000;Li et al.,2004,2008)?!颈狙芯壳腥朦c(diǎn)】目前,雖然樟科屬間系統(tǒng)進(jìn)化關(guān)系研究較多,而木姜子屬內(nèi)葉綠體基因組特征及系統(tǒng)進(jìn)化關(guān)系有待進(jìn)一步深入研究?!緮M解決的關(guān)鍵問題】利用高通量測序技術(shù)對黃丹木姜子葉綠體基因組進(jìn)行測序,以滇南木姜子(Litsea garrettii)葉綠體基因組為參照,對黃丹木姜子葉綠體基因組進(jìn)行注釋,并對基因組中序列重復(fù)、SSR位點(diǎn)及蛋白編碼基因的密碼子使用偏性進(jìn)行分析,同時分析了木姜子屬葉綠體基因組結(jié)構(gòu)變異和系統(tǒng)發(fā)育關(guān)系,為黃丹木姜子及木姜子屬植物資源開發(fā)與利用提供理論參考。

1 材料與方法

1. 1 試驗(yàn)材料

黃丹木姜子新鮮葉片采自浙江省溫州市吹臺山森林公園,樣品置于硅膠中保存,存放于中國科學(xué)院西雙版納熱帶植物園(標(biāo)本號XTBG-BRG-SY36963)。

1. 2 葉綠體基因組測序及注釋

利用改良的CTAB法從葉組織中提取黃丹木姜子改成基因組DNA(李金璐等,2013)?;贗llumina Genome Analyzer HiSeq 2000測序平臺完成葉綠體基因組測序。去除低質(zhì)量測序片段,并使用GetOrganelle組裝獲得完整葉綠體基因組(Jin et al.,2020)。以滇南木姜子(L. garrettii)葉綠體體基因組(GenBank登錄號MN698967)為參照,利用GeSeq(https://chlorobox.mpimp-golm.mpg.de/geseq.html)對黃丹木姜子葉綠體基因組進(jìn)行注釋。使用OGDRAW v. 1.3.1(https://chlorobox.mpimp-golm.mpg.de/OGDraw.html)繪制黃丹木姜子葉綠體基因組圖譜(Greiner et al.,2019)。

1. 3 葉綠體基因組長序列重復(fù)和SSR位點(diǎn)分析

通過REPuter(Kurtz et al.,2001)分析長序列重復(fù),搜索參數(shù):最小重復(fù)長度為30 bp,序列同源性為90%,Hamming距離為3,同時分析了正向(Forward,F(xiàn))、反向(Reverse,R)、互補(bǔ)(Complementary,C)和回文(Palindromic,P)重復(fù)。利用MISA-web在線工具(Beier et al.,2017)檢測SSR,最小閾值為單核苷酸重復(fù)次數(shù)10,二核苷酸重復(fù)次數(shù)5,三核苷酸重復(fù)次數(shù)4,四核苷酸、五核苷酸和六核苷酸重復(fù)次數(shù)均為3。

1. 4 密碼子偏性分析

使用CodonW 1.4.2(http://codonw.sourceforge.net/)和EMBOSS網(wǎng)站(http://emboss.toulouse.inra.fr/)的cusp軟件分析黃丹木姜子葉綠體基因組中基因的有效密碼子數(shù)(Effective number of codon,ENC)和相對同義密碼子使用度(Relative synonymous codon usage,RSCU)(惠小涵等,2020)。06FB152F-66F4-4942-81C5-601FA2AEF053

1. 5 系統(tǒng)發(fā)育分析

從NCBI和LCGD數(shù)據(jù)庫下載木姜子屬13個物種的葉綠體基因組。將近緣類群樟(Cinnamomum camphora)和沉水樟(C. micranthum)設(shè)為外群物種(Song et al.,2020)。使用MAFFT(Katoh et al.,2019)進(jìn)行多序列比對,通過IQ-TREE(Minh et al.,2020)使用最大似然法(Maximum likelihood,ML)構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹,建樹模型為GTR+F+R2,步長值為1000。

2 結(jié)果與分析

2. 1 葉綠體基因組結(jié)構(gòu)特征分析結(jié)果

黃丹木姜子葉綠體基因組大小為154028 bp,具有典型的四分結(jié)構(gòu)(圖1),由LSC(93688 bp)、SSC(18852 bp)和2個IR(20744 bp)組成。黃丹木姜子葉綠體基因組共含126個基因,包含82個蛋白編碼基因,8個rRNA基因和36個tRNA基因,其中13個基因?yàn)殡p拷貝基因(3個為蛋白編碼基因,6個tRNA基因,4個rRNA基因)(表1);總GC含量為39.17%,四個分區(qū)中,IR的GC含量最高,其次為LSC,SSC最低;基因編碼區(qū)及tRNA和rRNA編碼區(qū)的GC含量均大于50.00%,蛋白編碼基因的GC含量與葉綠體基因組接近。

