王 曉 廖冬芽 俞立雄 高 雷 段辛斌 陳大慶 蘇云垓 歐陽珊
溫度梯度對(duì)四大家魚臨界游泳速度的影響*
王 曉1,2廖冬芽3俞立雄2高 雷2段辛斌2陳大慶2蘇云垓4歐陽珊1①
(1. 南昌大學(xué)生命科學(xué)學(xué)院 江西 南昌 330031;2. 中國(guó)水產(chǎn)科學(xué)研究院長(zhǎng)江水產(chǎn)研究所 農(nóng)業(yè)農(nóng)村部長(zhǎng)江中上游漁業(yè)資源環(huán)境科學(xué)觀測(cè)實(shí)驗(yàn)站 湖北 武漢 430223;3. 江西省水利規(guī)劃設(shè)計(jì)研究院 江西 南昌 330029;4. 長(zhǎng)江四大家魚監(jiān)利老江河原種場(chǎng) 湖北 監(jiān)利 433300)
在水利工程建設(shè)中,魚道是一項(xiàng)重要的生態(tài)補(bǔ)償措施,研究魚類游泳能力可為魚道等過魚設(shè)施設(shè)計(jì)提供參考數(shù)據(jù)。本研究以四大家魚為研究對(duì)象,分別測(cè)定其在不同溫度(10℃、15℃、20℃、25℃和30℃)梯度下的臨界游泳速度。結(jié)果顯示,在10℃~30℃溫度范圍內(nèi),青魚()、草魚()、鰱()、鳙()的相對(duì)臨界游泳速度分別為(3.93±0.24~9.94±1.65) BL/s、(3.50±0.48~10.55± 2.07) BL/s、(0.95±0.04~4.68±0.58) BL/s、(2.22±0.18~3.95±0.23) BL/s [BL為實(shí)驗(yàn)魚的體長(zhǎng)(cm)]。在水溫為10℃~20℃范圍內(nèi),四大家魚的絕對(duì)臨界游泳速度和相對(duì)臨界游泳速度均隨水溫升高而增大,基本表現(xiàn)為在20℃時(shí)達(dá)到最大值,隨后趨于穩(wěn)定,且20℃組四大家魚游泳能力顯著高于15℃組和10℃組,20℃組、25℃組和30℃組四大家魚臨界游泳速度均無顯著性差異。此外,隨著溫度的升高,草魚的游泳能力增加速度高于其他3種魚。相同溫度條件下,草魚和青魚的臨界游泳速度相近,均極顯著高于鰱和鳙(<0.01)。當(dāng)考慮過魚對(duì)象為四大家魚時(shí),建議延長(zhǎng)魚道在夏季的開放時(shí)間,將鳙的臨界游泳速度作為魚道設(shè)計(jì)的主要依據(jù)。
水溫;魚道;游泳能力;四大家魚
水利樞紐的建設(shè)改變了河流的天然條件,直接影響河道的水動(dòng)力特征,阻斷魚類的洄游通道(楊宇等, 2006)。在水利樞紐中修建過魚設(shè)施是一項(xiàng)重要的生態(tài)補(bǔ)償工程,可以滿足魚類繁殖、索餌及越冬洄游需求。魚類游泳能力是魚道流速設(shè)計(jì)的主要依據(jù),是決定過魚設(shè)施成敗的重要因素之一(陳凱麒等, 2012)。魚類能否順利上溯取決于魚道內(nèi)水動(dòng)力條件和其自身游泳能力,因此,水力學(xué)特性與魚類行為學(xué)結(jié)合的研究對(duì)恢復(fù)河流連通性和保護(hù)水生生物具有重要意義。
青魚()、草魚()、鰱()和鳙()合稱“四大家魚”,是我國(guó)特有的經(jīng)濟(jì)魚類,也是長(zhǎng)江流域魚道主要針對(duì)的過魚對(duì)象(李思發(fā)等, 1998)。長(zhǎng)江是四大家魚的主要繁殖棲息地,該水系四大家魚種質(zhì)性狀明顯優(yōu)于其他水系。水利工程建設(shè)運(yùn)行改變長(zhǎng)江的天然水文情勢(shì),阻斷四大家魚洄游通道,對(duì)漁業(yè)資源產(chǎn)生明顯影響。20世紀(jì)60年代,贛江峽江、新干江段“四大家魚”苗天然產(chǎn)量曾高達(dá)25×108尾,20世紀(jì)80年代降至13×108尾,20世紀(jì)末已降至2000萬尾左右,2009年通過新干段的“四大家魚”卵苗徑流量?jī)H為600萬粒(尾)(劉彬彬等, 2009)。為減緩大壩的阻隔影響,應(yīng)基于魚類的游泳能力設(shè)計(jì)魚道,從而維護(hù)水域生態(tài)平衡,保護(hù)漁業(yè)資源。
溫度是魚類生存活動(dòng)中重要的環(huán)境因子,對(duì)魚類游泳運(yùn)動(dòng)的生理代謝產(chǎn)生直接影響(施兆鴻等, 2016)。臨界游泳速度(critical swimming speed,crit)是評(píng)價(jià)魚類游泳能力的重要指標(biāo)(Zeng, 2009; 王萍等, 2010)。研究發(fā)現(xiàn),不同溫度下魚類臨界游泳速度不同,如在34℃下,鳊()的相對(duì)臨界游泳速度為(8.82±0.27) BL/s [BL為實(shí)驗(yàn)魚的體長(zhǎng)(cm)],而在10℃下其相對(duì)臨界游泳速度為(6.01± 0.32) BL/s(楊陽等, 2013)。研究表明,魚類游泳運(yùn)動(dòng)有一個(gè)最佳溫度,當(dāng)水溫偏離最佳溫度時(shí),魚類將通過生理功能和游泳行為調(diào)節(jié)維持自身平衡(Pang, 2013),表現(xiàn)為游泳能力減弱,代謝壓力增加(袁喜等, 2014)。鑒于環(huán)境溫度對(duì)魚類游泳能力具有較大影響,同時(shí)考慮到長(zhǎng)江中下游流域水溫主要變幅為10℃~ 30℃,本研究根據(jù)長(zhǎng)江自然水文變化情況,設(shè)計(jì)了 5個(gè)溫度(10℃、15℃、20℃、25℃和30℃)梯度,分別測(cè)量青魚、草魚、鰱和鳙的臨界游泳速度,以期了解不同溫度下“四大家魚”游泳能力的差異,為魚道流速設(shè)計(jì)與改進(jìn)提供游泳能力參數(shù),也為提升“四大家魚”增殖放流效果提供科學(xué)依據(jù)。
