肝纖維化是多種原因引起的反復(fù)和慢性肝損傷造成細(xì)胞外基質(zhì)(extracellular matrix,ECM)積累的病理現(xiàn)象。肝纖維化現(xiàn)已成為全球健康問題,如未經(jīng)及時(shí)治療,可能會(huì)發(fā)展為肝硬化、肝細(xì)胞癌,甚至肝衰竭
。肝星狀細(xì)胞(hepatic stellate cells,HSC)在肝纖維化的發(fā)生、發(fā)展和逆轉(zhuǎn)過程中起至關(guān)重要的作用。HSC在正常和受損的肝組織中生理功能不同。當(dāng)肝臟受到損傷時(shí),HSC表型會(huì)發(fā)生變化,通過激活α-平滑肌肌動(dòng)蛋白(α-smooth muscle actin, α-SMA)轉(zhuǎn)化為肌成纖維細(xì)胞,表達(dá)各種纖維蛋白,生成大量ECM;或通過活化促分裂原增殖,驅(qū)動(dòng)結(jié)締組織生長(zhǎng)因子促進(jìn)纖維化的發(fā)生。HSC的可塑性使其能夠調(diào)節(jié)各種生理和病理反應(yīng)
。動(dòng)物模型和人體研究證明,肝纖維化的過程是可逆的
。ECM可來源于不同類型細(xì)胞,包括HSC、匯管區(qū)成纖維細(xì)胞、骨髓來源的間充質(zhì)細(xì)胞和纖維細(xì)胞、上皮-間質(zhì)轉(zhuǎn)化的肝細(xì)胞或膽管上皮細(xì)胞等。其中HSC是ECM的主要來源,也是肝纖維化的關(guān)鍵靶點(diǎn)
。HSC活化受多種信號(hào)傳導(dǎo)通路共同作用,阻斷這些信號(hào)傳導(dǎo)通路是防治肝纖維化的重要途徑。本文主要就作用于HSC活化過程的TGF-β/Smad信號(hào)傳導(dǎo)通路、Wnt/β-catenin信號(hào)傳導(dǎo)通路、MAPK信號(hào)傳導(dǎo)通路、PDGF信號(hào)傳導(dǎo)通路、Hedgehog/Gli信號(hào)傳導(dǎo)通路作一概述。
TGF-β/Smad信號(hào)傳導(dǎo)通路是TGF-β信號(hào)進(jìn)入細(xì)胞核的核心途徑。其由三部分組成:(1)TGF-β超家族,包括TGF-β、骨形成蛋白(bone morphogenetic protein, BMP)、抑制素等33個(gè)成員;(2)TGF-β超家族受體,包括TGF-βRⅠ、TGF-βRⅡ、TGF-βRⅢ三類。其中TGF-βRⅠ、TGF-βRⅡ在TGF-β/Smad信號(hào)傳導(dǎo)通路中發(fā)揮主要作用;(3)Smad蛋白家族,根據(jù)功能分為三類:受體型Smad(R-Smad):包括Smad1、2、3、5、8;抑制性Smad(I-Smad):包括Smad6、7;通用型Smad(CO-Smad):包括Smad4。其中R-Smad與I-Smad會(huì)競(jìng)爭(zhēng)性與CO-Smad結(jié)合。研究表明,通過抑制TGF-β1/Smad途徑可有效地改善肝纖維化
。TGF-β是重要的促纖維化細(xì)胞因子,包括TGF-β1、TGF-β2和TGF-β3。TGF-β1被認(rèn)為是肝纖維化形成的最關(guān)鍵因子