黃丹木姜子葉綠體基因組注釋基因中,有9個基因含1個內(nèi)含子,有3個基因含2個內(nèi)含子,其余基因均不含內(nèi)含子。44個基因編碼蛋白參與光合作用信號途徑,21個基因編碼蛋白構(gòu)成了核糖體大小亞基(表2)。

2. 2 葉綠體基因組序列重復(fù)分析結(jié)果

黃丹木姜子葉綠體基因組序列含有32對(64條)長序列重復(fù),其中正向重復(fù)和回文重復(fù)最多,均為12對(24條),反向重復(fù)和互補(bǔ)重復(fù)分別為6(12條)和2對(4條)(圖2-A)。定位于LSC的長序列重復(fù)占32.81%,定位于IR的長序列重復(fù)占53.13%,定位于SSC的長序列重復(fù)占14.06%。最長的重復(fù)(48 bp)定位在LSC(圖2-B)。長度為30 bp的重復(fù)數(shù)目最多,其中回文重復(fù)5對,正向和反向重復(fù)均為4對,互補(bǔ)重復(fù)為2對(圖2-C)。

黃丹木姜子葉綠體基因組中有90個SSR位點(diǎn),共12種類型(表3),其中,單核苷酸SSR位點(diǎn)數(shù)目最多,占72.22%,其次是二核苷酸SSR位點(diǎn),占11.11%,三核苷酸重復(fù)4個,四核苷酸重復(fù)9個,五核苷酸和六核苷酸重復(fù)均為1個(表3)。二核苷酸SSR中AG/CT和AT/AT數(shù)目分別為4和6個,三核苷酸重復(fù)AAT/ATT數(shù)目為4個,四核苷酸重復(fù)AAAT/ATTT數(shù)目為5。77.78%的SSR位點(diǎn)位于LSC,17.78%的SSR位點(diǎn)位于SSC,僅4.44%的SSR位點(diǎn)位于IR。最長的SSR序列為單核苷酸和六核苷酸重復(fù),大小均為18 bp。黃丹木姜子葉綠體基因組SSR序列偏好A/T堿基。69.66%的SSR位于基因間區(qū),12.36%位于編碼區(qū)序列上,17.98%位于內(nèi)含子區(qū)(圖3)。

2. 3 葉綠體基因組密碼子偏性分析結(jié)果

黃丹木姜子葉綠體蛋白編碼基因GC含量為39.14%,GC3s為27.95%,平均ENC為49.04,表明其密碼子偏性較弱。蛋白編碼基因中RSCU大于1.00的密碼子為31個(圖4和表4),其中13個以A結(jié)尾,16個以U(T)結(jié)尾,以G和C結(jié)尾的各有1個,表明黃丹木姜子葉綠體基因組蛋白編碼基因更偏好A和U(T)結(jié)尾的密碼子,與較低的基因組和蛋白編碼基因GC含量一致。

2. 4 木姜子屬植物系統(tǒng)發(fā)育分析結(jié)果

以樟和沉水樟為外類群,基于ML法利用葉綠體基因組序列構(gòu)建系統(tǒng)發(fā)育進(jìn)化樹,結(jié)果顯示,14個木姜子屬植物聚為兩大組(圖5)。其中,潺槁木姜子、尖脈木姜子和木姜子以100%的支持率聚在組Ⅰ,黃丹木姜子和其他10種木姜子屬植物聚在組Ⅱ,黃丹木姜子與日本木姜子的親緣關(guān)系最近。