本研究于2020年6月—8月在長(zhǎng)江四大家魚湖北監(jiān)利老江河原種場(chǎng)開展,實(shí)驗(yàn)所用青魚、草魚、鰱和鳙取自老江河原種場(chǎng),共計(jì)80尾。實(shí)驗(yàn)魚處于同一發(fā)育期,每種實(shí)驗(yàn)魚均選擇體長(zhǎng)一致的樣本,青魚平均體長(zhǎng)為(9.73±0.94) cm、草魚為(7.36±1.00) cm、鰱為(9.91±1.72) cm以及鳙為(15.53±0.84) cm,實(shí)驗(yàn)魚活力正常,外觀無傷且鱗片完整。
本研究設(shè)置5組溫度梯度,分別為10℃、15℃、20℃、25℃和30℃(其中,10℃和15℃為低溫狀態(tài),20℃、25℃和30℃為常溫狀態(tài)),每個(gè)溫度組均測(cè)定4尾魚,控制每種魚在5個(gè)溫度組間的平均體長(zhǎng)一致,探究5個(gè)溫度梯度下四大家魚的游泳能力。實(shí)驗(yàn)開始前用恒溫冷暖機(jī)調(diào)節(jié)5個(gè)溫度梯度(溫度變化±1℃/d),分別對(duì)應(yīng)5個(gè)不同自凈化循環(huán)控溫水箱,在設(shè)定溫度下暫養(yǎng)7 d,連續(xù)充氧24 h,每天換水一次。實(shí)驗(yàn)開始時(shí)將實(shí)驗(yàn)魚移至游泳能力測(cè)定裝置密封區(qū)域內(nèi),控制裝置內(nèi)環(huán)境條件(水溫、水質(zhì)等)與暫養(yǎng)水箱相同,讓實(shí)驗(yàn)魚在低流速(5 cm/s)適應(yīng)2 h,整個(gè)過程保證溶氧量在7 mg/L以上。
魚類游泳速度測(cè)定設(shè)備購(gòu)自丹麥Loligo system公司,包括環(huán)形實(shí)驗(yàn)水槽、水泵、電機(jī)、動(dòng)力輸出控制器等,使用溶氧儀(上海維賽儀器公司的YSI550A)測(cè)定溶氧,2 HP恒溫冷暖機(jī)(8℃~40℃)調(diào)節(jié)水溫,流速儀(重慶水文儀器廠LS45A型旋杯式)測(cè)定不同葉輪轉(zhuǎn)速下環(huán)形實(shí)驗(yàn)水槽游泳區(qū)域內(nèi)的流速,建立魚類游泳區(qū)域水流速度與葉輪轉(zhuǎn)速之間的關(guān)系。環(huán)形實(shí)驗(yàn)水槽體積為90 L,游泳測(cè)試斷面尺寸為20 cm× 20 cm×70 cm (圖1)。其工作原理為在密封區(qū)域內(nèi),假設(shè)游泳速度與水流速度相等,通過調(diào)頻器控制電機(jī)轉(zhuǎn)速使水流速度發(fā)生變化,環(huán)形槽內(nèi)多孔整流器使游泳區(qū)域各處水流速度為均勻流,采用流速儀對(duì)不同葉輪轉(zhuǎn)數(shù)下的流速進(jìn)行測(cè)量,最終通過控制葉輪轉(zhuǎn)數(shù)得出魚類游泳速度。整個(gè)環(huán)形實(shí)驗(yàn)水槽采用透明的樹脂玻璃,從側(cè)面和頂部均能清晰地觀察魚類游泳行為。
圖1 魚類游泳能力測(cè)試水槽
a1和a2:動(dòng)力部分;b:動(dòng)力控制部分;c:水泵;d:游泳區(qū)域;e:參數(shù)檢驗(yàn)部位;f:冷暖機(jī)
a1and a2: Power part; b: Control part; c: Water pump; d: Swimming area; e: Parameter detection area; f: Heating and cooling machine
實(shí)驗(yàn)中臨界游泳速度的測(cè)定采用Brett流速遞增法(1964)。正式實(shí)驗(yàn)開始之前,先進(jìn)行預(yù)估實(shí)驗(yàn)魚的絕對(duì)臨界游泳速度(e)。選取1尾健康且無損傷的實(shí)驗(yàn)魚放入水槽,在低流速(5 cm/s)的環(huán)境中適應(yīng)1 h,消除魚體轉(zhuǎn)移過程中產(chǎn)生的脅迫。之后每2 min增加0.4 BL/s的速度,直至實(shí)驗(yàn)魚疲勞無法游動(dòng),此時(shí)流速即為e,從而確定正式實(shí)驗(yàn)時(shí)絕對(duì)臨界游泳速度實(shí)際值(absolute critical swimming speed,a)的增量Δ(15%e)。
實(shí)驗(yàn)數(shù)據(jù)使用Excel 2019進(jìn)行常規(guī)計(jì)算,采用SPSS 21.0進(jìn)行數(shù)據(jù)分析比較。對(duì)全部相對(duì)臨界游泳速度的觀察值進(jìn)行雙因素協(xié)方差分析(two-way ANCOVAA)。不同溫度條件下的絕對(duì)臨界游泳速度和相對(duì)臨界游泳速度比較采用單因素方差分析(one-way ANOVA),利用Duncan法進(jìn)行多重比較及顯著性檢驗(yàn),顯著性概率臨界值為0.05。統(tǒng)計(jì)數(shù)值用平均值±標(biāo)準(zhǔn)誤(Mean±SE)表示。
不同溫度下“四大家魚”臨界游泳速度不同(表1)。水溫為10℃時(shí),青魚相對(duì)臨界游泳速度[r為(3.93± 0.24) BL/s]最高,草魚[r為(3.50±0.48) BL/s]、鳙[r為(2.22±0.18) BL/s]次之,鰱最低[r為(0.95± 0.04) BL/s];水溫為15℃時(shí),草魚相對(duì)臨界游泳速度[r為(7.38± 0.08) BL/s]最高,青魚[r為(6.73±0.25) BL/s]、鳙[r為(3.03±0.47) BL/s]次之,鰱[r為(2.19±0.28) BL/s]最低;常溫條件下(20℃、25℃和30℃),4種魚的相對(duì)臨界游泳速度均以草魚[Ur為(9.83±0.73) BL/s]最高,青魚[r為(8.91±0.91) BL/s]、鰱[r為(5.13±0.48) BL/s]次之,鳙[r為(4.23±0.46)BL/s]最低。根據(jù)表1中不同溫度梯度下臨界游泳速度變化可知,草魚的臨界游泳速度隨溫度升高增加最快。
