国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

斑點(diǎn)叉尾全基因組微衛(wèi)星分布特征分析*

2022-04-11 06:45唐榮葉蘇孟園楊汶珊徐杰杰尹紹武
漁業(yè)科學(xué)進(jìn)展 2022年2期
關(guān)鍵詞:堿基特征分析斑點(diǎn)

唐榮葉 蘇孟園 楊汶珊 徐杰杰 王 濤 尹紹武

唐榮葉 蘇孟園 楊汶珊 徐杰杰 王 濤①尹紹武①

(南京師范大學(xué)海洋科學(xué)與工程學(xué)院 江蘇省特色水產(chǎn)育種與綠色高效養(yǎng)殖技術(shù)工程研究中心 江蘇 南京 210023)

微衛(wèi)星又稱簡單序列重復(fù)(simple sequence repeats, SSRs),廣泛分布于真核、原核生物以及病毒中,是由1~6 bp堿基為單元重復(fù)串聯(lián)而成的DNA序列。根據(jù)核心序列的排列差異,又分為完整型和不完整型(Morgante, 2001)。其中,完整型指重復(fù)序列中不存在其他堿基或重復(fù)序列的情況,不完整型指重復(fù)序列中存在錯配情況。目前,對微衛(wèi)星的研究主要集中于完整型(鄭燕等, 2012),因其具有多態(tài)性高、共顯性遺傳等特點(diǎn),目前被廣泛應(yīng)用于遺傳圖譜構(gòu)建(Shen, 2007; Xia, 2010)、遺傳多樣性分析和種質(zhì)資源保護(hù)(Narasimhamoorthy, 2008)等研究中。

1 材料與方法

1.1 全基因組來源

1.2 數(shù)據(jù)處理方法

2 結(jié)果與分析

2.1 斑點(diǎn)叉尾全基因組微衛(wèi)星總體分布特征

2.2 斑點(diǎn)叉尾29條染色體不同重復(fù)類型微衛(wèi)星分布特征

2.3 斑點(diǎn)叉尾全基因組微衛(wèi)星各重復(fù)類別特征

圖1 斑點(diǎn)叉尾各染色體微衛(wèi)星數(shù)量分布

圖2 斑點(diǎn)叉尾各染色體微衛(wèi)星頻率分布

Tab.1 Distribution of different types of SSRs in each chromosome of I. punctatus

圖3 斑點(diǎn)叉尾全基因組微衛(wèi)星各重復(fù)類型占比

2.4 斑點(diǎn)叉尾微衛(wèi)星各重復(fù)類型拷貝數(shù)分布特征

3 討論

3.1 斑點(diǎn)叉尾全基因組微衛(wèi)星序列分布特征分析

在本研究中,染色體DNA序列的長度與染色體上所含有的微衛(wèi)星數(shù)量具有高度相關(guān)性(SPSS,=0.98,<0.01),這與黃杰等(2012)和戚文華等(2013)的研究結(jié)果一致。同時也支持了Hancock (1996)的假說:染色體序列越長,微衛(wèi)星含量越高的趨勢。統(tǒng)計(jì)各染色體上的各種類型微衛(wèi)星數(shù)量,發(fā)現(xiàn)各類型的比例除27號和29號染色體二堿基大于單堿基外,均符合29條染色體整體微衛(wèi)星分布特征,即單堿基最多,其次是二堿基、三堿基、四堿基、五堿基和六堿基。這個規(guī)律與張琳琳等(2008)對赤擬谷盜()的研究結(jié)果相似,而與黃杰等(2012)對紅原雞()各染色體微衛(wèi)星分布情況的研究結(jié)果相差甚遠(yuǎn)。高煥等(2005)認(rèn)為,同一物種的不同染色體上,各種類型的重復(fù)序列分布有很大差異。而本研究的結(jié)果表明,各種類型的微衛(wèi)星在各染色體上的分布符合整體規(guī)律,這可能和不同物種的不同類型微衛(wèi)星的特定功能有關(guān)系。

Tab.2 Top 10 repeated copy categories of microsatellites in genomes of I. punctatus