,其在正常肝組織中表達(dá)極少,當(dāng)肝損傷發(fā)生時(shí),Kupffer細(xì)胞、巨噬細(xì)胞、肝細(xì)胞和血小板生成大量TGF-β1并促進(jìn)HSC活化,活化后的HSC又自分泌TGF-β1。肝纖維化過程中TGF-β1與自身磷酸化的TGF-βRⅡ相結(jié)合形成復(fù)合物,其后再與TGF-βRⅠ相結(jié)合,將TGF-β1信號(hào)傳遞至核內(nèi)關(guān)鍵的下游信號(hào)分子Smad蛋白家族。磷酸化后的TGF-βRⅠ能激活自身的磷酸化酶活性,進(jìn)一步磷酸化Smad2/3,被磷酸化的Smad2/3和Smad4結(jié)合形成復(fù)合物并轉(zhuǎn)位至細(xì)胞核,調(diào)節(jié)特異性靶基因的轉(zhuǎn)錄,肝纖維化由此產(chǎn)生。另一方面,TGF-β還可通過下調(diào)降解ECM的酶—基質(zhì)金屬蛋白酶(matrix metalloproteinase, MMP),同時(shí)上調(diào)抑制MMP功能的活性多肽TIMPs,使ECM合成增加、降解減少,促進(jìn)肝纖維化的進(jìn)程
。Smad7蛋白作為保護(hù)性細(xì)胞因子,可以與Ⅰ型受體結(jié)合,防止R-Smads的募集及磷酸化;也可招募E3泛素連接酶Smad泛素化調(diào)節(jié)因子(Smad ubiquitination regulatory factors, SMURFs),隨后泛素化降低Smad2、TGF-βRⅠ。Smad7對(duì)TGF-β/Smad信號(hào)傳導(dǎo)通路起負(fù)調(diào)節(jié)作用,可能是治療肝纖維化的一個(gè)靶點(diǎn)
。
由圖8可知,隨著發(fā)酵時(shí)間的增加黃精酸奶的稠度先上升后下降,從5 h到7 h變化較顯著,當(dāng)發(fā)酵時(shí)間為7 h時(shí)黃精酸奶稠度最高;而黃精酸奶堅(jiān)實(shí)度隨著發(fā)酵時(shí)間的增加變化不明顯,呈現(xiàn)先上升后下降的趨勢(shì),在7 h發(fā)酵時(shí)間時(shí)堅(jiān)實(shí)度的測(cè)量值最大,因此根據(jù)質(zhì)構(gòu)分析選擇發(fā)酵7 h較適宜。
Wnt/β-catenin信號(hào)傳導(dǎo)通路的信號(hào)傳導(dǎo)與HSC活化有關(guān)。肝臟發(fā)育過程中β-catenin的缺失會(huì)導(dǎo)致HSC中α-SMA的表達(dá)增加以及膠原蛋白的沉積,當(dāng)β-catenin的作用被阻斷時(shí),HSC的活性將受到抑制,同時(shí)HSC活化時(shí)β-catenin表達(dá)水平出現(xiàn)明顯上調(diào)
。Wnt/β-catenin信號(hào)傳導(dǎo)與組織纖維化的發(fā)展有關(guān),可能是治療肝纖維化的主要靶標(biāo)之一
。采用不同策略干擾Wnt/β-catenin通路,可調(diào)節(jié)肝纖維化
。在肝纖維化過程中,胞外的Wnt蛋白與受體蛋白和單跨膜結(jié)構(gòu)域受體低密度脂蛋白受體相關(guān)蛋白(low density lipoprotein receptor related protein, LRP)5/6形成異源三聚體(Wnt-FZD-LRP5/6),這種復(fù)合物引發(fā)了支架蛋白和軸蛋白降解復(fù)合物的募集反應(yīng),進(jìn)而阻止了β-catenin磷酸化,導(dǎo)致β-catenin在細(xì)胞質(zhì)內(nèi)的累積,然后轉(zhuǎn)移至細(xì)胞核與轉(zhuǎn)錄因子TCF/LEF結(jié)合激活靶基因的轉(zhuǎn)錄,經(jīng)典通路被激活,引發(fā)特定基因的表達(dá)調(diào)節(jié)HSC的活化和增殖
。研究表明,人骨髓間充質(zhì)干細(xì)胞通過抑制Wnt/β-catenin途徑活化的HSC來改善CCl
誘導(dǎo)的肝纖維化
。奧曲肽可以通過抑制Wnt/β-catenin信號(hào)通路來減輕肝臟纖維化