表1 不同溫度下“四大家魚”的臨界游泳速度
Tab.1 The critical swimming speed of four major Chinese carps under different temperature
續(xù)表
注:同一行中標(biāo)有不同字母表示組間差異顯著(<0.05)
Note: Values with the different letters in the same line are significantly different (<0.05)
以“四大家魚”的體長(zhǎng)作為協(xié)變量,溫度和種類為固定變量,對(duì)實(shí)驗(yàn)得到的所有相對(duì)臨界游泳速度進(jìn)行雙因素協(xié)方差分析。結(jié)果顯示,體長(zhǎng)對(duì)四大家魚的相對(duì)臨界游泳速度無顯著影響(>0.05),溫度與種類及二者的交互作用均會(huì)對(duì)四大家魚的相對(duì)臨界游泳速度有顯著影響(<0.05)(表2)。
水溫在10℃~20℃范圍內(nèi),“四大家魚”的絕對(duì)臨界游泳速度和相對(duì)臨界游泳速度均隨水溫升高而增大。當(dāng)水溫達(dá)到20℃后,“四大家魚”的絕對(duì)臨界游泳速度和相對(duì)臨界游泳速度基本趨于穩(wěn)定,可以看出,水溫在20℃時(shí),“四大家魚”的游泳能力已達(dá)到其最好水平。總體上,低溫條件下(10℃和15℃)“四大家魚”的臨界游泳速度均極顯著低于常溫條件下(20℃、25℃和30℃)(<0.01)(圖2)。
表2 溫度與種類對(duì)“四大家魚”相對(duì)臨界游泳速度影響的雙因素協(xié)方差分析
Tab.2 Two-way ANCOVAA analysis of the influence of temperature and species on the relativel critical swimming speed of the four major Chinese carps
圖2 “四大家魚”在不同溫度梯度下臨界游泳速度的比較
a:“四大家魚”在不同溫度梯度下絕對(duì)臨界游泳速度(a)比較;b:“四大家魚”在不同溫度梯度下相對(duì)臨界游泳速度(r)比較;不同小寫字母a、b、c和d為數(shù)據(jù)間差異顯著(<0.05)。黑線代表標(biāo)準(zhǔn)差
a: The absolute critical swimming speed (a) of four major home fishes under different temperature gradients; b: The relative critical swimming speed (r) of four major home fishes under different temperature gradients; Different lowercase letters a, b, c, and d show significant difference between the data (<0.05). Black bars refer to standard deviations
溫度會(huì)直接或間接引起魚類生理特性和功能的變化,從而對(duì)魚類的游泳能力產(chǎn)生影響(蔣清等, 2016)。大量研究表明,魚類的臨界游泳速度與溫度呈“線性”(Jain, 2003)或“鐘形”(Kokita, 2002)的變化關(guān)系。“線性”是指隨溫度的上升,臨界游泳速度不斷增大,“鐘形”是指達(dá)到最適溫度前臨界游泳速度隨水溫的升高而增大,在處于最適溫度范圍內(nèi)呈現(xiàn)平臺(tái)期,超過魚類最適溫度范圍隨溫度升高而減小,本研究中,溫度與臨界游泳速度的關(guān)系屬于后者。魚類作為變溫動(dòng)物,在適溫條件下,其代謝水平隨溫度的升高而增強(qiáng)(劉玲等, 2018)。Randall等(1991)研究表明,“四大家魚”為溫水性魚類,其生長(zhǎng)適宜溫度為20℃~28℃,在常溫條件下魚類的臨界游泳速度顯著高于低溫(Guderley, 2004)。本研究與上述的研究結(jié)論一致,在低溫時(shí)“四大家魚”的臨界游泳速度較低,隨著溫度的升高其臨界游泳速度顯著增加。其可能原因是魚類有氧運(yùn)動(dòng)受肌肉收縮力影響,適溫環(huán)境有助于提高魚體肌細(xì)胞線粒體功能,包括線粒體數(shù)量的增加、內(nèi)嵴構(gòu)造的改變、酶活性和細(xì)胞膜流動(dòng)性的增加等(Randall, 1991; Johnson, 1995)及提升腺嘌呤核苷三磷酸(ATP)、磷酸肌酸(PCr)和葡萄糖(Glc)等物質(zhì)代謝底物濃度水平,增強(qiáng)氧化磷酸化效率,從而提高魚類游泳能力(Kieffer, 2000; Pang, 2011)。溫度對(duì)魚類游泳能力影響還同水的物理特性(黏度和密度)有關(guān),隨著溫度升高,水的黏稠度逐漸變小,故體型相同的魚類在常溫水體運(yùn)動(dòng)的阻力小于低溫水體 (閆冠杰, 2012)。