注:占比表示該類別在各自重復(fù)類型微衛(wèi)星中的占比

Note: The percentage represents the proportion of different types of SSRs

圖4 斑點(diǎn)叉尾全基因組微衛(wèi)星重復(fù)類型重復(fù)數(shù)分布

3.2 斑點(diǎn)叉尾各堿基類型微衛(wèi)星不同類別分布特征分析

四堿基、五堿基的數(shù)量較多的前2種類別分別是AAAT、AAAC和ATAAT、AAAAC,六堿基的數(shù)量相對于前5種重復(fù)類型比較少,數(shù)量最多的2種類別是TGACTA和ATAGTC。與前3種堿基類型一樣,四堿基、五堿基和六堿基也表現(xiàn)出明顯的A/T堿基優(yōu)勢。有研究表明,DNA序列中G/C含量越高,微衛(wèi)星分布越少。對于這個現(xiàn)象,倪守勝等(2018)通過分析蝦夷扇貝()基因組的微衛(wèi)星分布特征,得出DNA復(fù)制滑動機(jī)制和重組機(jī)制使得A/T重復(fù)類型的產(chǎn)生幾率更高的結(jié)論。Schorderet等(1992)認(rèn)為,由于基因組中CpG甲基化,胞嘧啶C容易在脫氨基作用下突變?yōu)樾叵汆奏。這可能是二堿基中CG含量較少、TG (AC類型)含量較多的原因。然而Stallings (1992)的研究則表明,無論是否有CpG甲基化過程,基因組中的CG重復(fù)類別都是偏小的,他提出CpG結(jié)構(gòu)是一種有害結(jié)構(gòu)。

3.3 斑點(diǎn)叉尾各堿基類型拷貝數(shù)特征分析

BACHTROG D, AGIS M, IMHOF M,Microsatellite variability differs between dinucleotide repeat motifs: Evidence from. Molecular Biology and Evolution, 2000, 17(9): 1277–1285

BAI C C, LIU S F, ZHANG Z M. Characteristic analysis of microsatellite DNA in the genome of Gobiidae. Progress in Fishery Sciences, 2016, 37(5): 9–15 [白翠翠, 柳淑芳, 莊志猛. 蝦虎魚科(Gobiidae)基因組微衛(wèi)星DNA的分布特征. 漁業(yè)科學(xué)進(jìn)展, 2016, 37(5): 9–15]

ELLEGREN H. Heterogeneous mutation processes in human microsatellite DNA sequences. Nature Genetics, 2000, 24(4): 400–402

GAO H, KONG J. Distribution characteristics and biological function of tandem repeat sequences in the genomes of different organisms. Zoological Research, 2005, 26(5): 555– 564 [高煥, 孔杰. 串聯(lián)重復(fù)序列的物種差異及其生物功能. 動物學(xué)研究, 2005, 26(5): 555–564]

HANCOCK J M. Simple sequences and the expanding genome. BioEssays, 1996, 18(5): 421–425

HUANG J, DU L M, LI Y Z,Distribution regularities of microsatellites in thegenome. Sichuan Journal of Zoology, 2012, 31(3): 358–363 [黃杰, 杜聯(lián)明, 李玉芝, 等. 紅原雞全基因組中微衛(wèi)星分布規(guī)律研究. 四川動物, 2012, 31(3): 358–363]

HUANG J, ZHOU Y, LIU Y Z,Characteristics of microsatellites ingenome sequences using 454 GS FLX. Sichuan Journal of Zoology, 2015, 34(1): 8–14 [黃杰, 周瑜, 劉與之, 等. 基于454 GS FLX高通量測序的四川山鷓鴣基因組微衛(wèi)星特征分析. 四川動物, 2015, 34(1): 8–14]

KATTI M V, RANJEKAR P K, GUPTA V S. Differential distribution of simple sequence repeats in eukaryotic genome sequences. Molecular Biology and Evolution, 2001, 18(7): 1161–1167

KOVTUN I V, GOELLNER G, MCMURRAY C T. Structural features of trinucleotide repeats associated with DNA expansion. Biochemistry and Cell Biology, 2001, 79(3): 325–336

LEOPOLDINO A M, PENSA S D. The mutational spectrum of human autosomal tetranucleotide microsatellites. Human Mutation, 2003, 21(1): 71–79