3 討論

木姜子屬植物包含大約400個種,分布于亞洲、中美洲、北美洲和太平洋島嶼的熱帶和亞熱帶森林中(Fijridiyanto and Murakami,2009)。黃丹木姜子分布廣泛,其木材和種子均具有重要應(yīng)用價值。植物葉綠體基因組的高保守性使其成為探究物種分類、遺傳進(jìn)化和譜系關(guān)系的理想工具(Song et al.,2017b)。隨著高通量測序技術(shù)的發(fā)展,樟科植物(Song et al.,2020)、雙六道木屬植物(Wang et al.,2020)以及大花君子蘭(Clivia miniata)(鄭祎等,2020)、四川山胡椒(Lindera setchuenensis)(劉潮等,2021)、高良姜(Alpinia officinarum)(黃瓊林,2021)等大量植物葉綠體基因組序列被解析。與木姜子屬其他物種類似(Zhang et al.,2021),黃丹木姜子葉綠體基因組具有典型四分體結(jié)構(gòu),各區(qū)GC含量差異較大,其中IR的GC含量較高,這與rRNA的GC含量較高,且全部定位在這些區(qū)域密切相關(guān)(Xiao et al.,2020)。黃丹木姜子葉綠體蛋白編碼基因偏好A或U(T)結(jié)尾的密碼子,與樟(C. camphora)(秦政等,2018)、四川山胡椒(劉潮等,2021)和芝麻菜(Eruca sativa)(Zhu et al.,2021)等物種葉綠體基因組密碼子使用性一致,可能與葉綠體基因組較低的GC含量有關(guān),表明密碼子偏好性可能受基因組GC含量的影響。密碼子優(yōu)化可提高基因翻譯效率,密碼子分析結(jié)果可為黃丹木姜子葉綠體轉(zhuǎn)基因研究提供參考,根據(jù)葉綠體基因組的密碼子偏好對目的基因進(jìn)行優(yōu)化,以提高基因轉(zhuǎn)化和表達(dá)效率。

SSR常被用于物種鑒定、系統(tǒng)進(jìn)化分析和群體遺傳學(xué)研究(Li et al.,2021;Zhu et al.,2021)。長序列重復(fù)區(qū)域存在高度多態(tài)性,在植物基因表達(dá)和調(diào)控中起著重要作用。本研究從黃丹木姜子葉綠體基因組中鑒定到32對長序列重復(fù)和90個SSR位點(diǎn),單核苷酸SSR占比較高,與鼎湖釣樟(Lindera chunii)(Tian et al.,2019)、四川山胡椒(劉潮等,2021)和天目木姜子(Litsea auriculata)(Zhang et al.,2021)等其他樟科植物重復(fù)序列特征相似,表明單核苷酸重復(fù)可能提供了更多的系統(tǒng)發(fā)育信息。黃丹木姜子葉綠體基因組中,53.13%的長序列重復(fù)分布在IR,95.56%的SSR位點(diǎn)分布在單拷貝區(qū)(LSC和SSC),69.66%的SSR位于基因間區(qū),87.64%的SSR分布在基因的非編碼區(qū),與紅景天屬(Rhodiola)(Zhao et al.,2020)和木姜子屬(Zhang et al.,2021)植物結(jié)果一致。此外,本研究還發(fā)現(xiàn),基因組中含有較高比例的AG/CT、AT/AT、AAT/ATT和AAAT/ATTT,較高的A/T重復(fù)類SSR反映這些區(qū)域具有較高的遺傳多樣性,該結(jié)果與吊蘭屬(Chlorophytum)(Munyao et al.,2020)和山姜屬(Alpinia)(Li et al.,2020)物種研究結(jié)果類似。本研究鑒定的重復(fù)序列可作為有價值的分子標(biāo)記,用于黃丹木姜子的物種鑒定和群體遺傳學(xué)研究。06FB152F-66F4-4942-81C5-601FA2AEF053

木姜子屬植物在我國種類較多、分布廣、使用價值高,具有廣闊的開發(fā)利用前景,但由于相似種較多,木姜子屬物種的識別和區(qū)分存在一定問題?;谛螒B(tài)學(xué)的分類方法存在一定的局限性(Li et al.,2000)?;谀窘訉偃~綠體基因組序列構(gòu)建的系統(tǒng)發(fā)育進(jìn)化樹顯示,潺槁木姜子、尖脈木姜子和木姜子聚類在一組,其他木姜子屬植物聚在另一組,與前人研究結(jié)果(Liu et al.,2020;Xiao et al.,2020;Zhang et al.,2021)一致,而與基于matK、ITS序列和表型構(gòu)建的系統(tǒng)發(fā)育進(jìn)化樹不同(Li et al.,2004;Li et al.,2008)。盡管葉綠體基因組序列在物種分類和進(jìn)化研究中顯示出更高的分辨率和可靠性(Zhang et al.,2021),但對于相似種較多的木姜子屬系統(tǒng)發(fā)育分析,需要更密集而全面的物種取樣,同時結(jié)合基因組和轉(zhuǎn)錄組數(shù)據(jù),才能得到更準(zhǔn)確而系統(tǒng)的物種發(fā)育關(guān)系。葉綠體基因組特征及系統(tǒng)發(fā)育分析為黃丹木姜子物種鑒定、資源保護(hù)及開發(fā)利用等研究打下基礎(chǔ)。