不同水溫條件下,青魚、草魚、鰱和鳙的游泳能力不同(涂志英, 2012)。本研究中,低溫條件下(10℃和15℃),4種魚的相對(duì)臨界游泳速度均以草魚[r為(5.43±1.97) BL/s]最高,青魚[r為(5.34±1.42) BL/s]、鳙[r為(2.616 25±0.52) BL/s]次之,鰱[r為(1.571 25± 0.65) BL/s]最低;常溫條件下(20℃、25℃和30℃), 4種魚的相對(duì)臨界游泳速度均以草魚[r為(9.83± 0.73) BL/s]最高,青魚[r為(8.91±0.91) BL/s]、鰱[r為(5.13±0.48) BL/s]次之,鳙[r為(4.23±0.46) BL/s]最低。
表3 長(zhǎng)江流域幾種不同體形魚類的臨界游泳速度比較
Tab.3 Comparison of critical swimming speeds of fishes with different body types in Yangtze River
體長(zhǎng)因子和環(huán)境溫度對(duì)魚類的游泳行為具有較大影響(李會(huì)鋒, 2016)。一般而言,魚類的絕對(duì)臨界游泳速度隨著體長(zhǎng)增大而增加,相對(duì)臨界游泳速度隨著體長(zhǎng)增大而減小,例如,鯽() (段辛斌等, 2015)、擬大比目魚(Stobutzki, 1998)、條紋鱸() (Peterson, 2001)等臨界游泳速度都符合這種規(guī)律。在水溫未達(dá)到最適宜魚類游泳條件時(shí),魚類的臨界游泳速度也隨著溫度增加而增大(楊陽等, 2013)。本研究也表明,在水溫未達(dá)到20℃時(shí),四大家魚游泳能力均隨水溫的升高而增強(qiáng)。
魚類臨界游泳速度是魚道設(shè)計(jì)參考的重要指標(biāo),能為魚道池室的長(zhǎng)度、最大流速及休息室間距的設(shè)計(jì)提供參考。魚道內(nèi)水流速度控制在相應(yīng)魚類的臨界游泳速度以下,可確保魚類長(zhǎng)時(shí)間持續(xù)游泳運(yùn)動(dòng)而不會(huì)出現(xiàn)過度疲勞(石小濤等, 2011; 劉慧杰等, 2016)。在魚道設(shè)計(jì)過程中,針對(duì)不同的過魚對(duì)象需設(shè)計(jì)不同的流速下限值,通常以游泳能力最弱的物種作為極限流速的參考依據(jù)(李志敏等, 2018)。因此,過魚對(duì)象為“四大家魚”時(shí),因夏季是其洄游的高峰期,同時(shí)池室水流速度可調(diào)節(jié)范圍大,建議延長(zhǎng)魚道在夏季的開放時(shí)間,同時(shí)將鳙的臨界游泳速度作為魚道設(shè)計(jì)的主要依據(jù)。
水溫是影響魚類生理?xiàng)l件和游泳能力的重要生態(tài)因子。適宜的溫度可以提高魚類生理適應(yīng)性,從而影響魚類游泳能力。本研究在低溫條件下(10℃和15℃)“四大家魚”的臨界游泳速度與常溫條件下(20℃、25℃和30℃)的臨界游泳速度相比,均存在極顯著性差異(<0.01),水溫在20℃時(shí),“四大家魚”的游泳能力已達(dá)到其最好水平。通過比較“四大家魚”的臨界游泳速度,青魚和草魚的游泳能力較強(qiáng),鰱和鳙的游泳能力相對(duì)較弱。當(dāng)考慮過魚對(duì)象為“四大家魚”時(shí),建議延長(zhǎng)魚道在夏季的開放時(shí)間,將鳙的臨界游泳速度作為魚道設(shè)計(jì)的主要依據(jù)。
CHEN K Q, CHANG Z N, CAO X H,. Status and prospection of fish pass construction in China. Journal of Hydraulic Engineering, 2012, 43(2): 182–188 [陳凱麒, 常仲農(nóng), 曹曉紅, 等. 我國(guó)魚道的建設(shè)現(xiàn)狀與展望. 水利學(xué)報(bào), 2012,43(2): 182–188]
DING S B, SHI J Y, HUANG B,. Swimming capability of six typical fish species from the lower Dadu River. Journal of Hydroecology, 2020, 41(1): 46–52 [丁少波, 施家月, 黃濱, 等. 大渡河下游典型魚類的游泳能力測(cè)試. 水生態(tài)學(xué)雜志, 2020, 41(1): 46–52]
DUAN X B, YU L X, LUO H W,Critical swimming speed comparison of four species of fish at two acclimation temperature. Chinese Journal of Zoology, 2015, 50(4): 529– 536 [段辛斌, 俞立雄, 羅宏偉, 等. 兩種溫度條件下四種魚類臨界游泳速度的比較. 動(dòng)物學(xué)雜志, 2015, 50(4): 529–536]
FU S J, FU C, YAN G J,Interspecific variation in hypoxia tolerance, swimming performance and plasticity in cyprinids that prefer different habitats. Journal of Experimental Biology, 2014, 217: 590–597
FU X, FU C, FU S J. Comparison of swimming ability among five freshwater fish species. Chinese Journal of Ecology, 2020, 39(5): 1629–1635 [付翔, 付成, 付世建. 五種淡水魚類幼魚游泳能力的比較. 生態(tài)學(xué)雜志, 2020, 39(5): 1629–1635]