LI W J, LI Y Z, DU L M,Comparative analysis of microsatellite sequences distribution in the genome of giant panda and polar bear. Sichuan Journal of Zoology, 2014, 33(6): 874–878 [李午佼, 李玉芝, 杜聯(lián)明, 等. 大熊貓和北極熊基因組微衛(wèi)星分布特征比較分析. 四川動物, 2014, 33(6): 874–878]

LIU Z J, LI P, ARGUE B J,Inheritance of RAPD markers in channel catfish () × blue catfish () and their F1, F2and backcross hybrids. Animal Genetics, 1998, 29: 58–62

LIU Z J, LI P, ARGUE B,Random amplified polymorphic DNA markers: Usefulness for gene mapping and analysis of genetic variation of catfish. Aquaculture, 1999, 174(1): 59– 68

LU T, WANG C, DU C,Distribution regularity of microsatellites ingenome. Sichuan Journal of Zoology, 2017, 36(4): 420–424 [盧婷, 王晨, 杜超, 等. 林麝全基因組微衛(wèi)星分布規(guī)律研究. 四川動物, 2017, 36(4): 420–424]

MICKETT K, MORTON C, FENG J,Assessing genetic diversity of domestic populations of channel catfish () in Alabama using AFLP markers. Aquaculture, 2003, 228(1/2/3/4): 91–105

MORGANTE M, HANAFEY M, POWELL W. Microsatellites are preferentially associated with non-repetitive DNA in plant genomes. Nature Genetics, 2001, 30: 194–200

NARASIMHAMOORTHY B, SAHA M C, SWALLER T,Genetic diversity in switch grass collections assessed by EST-SSR markers. Bioenergy Research, 2008, 1(2): 136–146

NI S S, YANG Y, LIU S F,Microsatellite analysis ofusing next-generation sequencing method. Progress in Fishery Sciences, 2018, 39(1): 107–113 [倪守勝, 楊鈺, 柳淑芳, 等. 基于高通量測序的蝦夷扇貝基因組微衛(wèi)星特征分析. 漁業(yè)科學(xué)進(jìn)展, 2018, 39(1): 107–113]

NIE H, CAO S S, ZHAO M L,Comparative analysis of microsatellite distributions in genomes ofandSichuanJournal of Zoology, 2017, 36(6): 639–648 [聶虎, 曹莎莎, 趙明朗, 等. 紅尾蚺和原矛頭蝮基因組微衛(wèi)星分布特征比較分析. 四川動物, 2017, 36(6): 639–648]

PEARSON C E, SINDEN R R. Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci. Biochemistry, 1996, 35(15): 5041–5053

QI W H, JIANG X M, XIAO G S,Distribution regularities of microsatellites in the pig genome. Animal Husbandry and Veterinary Medicine, 2014, 46(8): 9–13 [戚文華, 蔣雪梅, 肖國生, 等. 豬全基因組中微衛(wèi)星分布規(guī)律. 畜牧與獸醫(yī), 2014, 46(8): 9–13]

QI W H, JIANG X M, XIAO G S,Seeking and bioinformatics analysis of microsallite sequence in the genomes of cow and sheep. Acta Veterinaria et Zootechnica Sinica, 2013, 44(11): 1724–1733 [戚文華, 蔣雪梅, 肖國生, 等. 牛和綿羊全基因組微衛(wèi)星序列的搜索及其生物信息學(xué)分析. 畜牧獸醫(yī)學(xué)報, 2013, 44(11): 1724–1733]

QI W H, YAN C C, XIAO G S,Distribution regularities and bioinformatics analysis of microsatellite in the whole genomes of goat and Tibetan antelope. Journal of Sichuan University (Natural Science), 2016, 53(4): 937–944 [戚文華, 嚴(yán)超超, 肖國生, 等. 山羊和藏羚羊全基因組微衛(wèi)星分布規(guī)律及其生物信息學(xué)分析. 四川大學(xué)學(xué)報(自然科學(xué)版), 2016, 53(4): 937–944]

SCHL?TTERER C. Genome evolution: Are microsatellites really simple sequences. Current Biology, 1998, 8(4): 132– 134