4 結(jié)論

黃丹木姜子葉綠體基因組結(jié)構(gòu)保守,偏好A或U(T)結(jié)尾的密碼子,鑒定的SSR位點(diǎn)可用于物種鑒定和群體遺傳學(xué)研究。

參考文獻(xiàn):

黃瓊林. 2021. 高良姜葉綠體基因組測序與特征分析[J]. 熱帶作物學(xué)報,42(1):1-6. [Huang Q L. 2021. Complete sequencing and analysis of chloroplast genome from Alpinia officinarum Hance[J]. Chinese Journal of Tropical Crops,42(1):1-6.] doi:10.3969/j.issn.1000-2561.2021.01.001.

惠小涵,程婷婷,柯衛(wèi)東,郭宏波. 2020. 蓮藕PPO基因密碼子偏好性特征分析[J]. 江蘇農(nóng)業(yè)學(xué)報,36(2):438-446. [Hui X H,Cheng T T,Ke W D,Guo H B. 2020. Analysis on codon preference of PPO gene in lotus root[J]. Jiangsu Journal of Agricultural Sciences,36(2):438-446.] doi:10.3969/j.issn.1000-4440.2020.02.026

李金璐,王碩,于婧,王玲,周世良. 2013. 一種改良的植物DNA提取方法[J]. 植物學(xué)報,48(1):72-78. [Li J L,Wang S,Yu J,Wang L,Zhou S L. 2013. A modified CTAB protocol for plant DNA extraction[J]. Chinese Bulletin of Bo-tany,48(1):72-78.] doi:10.3724/SP.J.1259.2013.00072.

劉潮,唐利洲,韓利紅. 2021. 四川山胡椒葉綠體基因組特征及山胡椒屬系統(tǒng)發(fā)育[J]. 林業(yè)科學(xué),57(12):167-174. [Liu C,Tang L Z,Han L H. 2021. Characterization of the chloroplast genome of Lindera setchuenensis and phylogenetics of the genus Lindera[J]. Scientia Silvae Sinicae,57(12):167-174.] doi:10.11707/j.1001-7488.20211217.

劉潮,韓利紅,代小波,劉宸語. 2022. 辣椒屬葉綠體基因組特征及進(jìn)化[J]. 熱帶作物學(xué)報,43(3):447-454. [Liu C,Han L H,Dai X B,Liu C Y. 2022. Characteristics and phylogenetics of the complete chloroplast genomes of Capsicum Species[J]. Chinese Journal of Tropical Crops,43(3):447-454.] doi:10.3969/j.issn.1000-2561.2022.03. 002.

秦政,鄭永杰,桂麗靜,謝谷艾,伍艷芳. 2018. 樟樹葉綠體基因組密碼子偏好性分析[J]. 廣西植物,38(10):1346-1355. [Qin Z,Zheng Y J,Gui L J,Xie G A,Wu Y F. 2018. Codon usage bias analysis of chloroplast genome of camphora tree(Cinnamomum camphora)[J]. Guihaia,38(10):1346-1355.]

鄭祎,張卉,王欽美,高悅,張志宏,孫玉新. 2020. 大花君子蘭葉綠體基因組及其特征[J]. 園藝學(xué)報,47(12):2439-2450.] [Zheng Y,Zhang H,Wang Q M,Gao Y,Zhang Z H,Sun Y X. 2020. Complete chloroplast genome sequence of Clivia miniata and its characteristics[J]. Acta Horticulturae Sinica,47(12):2439-2450.] doi:10.16420/j.issn.0513-353x.

Beier S,Thiel T,Münch T,Scholz U,Mascher M. 2017. MISA-web:A web server for microsatellite prediction[J]. Bioinformatics,33(16):2583-2585. doi:org/10.1093/bioinformatics/btx198.06FB152F-66F4-4942-81C5-601FA2AEF053

Dong S S,Wang Y L,Xia N H,Liu Y,Liu M,Lian L,Li N,Li L F,Lang X A,Gong Y Q,Chen L,Wu E,Zhang S Z. 2021. Plastid and nuclear phylogenomic incongruences and biogeographic implications of Magnolia s.l.(Magnoliaceae)[J]. Journal of Systematics and Evolution,161(8):107171. doi:10.1111/jse.12727.