GUDERLEY H. Locomotor performance and muscle metabolic capacities: Impact of temperature and energetic status. Comparative Biochemistry and Physiology, Part B: Biochemistry and Molecular Biology, 2004, 139(3): 371– 382
HE D R, CAI H C. Fish ethology. Xiamen: Xiamen University Press, 1998, 216–222 [何大仁, 蔡厚才. 魚類行為學(xué). 廈門: 廈門大學(xué)出版社, 1998, 216–222]
JAIN K E. Influence of seasonal temperature on the repeat swimming performance of rainbow troutss. Journal of Experimental Biology, 2003, 206(20): 3569–3579
JIANG Q, HUANG Y P, YUAN X,. Effects of fatigue and temperature on the swimming performance and metabolic rate of juvenile silver carp (). Journal of Hydroecology, 2016, 37(6): 89–94 [蔣清, 黃應(yīng)平, 袁喜, 等. 不同溫度下重復(fù)疲勞運(yùn)動(dòng)對(duì)鰱幼魚游泳能力及代謝率的影響. 水生態(tài)學(xué)雜志, 2016, 37(6): 89–94]
JOHNSON T P, BENNETT A F. The thermal acclimation of burst swimming escape per-formance in fish: An integrated study of molecular and cellular physiology and organismal performance. Journal of Experimental Biology, 1995, 198: 2165–2175
KIEFFER J D. Limits to exhaustive exercise in fish. Comparative Biochemistry and Physiology, Part A: Molecular and Integrative Physiology, 2000, 126(2): 161–179
KOKITA T, MIZOTA T. Male secondary sexual traits are hydrodynamic devices for enhancing swimming performance in a monogamous filefish. Journal of Ethology, 2002, 20(1): 35–42
LI H F. Swimming ability of carp and the application in the design of the fish way. Master′s Thesis of Guangxi University, 2016, 15–26 [李會(huì)鋒. 鯉科魚游泳能力及其在魚道設(shè)計(jì)中的應(yīng)用. 廣西大學(xué)碩士研究生學(xué)位論文, 2016, 15–26]
LI S F, LU G Q, BERNATCHEZ L. Diversity of mitochondrial and in the populations of silver carp, bighead carp, grass carp and black carp in the middle and lower reaches of the Yangtze River. Acta Zoologica Sinica, 1998, 44(1): 82–93 [李思發(fā), 呂國(guó)慶, L. 貝納切茲. 長(zhǎng)江中下游鰱鳙草青四大家魚線粒體DNA多樣性分析. 動(dòng)物學(xué)報(bào), 1998, 44(1): 82–93]
LI Z M, CHEN M X, JIN Z J,Swimming ability ofDdy in Yarkand River. Chinese Journal of Ecology, 2018, 37(6): 1897–1902 [李志敏, 陳明曦, 金志軍, 等. 葉爾羌河厚唇裂腹魚的游泳能力. 生態(tài)學(xué)雜志, 2018, 37(6): 1897–1902]
LIU B B, WU Z Q, HU M L,Spawning sites of four major Chinese carps in the middle reaches of Ganjiang River. Jiangxi Science, 2009, 27(5): 662–666 [劉彬彬, 吳志強(qiáng), 胡茂林, 等. 贛江中游四大家魚產(chǎn)卵場(chǎng)現(xiàn)狀初步調(diào)查. 江西科學(xué), 2009, 27(5): 662–666]
LIU H J, WANG C F, ZHU L K,Comparative study of critical swimming speeds for juvenile silver and bighead carp. Journal of Hydroecology, 2016, 37(4): 63–69 [劉慧杰, 王從鋒, 朱良康, 等. 鰱鳙幼魚臨界游泳速度的比較研究. 水生態(tài)學(xué)雜志, 2016, 37(4): 63–69]