SCHORDERET D F, GARTER S M. Analysis of CpG suppression in methylated and nonmethylated species. Proceedings of the National Academy of Sciences of USA, 1992, 89(3): 957–961

SHEN X, YANG G, LIU Y,Construction of genetic linkage maps of guppy () based on AFLP and microsatellite DNA markers. Aquaculture, 2007, 271(1): 178–187

SIMMONS M, MICKETT K, KUCUKTAS H,Comparison of domestic and wild channel catfish () populations provides no evidence for genetic impact. Aquaculture, 2006, 252(2/3/4): 133–146

STALLINGS R L. CpG suppression in vertebrate genomes does not account for the rarity of (CpG)n microsatellite repeats. Genomics, 1992, 13(3): 890–891

SUBRAMANIAN S, MISHRA R K, SINGH L. Genome-wide analysis of microsatellite repeats in humans: Their abundance and density in specific genomic regions. Genome Biology, 2003, 4(2): 1–10

TONG X L, DAI F Y, LI B,Microsatellite repeats in mouse: Abundance, distribution and density. Current Zoology, 2006, 52(1): 138–152 [童曉玲, 代方銀, 李斌, 等. 小鼠基因組中的微衛(wèi)星重復(fù)序列的數(shù)量、分布和密度. 動物學(xué)報, 2006, 52(1): 138–152]

TU F Y, LIU J, HAN W J,Analysis of microsatellite distribution characteristics in the entire genome ofChinese Journal of Wildlife, 2018, 39(2): 400–404 [涂飛云,劉俊,韓衛(wèi)杰,等. 食蟹猴全基因組微衛(wèi)星分布特征分析. 野生動物學(xué)報, 2018, 39(2): 400–404]

TU F Y, LIU X H, DU L M,Distribution characteristics of microsatellites in the rat genome. Acta Agriculturae Universitatis Jiangxiensis, 2015, 37(4): 708–711 [涂飛云, 劉曉華,杜聯(lián)明, 等. 大鼠全基因組微衛(wèi)星分布特征研究. 江西農(nóng)業(yè)大學(xué)學(xué)報,2015, 37(4): 708–711]

WANG C, DU L M, LI P,Distribution patterns of microsatellites in the genome of the German cockroach (). Acta Entomologica Sinica, 2015, 58(10): 1037–1045 [王晨, 杜聯(lián)明,李鵬,等. 德國小蠊全基因組中微衛(wèi)星分布規(guī)律.昆蟲學(xué)報,2015,58(10): 1037–1045]

WANG Y Y, LIU X X, DONG K Z,Distribution difference of microsatellite in 7 domestic animals genomes. China Animal Husbandry and Veterinary Medicine, 2015, 42(9): 2418–2426 [王月月, 劉雪雪, 董坤哲,等.7種家養(yǎng)動物全基因組微衛(wèi)星分布的差異研究. 中國畜牧獸醫(yī), 2015, 42(9): 2418–2426]

XIA J, LIU F, ZHU Z,A consensus linkage map of the grass carp () based on microsatellites and SNPs. BMC Genomic, 2010, 11(1): 135– 151

XU J J, ZHENG X, LI J,Distribution characteristics of whole genome microsatellite ofGenomics and Applied Biology, 2020, 39(12): 5488–5498 [徐杰杰, 鄭翔, 李杰, 等. 黃顙魚()全基因組微衛(wèi)星分布特征分析. 基因組學(xué)與應(yīng)用生物學(xué), 2020, 39(12): 5488–5498]

XU J J, ZHENG X, ZHANG X Y,Analysis of distribution characteristics of microsatellites in the four genomes of puffer fish. Genomics and Applied Biology, 2021, 40(4): 1441–1451 [徐杰杰, 鄭翔, 張鑫宇, 等. 4種河鲀?nèi)蚪M微衛(wèi)星分布特征分析研究. 基因組學(xué)與應(yīng)用生物學(xué), 2021, 40(4): 1441–1451]

ZHANG L L, WEI Z M, LIAN Z M,Abundance of microsatellites in the entire genome and EST ofChinese Bulletin of Entomology, 2008, 45(1): 38–42 [張琳琳, 魏朝明, 廉振民, 等. 赤擬谷盜全基因組和EST中微衛(wèi)星的豐度. 昆蟲知識, 2008, 45(1): 38–42]