Fijridiyanto I A,Murakami N. 2009. Molecular systematics of Malesian Litsea Lam. and putative related genera(Lauraceae)[J]. Acta Phytotaxonomica et Geobotanica,60(1):1-18. doi:org/10.18942/apg.KJ00005576218.

Greiner S,Lehwark P,Bock R. 2019. OrganellarGenomeDRAW(OGDRAW) version 1.3.1:Expanded toolkit for the graphical visualization of organellar genomes[J]. Nucleic Acids Research,47(W1):W59-W64. doi:10.1093/nar/gkz238.

Jin J J,Yu W B,Yang J B,Song Y,Depamphilis C W,Yi T S,Li D Z. 2020. GetOrganelle:A fast and versatile toolkit for accurate de novo assembly of organelle genomes[J]. Genome Biology,21(1):241. doi:10.1186/s13059-020-02154-5.

Katoh K,Rozewicki J,Yamada K D. 2019. MAFFT online service: Multiple sequence alignment,interactive sequence choice and visualization[J]. Briefings in Bioinformatics,20(4):1160-1166. doi:org/10.1093/bib/bbx108.

Kurtz S,Choudhuri J V,Ohlebusch E,Schleiermacher C,Stoye J,Giegerich R. 2001. REPuter:The manifold applications of repeat analysis on a genomic scale[J]. Nucleic Acids Research,29(22):4633-4642. doi:org/10.1093/nar/29.22.4633.

Li D M,Zhu G F,Xu Y C,Ye Y J,Liu J M. 2020. Complete chloroplast genomes of three medicinal Alpinia species: Genome organization,comparative analyses and phylogenetic relationships in family Zingiberaceae[J]. Plants (Basel),9(2). doi:10.3390/plants9020286.

Li J,Christophel D C,Conran J G,Li H W. 2004. Phylogenetic relationships within the ‘core Laureae(Litsea complex,Lauraceae) inferred from sequences of the chloroplast gene matK and nuclear ribosomal DNA ITS regions[J]. Plant Systematics and Evolution,246(1-2):19-34. doi:10.1007/s00606-003-0113-z.

Li J,Christophel D C. 2000. Systematic relationships within the Litsea complex(Lauraceae): A cladistic analysis on the basis of morphological and leaf cuticle data[J]. Australian Systematic Botany,13(1):1-13. doi:org/10.1071/SB98015.

Li J,Conran J G,Christophel D C,Li Z M,Li L,Li H W. 2008. Phylogenetic relationships of the Litsea complex and core Laureae(Lauraceae) using ITS and ETS sequences and morphology[J]. Annals of the Missouri Botanical Garden,95(4):580-599. doi:10.3417/2006125.9504.06FB152F-66F4-4942-81C5-601FA2AEF053

Li L,Hu Y,He M,Zhang B,Wu W,Cai P,Huo D,Hong Y. 2021. Comparative chloroplast genomes: Insights into the evolution of the chloroplast genome of Camellia sinensis and the phylogeny of Camellia[J]. BMC Genomics,22(1):138. doi:10.1186/s12864-021-07427-2.

Li Y,Zhou J G,Chen X L,Cui Y X,Xu Z C,Li Y H,Song J Y,Duan B Z,Yao H. 2017. Gene losses and partial deletion of small single-copy regions of the chloroplast genomes of two hemiparasitic Taxillus species[J]. Scientific Reports,7(1):12834. doi:10.1038/s41598-017-13401-4.

Liu C,Chen H H,Han L H,Tang L Z. 2020. The complete plastid genome of an evergreen tree Litsea elongata(Lauraceae: Laureae)[J]. Mitochondrial DNA Part B,5(3):2483-2484. doi:10.1080/23802359.2020.1778566.

Minh B Q,Schmidt H A,Chernomor O,Schrempf D,Woodhams M D,Von Haeseler A,Lanfear R. 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era[J]. Molecular Biology and Evolution,37(5):1530-1534. doi:10.1093/molbev/msaa015.

Munyao J N,Dong X,Yang J X,Mbandi E M,Wanga V O,Oulo M A,Saina J K,Musili P M,Hu G W. 2020. Complete chloroplast genomes of Chlorophytum comosum and Chlorophytum gallabatense: Genome structures,comparative and phylogenetic analysis[J]. Plants(Basel),9(3):296. doi:10.3390/plants9030296.

Pogson B J,Ganguly D,Albrecht-Borth V. 2015. Insights into chloroplast biogenesis and development[J]. Biochimica et Biophysica Acta(BBA)-Bioenergetics,1847(9):1017-1024. doi:10.1016/j.bbabio.2015.02.003.