LIU L, CHEN C, LI Y L,Effects of short-term temperature stress on antioxidant and digestive enzymes of hybrid progeny (♀×).Progress in Fishery Sciences, 2018, 39(2): 78–87 [劉玲, 陳超, 李炎璐, 等. 短期溫度脅迫對(duì)駝背鱸(♀) × 鞍帶石斑魚()雜交子代幼魚抗氧化及消化酶活性的影響. 漁業(yè)科學(xué)進(jìn)展, 2018, 39(2): 78–87]
MILLIGAN C L, WOOD C M. Muscle and liver intracellular acid-base and metabolite status after strenuous activity in the inactive, benthic starryflounder. Physiological Zoology, 1987, 60: 54–68
PANG X, CAO Z D, FU S J. The effects of temperature on metabolic interaction between digestion and locomotion in juveniles of three cyprinid fish (,and). Comparative Biochemistry and Physiology, Part A: Molecular and Integrative Physiology, 2011, 159: 253–260
PANG X, YUAN X Z, CAO Z D,The effects of temperature and exercise training on swimming performance in juvenile Qingbo (). Journal of Comparative Physiology, Part B: Biochemical Systemic and Environmental Physiology, 2013, 183(1): 99–108
PETERSON R H, HARMON P. Swimming ability of pre-feeding striped bass larvae. Aquaculture International, 2001, 9(5): 361–366
RANDALL D J, BRAUNER C J. Effects of environmental factors on exercise in fish. Journal of Experimental Biology, 1991, 160(1): 113–126
SHI X T, CHEN Q W, HUANG Y P,Review on the methods to quantify fish’s ability to cross velocity barriers in fish passage. Acta Ecologica Sinica, 2011, 31(22): 6967–6972 [石小濤, 陳求穩(wěn), 黃應(yīng)平, 等. 魚類通過魚道內(nèi)水流速度障礙能力的評(píng)估方法. 生態(tài)學(xué)報(bào), 2011, 31(22): 6967– 6972]
SHI Z H, XIE M M, PENG S M,. Effects of temperature stress on activities of digestive enzymes and serum biochemical indices ofjuveniles. Progress in Fishery Sciences, 2016, 37(5): 30–37 [施兆鴻, 謝明媚, 彭士明, 等. 溫度脅迫對(duì)銀鯧()幼魚消化酶活性及血清生化指標(biāo)的影響. 漁業(yè)科學(xué)進(jìn)展, 2016, 37(5): 30–37]
STOBUTZKI I C. Interspecific variation in sustained swimming ability of late pelagic stage reef fish from two families (Pomacentridae and Chaetodontidae). Coral Reefs, 1998, 17(2): 111–119
TU Z Y. Research of swimming performance of several typical fish in the Yalong River. Master′s Thesis of Wuhan University, 2012, 47–53 [涂志英. 雅礱江流域典型魚類游泳特性研究. 武漢大學(xué)碩士研究生學(xué)位論文, 2012, 47–53]
VIA J D, HUBER M, WIESER W,. Temperature-related respones of intermediary metabolism to forced exercise and recovery in juvenile(Cyprinidae: Teleostei). Physiological Zoology, 1989, 62: 964–976