ZHENG Y, JIN G L, WU W R. Relationship between sequence completeness and polymorphism of microsatellites. Genomics and Applied Biology, 2012, 31(6): 587–591 [鄭燕, 金谷雷, 吳為人. 微衛(wèi)星序列完整性與多態(tài)性的關(guān)系. 基因組學(xué)與應(yīng)用生物學(xué), 2012, 31(6): 587–591]

Analysis of Microsatellite Distribution Characteristics in the Channel Catfish () Genome

TANG Rongye, SU Mengyuan, YANG Wenshan, XU Jiejie, WANG Tao①, YIN Shaowu①

(College of Marine Science and Engineering, Nanjing Normal University Nanjing, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing, Jiangsu 210023, China)

To understand the distribution of perfect microsatellites in the genome of the channel catfish (), we used MISA, a bioinformatics software package, to search and analyze the microsatellites. A total of 510256 perfect microsatellites were isolated from 29 chromosomes of, with a total length of 11036941 bp. The chromosome containing the largest number of microsatellites was chromosome 2 (25284), followed by chromosomes 3, 1, and 5. Chromosome 29 had the lowest number of microsatellites (11591). The length of each chromosome was significantly correlated with the number of microsatellites it contained (SPSS,= 0.98,< 0.01). The highest relative abundance of microsatellites was found on chromosome 27 (785.03 ind./Mb), and the lowest was on chromosome 11 (615.89 ind./Mb). Among the six repeat types, mononucleotides were the most frequent, accounting for 45.31% of the total, followed by dinucleotides (38.53%), trinucleotides (8.73%), tetranucleotides (6.93%), pentanucleotides (0.46%), and hexanucleotides (0.04%). The predominantly repeated microsatellite sequences in thegenome were A, AC, AG, AT, AAT, AAAT, C, AAC, AAAC, and AAG, showing an obvious inclination towards A and T bases. The results of this study provide a reference for the further study ofgenome characteristics and contribute basic data for future investigations into molecular marker-assisted breeding and genetic information assessment of.

; Whole genome; Microsatellites; Distribution characteristics

WANG Tao, E-mail: seawater88@126.com; YIN Shaowu, E-mail: yinshaowu@163.com

S917.4

A

2095-9869(2022)02-0089-09

10.19663/j.issn2095-9869.20210126002

* 江蘇省農(nóng)業(yè)重大新品種創(chuàng)制項(xiàng)目(PZCZ201742)、江蘇省重點(diǎn)研發(fā)計(jì)劃(現(xiàn)代農(nóng)業(yè))重點(diǎn)項(xiàng)目(BE2017377)、江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金[CX(19)2034]和南京師范大學(xué)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目共同資助[This work was supported by Agricultural Major New Variety Creation Project of Jiangsu Province (PZCZ201742), Key Research and Development Program of Jiangsu Province (BE2017377), Jiangsu Agricultural Science and Technology Innovation Fund [CX(19)2034], and Innovation and Entrepreneurship Training Program for College Students in Nanjing Normal University].

唐榮葉,E-mail: 2508049280@qq.com

王 濤,副教授,E-mail: seawater88@126.com;尹紹武,教授,E-mail: yinshaowu@163.com

2021-01-26,

2021-02-23

TANG R Y, SU M Y, YANG W S, XU J J, WANG T, YIN S W. Analysis of microsatellite distribution characteristics in the channel catfish () genome. Progress in Fishery Sciences, 2022, 43(2): 89–97

(編輯 馮小花)

猜你喜歡
堿基特征分析斑點(diǎn)
西藏地區(qū)云地閃電時空分布特征分析
高校輔導(dǎo)員談心談話的話語特征分析
斑點(diǎn)豹
基因“字母表”擴(kuò)充后的生命
2021年天府機(jī)場地面風(fēng)場特征分析
創(chuàng)建新型糖基化酶堿基編輯器
生命“字母表”迎來新成員
生命“字母表”迎來4名新成員
2016年熊本MW7—1地震前GPS形變特征分析
Finding beauty in your scars Alexandra Heather Foss