。維生素D和葛根素聯(lián)合應(yīng)用可減輕大鼠肝纖維化,與調(diào)節(jié)Wnt/β-catenin信號(hào)傳導(dǎo)途徑,抑制HSC的活化有關(guān)
。
Wnt非經(jīng)典信號(hào)通路的特征是不依賴β-catenin,主要包括Wnt/Ca
通路和Wnt/PCP通路
。在Wnt/Ca
通路中,Wnt-FZDs的結(jié)合觸發(fā)級(jí)聯(lián)反應(yīng),引起細(xì)胞內(nèi)Ca
釋放,同時(shí)激活蛋白激酶C(protein kinase C, PKC)和鈣敏感酶鈣調(diào)蛋白激酶Ⅱ(calmodulin kinase Ⅱ, CaMKⅡ),使靶基因被激活
。研究顯示,肝復(fù)康可以通過下調(diào)Wnt/Ca
信號(hào)傳導(dǎo)途徑有效減輕肝臟損傷和纖維化
。在Wnt/PCP通路中,Wnt蛋白與受體復(fù)合物結(jié)合,然后介導(dǎo)的Rho和Rac等小GTP酶的激活,從而刺激ROK、JNK的活化,參與細(xì)胞生長(zhǎng)和分化程序
。
這個(gè)想法說起來簡(jiǎn)單,做起來難,一來是袋子容易破,二來是如何使氧氣長(zhǎng)時(shí)間保存?這些問題都需要一一解決。佟慶富先是選用了一種更加厚的塑料袋,把活魚裝進(jìn)袋子里,灌進(jìn)水和氧氣再把袋口密封,但是魚在里面只能存活一天,而一天之隔,原先鼓鼓的塑料袋也會(huì)癟掉許多,因?yàn)樗芰洗嫌泻芏嗳庋蹮o法看到的小孔泄漏了氧氣。佟慶富又把目光轉(zhuǎn)移到了更堅(jiān)固更易于密封的塑料瓶上。佟慶富選用了幾個(gè)塑料瓶,裝進(jìn)凈水和一個(gè)注滿氧氣的魚筒,最后將塑料瓶密封起來。這樣一來,不用擔(dān)心瓶子會(huì)破,也不用擔(dān)心魚會(huì)缺氧而死。
MAPK是基因序列高度保守的模塊,可以將細(xì)胞外信號(hào)傳遞至細(xì)胞內(nèi)來調(diào)節(jié)細(xì)胞增殖、分化和遷移多種細(xì)胞程序。MAPK信號(hào)傳導(dǎo)復(fù)雜多樣,包括細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracellular signal-regulated kinase, ERK)、c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)、p38和ERK5亞族4種不同的調(diào)控方式。其中ERK信號(hào)通路可由多個(gè)細(xì)胞因子激活,血小板源性生長(zhǎng)因子(platelet-derived growth factor, PDGF)是其主要的刺激因子,PDGF與細(xì)胞膜受體結(jié)合后受體自我磷酸化和二聚體化,激活Ras,將細(xì)胞外信號(hào)傳遞至細(xì)胞內(nèi),引發(fā)ERK的磷酸化級(jí)聯(lián)反應(yīng)。相關(guān)研究
顯示,ERK2在調(diào)節(jié)肝纖維化和炎癥中起重要作用,ERK2敲除小鼠與野生型小鼠相比,肝纖維化程度明顯減輕。p38/MAPK信號(hào)通路在MAPK通路中研究較多,由4種不同基因編碼,其中p38 MAPK亞型已被識(shí)別,p38α和p38β是研究最多的亞型,并且p38α在肝臟中表達(dá)水平較高,說明p38 MAPK的異?;罨赡芘c肝臟疾病有關(guān)。p38/MAPK信號(hào)通路傳導(dǎo)過程為典型的三級(jí)酶聯(lián)反應(yīng),具體為MAPKKK磷酸化激活MAPKK,MAPKK激活后激活MAPK,MAPK雙位點(diǎn)磷酸化,最后激活p38 MAPK,p38 MAPK激活后進(jìn)一步作用于下游因子,從而引起一系列病理生理變化。研究