WANG L L, WANG C F, KOU F L,Study of critical swimming speed of four species of fish from Beipanjiang River. Journal of China Three Gorges University (Natural Sciences), 2016(38): 15–19 [汪玲瓏, 王從鋒, 寇方露, 等. 北盤江四種魚類臨界游泳速度研究. 三峽大學(xué)學(xué)報(bào)(自然科學(xué)版), 2016(38): 15–19]
WANG P, GUI F K, WU C W. Research progress on measurements of fish swimming ability.Journal of Fishery Sciences of China, 2010, 17(5): 1137–1146 [王萍, 桂福坤, 吳常文. 魚類游泳速度分類方法的探討. 中國(guó)水產(chǎn)科學(xué), 2010, 17(5): 1137–1146]
YAN G J. Interspecific comparion in morphology and swimming performance within Cyprinidae. Master′s Thesis of Chongqing Normal University, 2012, 19–23 [閆冠杰. 鯉科魚類形態(tài)及游泳能力的種間比較. 重慶師范大學(xué)碩士研究生學(xué)位論文, 2012, 19–23]
YANG Y, CAO Z D, FU S J. Effects of water temperature on the critical swimming speed and metabolic scope of juvenile. Chinese Journal of Ecology, 2013, 32(5): 1260–1264 [楊陽, 曹振東, 付世建. 溫度對(duì)鳊幼魚臨界游泳速度和代謝范圍的影響. 生態(tài)學(xué)雜志, 2013, 32(5): 1260–1264]
YANG Y, YAN Z M, CHEN J S. Studies on the ecological function of fish pathways. Reservoir Fisheries, 2006, 26(3): 65–67 [楊宇, 嚴(yán)忠民, 陳金生. 魚道的生態(tài)廊道功能研究. 水利漁業(yè), 2006, 26(3): 65–67]
YUAN X, LI L P, TU Z Y,The effect of temperature on fatigue induced changes in physiology and swimming ability of juvenile(bighead carp). Acta Hydrobiologica Sinica, 2014, 38(3): 505–509 [袁喜, 李麗萍, 涂志英, 等. 溫度對(duì)鳙幼魚疲勞引起的生理變化和游泳能力的影響研究. 水生生物學(xué)報(bào), 2014, 38(3): 505–509]
ZENG L Q, CAO Z D, FU S J,. Effect of temperature on swimming performance in juvenile southern catfish (). Comparative Biochemistry and Physiology, 2009, 153: 125–130
Effect of Temperature Gradient on the Critical Swimming Speed of Four Major Chinese Carps
WANG Xiao1,2, LIAO Dongya3, YU Lixiong2, GAO Lei2, DUAN Xinbin2, CHEN Daqing2, SU Yungai4, OUYANG Shan1①
(1. School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China; 2. Fishery Resources and Environmental Science Experimental Station of the Upper-Middle Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China; 3. Jiangxi Provincial Design & Research Institute of Water Conservancy & Hydropower, Nanchang, Jiangxi 330029, China; 4. National Original Breeding Farm (NOBF) located in Jianli, Jianli, Hubei 433300, China)
Fishways are important ecological compensation measures that come with the construction of waterpower dams. Investigation of their swimming capability will provide the basis required for the design of fishery passage facilities. In this study, we used four major Chinese carp species to measure critical swimming speeds under five temperature gradients (10℃, 15℃, 20℃, 25℃, and 30℃). The