Song Y,Yao X,Tan Y,Gan Y,Yang J,Corlett R T. 2017a. Comparative analysis of complete chloroplast genome sequences of two subtropical trees,Phoebe sheareri and Phoebe omeiensis(Lauraceae)[J]. Tree Genetics and Genomes,13(6):120. doi:10.1007/s11295-017-1196-y.

Song Y,Yu W B,Tan Y,Liu B,Yao X,Jin J,Padmanaba M,Yang J B,Corlett R T. 2017b. Evolutionary comparisons of the chloroplast genome in Lauraceae and insights into loss events in the Magnoliids[J]. Genome Biology and Evolution,9(9):2354-2364. doi:10.1093/gbe/evx180.

Song Y,Yu W B,Tan Y H,Jin J J,Wang B,Yang J B,Liu B,Corlett R T. 2020. Plastid phylogenomics improve phylogenetic resolution in the Lauraceae[J]. Journal of Syste-matics and Evolution,58(4):423-439. doi:10.1111/jse. 12536.

Tian X,Ye J,Song Y. 2019. Plastome sequences help to improve the systematic position of trinerved Lindera species in the family Lauraceae[J]. PeerJ,7:e7662. doi:10.7717/peerj.7662.

Wang H X,Moore M J,Barrett R L,Landrein S,Sakaguchi S,Maki M,Wen J,Wang H F. 2020. Plastome phylogenomic insights into the Sino-Japanese biogeography of Diabelia(Caprifoliaceae)[J]. Journal of Systematics and Evolution,58(6):972-987. doi:10.1111/jse.12560.06FB152F-66F4-4942-81C5-601FA2AEF053

Wang J H,Moore M J,Wang H,Zhu Z X,Wang H F. 2021. Plastome evolution and phylogenetic relationships among Malvaceae subfamilies[J]. Gene,765:145103. doi:10.1016/ j.gene.2020.145103.

Wicke S,Schneeweiss G M,Depamphilis C W,Muller K F,Quandt D. 2011. The evolution of the plastid chromosome in land plants:Gene content,gene order,gene function[J]. Plant Molecular Biology,76(3-5):273-297. doi:10.1007/s11103-011-9762-4.

Xiao T,Xu Y,Jin L,Liu T J,Yan H F,Ge X J. 2020. Conflicting phylogenetic signals in plastomes of the tribe Laureae(Lauraceae)[J]. PeerJ,8:e10155. doi:10.7717/peerj.10155.

Zhang Y Y,Tian Y L,Tng D Y P,Zhou J B,Zhang Y T,Wang Z W,Li P F,Wang Z S. 2021. Comparative chloroplast genomics of Litsea Lam. (Lauraceae) and its phylogenetic implications[J]. Forests,12:744. doi:10.3390/f12060744.

Zhao D N,Ren Y,Zhang J Q. 2020. Conservation and innovation:Plastome evolution during rapid radiation of Rhodiola on the Qinghai-Tibetan Plateau[J]. Molecular Phylogenetics and Evolution,144:106713. doi:10.1016/j.ympev. 2019.106713.

Zhu B,Qian F,Hou Y,Yang W,Cai M,Wu X. 2021. Complete chloroplast genome features and phylogenetic analysis of Eruca sativa(Brassicaceae)[J]. PLoS One,16(3):e0248556. doi:10.1371/journal.pone.0248556.

Zong D,Gan P H,Zhou A P,Zhang Y,Zou X L,Duan A A,Song Y,He C Z. 2019. Plastome sequences help to resolve deep-level relationships of Populus in the family Salicaceae[J]. Frontiers in Plant Science,10:5. doi:10. 3389/fpls.2019.00005.

(責(zé)任編輯 陳 燕)06FB152F-66F4-4942-81C5-601FA2AEF053

徐汇区| 新邵县| 澄迈县| 湘潭市| 连城县| 陵水| 修水县| 巩留县| 洪江市| 视频| 聊城市| 天祝| 长白| 沭阳县| 茌平县| 大埔县| 高要市| 醴陵市| 虞城县| 兖州市| 峨眉山市| 麦盖提县| 女性| 百色市| 离岛区| 昌都县| 铜陵市| 天峨县| 池州市| 沙湾县| 民权县| 深水埗区| 阿荣旗| 岳阳县| 晋中市| 象山县| 景德镇市| 武鸣县| 确山县| 三门峡市| 长寿区|