results showed that the relative critical swimming speeds of,, andwere (3.93±0.24)~(9.94±1.65) BL/s, (3.50±0.48)~(10.55±2.07) BL/s, (0.95±0.04)~(4.68±0.58) BL/s, and (2.22±0.18)~(3.95±0.23) BL/s, respectively, across 10℃~30℃. The absolute critical swimming speed and relative critical swimming speed of the four major Chinese carp species increased with the increase in water temperature at 10℃to 20℃. The absolute critical swimming speed and relative critical swimming speed reached a maximum at 20℃, and then tended to stabilize. The swimming capability at 20℃ was significantly higher than that at 15℃ and 10℃, but was not significantly different from that at 25℃ and 30℃. In addition, the critical swimming speeds ofincreased faster than that of the other three species of the four major Chinese carp, as the temperature increased. At the same temperature, the critical swimming speeds ofandwere similar, and significantly higher than those ofand(<0.01). Based on the results of this study, we suggest that the opening time of the fishway should be extended in the summer in the year, and the critical swimming speed ofshould be taken as the main basis during fishway designing.
Water temperature; Fishway; Swimming ability; Four major Chinese carps
OUYANG Shan, E-mail: ouys1963@qq.com
S917.4
A
2095-9869(2022)02-0053-09
10.19663/j.issn2095-9869.20201104001
* 國(guó)家重點(diǎn)研發(fā)計(jì)劃(2018YED0900903; 2018YED0900902)、農(nóng)業(yè)農(nóng)村部物種資源保護(hù)項(xiàng)目(長(zhǎng)江中上游重要漁業(yè)水域主要經(jīng)濟(jì)物種產(chǎn)卵場(chǎng)及洄游通道調(diào)查)、江西省水利廳重大課題(201821ZDKT21)和中國(guó)水產(chǎn)科學(xué)研究院創(chuàng)新團(tuán)隊(duì)項(xiàng)目(2020TD09)共同資助[This work was supported by National Key Research and Development Program of China (2018YED0900903; 2018YED0900902), Species Resource Conservation Project of Ministry of Agriculture and Rural Affairs (Investigation on Spawning Grounds and Migration Routes of Major Economic Species in the Upper and Middle Reaches of the Yangtze River), a Major Project of Jiangxi Provincial Department of Water Resources (201821ZDKT21), and Innovation Team Project of Chinese Academy of Fishery Sciences (2020TD09)]. 王 曉,E-mail: 1658429791@qq.com
歐陽珊,教授,E-mail: ouys1963@qq.com
2020-11-04,
2020-12-14
王曉, 廖冬芽, 俞立雄, 高雷, 段辛斌, 陳大慶, 蘇云垓, 歐陽珊. 溫度梯度對(duì)四大家魚臨界游泳速度的影響. 漁業(yè)科學(xué)進(jìn)展, 2022, 43(2): 53–61
WANG X, LIAO D Y, YU L X, GAO L, DUAN X B, CHEN D Q, SU Y G, OUYANG S. Effect of temperature gradient on the critical swimming speed of four major Chinese carps. Progress in Fishery Sciences, 2022, 43(2): 53–61
(編輯 陳 輝)