表明,在瘦素缺乏的小鼠模型中,c-Jun被瘦素誘導(dǎo)的PI3K/AKT信號(hào)傳導(dǎo)磷酸化,從而增強(qiáng)了其與Mat2b啟動(dòng)子結(jié)合,Mat2b參與瘦素誘導(dǎo)的HSC激活和肝纖維化。相關(guān)研究
證明,一些中藥單體成分通過調(diào)節(jié)p38 MAPK信號(hào)通路,抑制HSC活化和有效減少肝臟組織中的膠原蛋白產(chǎn)生與沉積。JNK的活化是通過其氨基酸殘基磷酸化,將細(xì)胞質(zhì)中的JNK移位到細(xì)胞核,活化后與轉(zhuǎn)錄因子ATF2及c-JNK的氨基末端區(qū)域結(jié)合,使轉(zhuǎn)錄因子的活性區(qū)域發(fā)生磷酸化,從而促進(jìn)相關(guān)基因的表達(dá)。研究顯示,姜黃素通過促進(jìn)RIPK1/RIPK3復(fù)合物的形成繼而引起JNK1/2活化和線粒體功能障礙,最終導(dǎo)致HSC死亡
。
PDGF信號(hào)通路在肝纖維化的發(fā)生和預(yù)后中起著重要作用。PDGF是一種多肽生長(zhǎng)因子,主要由Kupffer細(xì)胞、血小板和血管內(nèi)皮細(xì)胞分泌
。PDGF通過促進(jìn)膠原蛋白的生成和沉積,將造血干細(xì)胞轉(zhuǎn)化為肌成纖維細(xì)胞,刺激HSC增殖分化,阻斷PDGF信號(hào)可以抑制HSC增殖,改善肝纖維化。肝細(xì)胞中PDGFRα的缺失可減弱HSC中PDGFRα的上調(diào),從而降低了肝纖維化和HSC活化
。抑制HSC中的PDGF-B/PDGFR-β途徑可以改善膽汁淤積性小鼠肝纖維化
。
即式(5)表明了位置d與位置c之間的位置姿態(tài)關(guān)系。即原本是由圖1(a)中物體從a運(yùn)動(dòng)到b位置c位置固定,轉(zhuǎn)換成了如圖1(b)中攝像機(jī)從位置d移動(dòng)到c而物體固定在b位置。通過上面的推導(dǎo)可以得知,原本攝像機(jī)固定,而物體在運(yùn)動(dòng)的情況,可以轉(zhuǎn)換成攝像機(jī)運(yùn)動(dòng)而物體固定的情況。從固定相機(jī)所拍得的多幅視圖依據(jù)極線約束求得虛擬的相機(jī)移動(dòng)位置姿態(tài),從而接下來的三維重構(gòu)工作。
PDGF通路目前確定的途徑主要包括Ras-ERK信號(hào)通路、PI3K/AKT信號(hào)通路、JAK/STAT信號(hào)通路。(1)Ras-ERK信號(hào)通路:PDGFR自磷酸化激活Ras,Ras依次激活Raf原癌基因絲氨酸/蘇氨酸蛋白激酶(Raf-1)、雙特異性絲裂原活化的細(xì)胞外信號(hào)調(diào)節(jié)激酶(mitogen-activated extracellular signal-regulated kinase, MEK)和ERK信號(hào)通路。Ras與Raf結(jié)合后Raf從細(xì)胞質(zhì)轉(zhuǎn)運(yùn)至細(xì)胞膜并激活,MEK1/2和ERK1/2依次磷酸化,ERK轉(zhuǎn)位到細(xì)胞核中,從而促進(jìn)各種轉(zhuǎn)錄因子的磷酸化,增加轉(zhuǎn)錄活性
。ERK1/2主要調(diào)節(jié)有絲分裂和HSC的趨化性。ERK1/2途徑抑制劑能夠抑制HSC的有絲分裂并減少HSC的趨化性,從而減少細(xì)胞凋亡炎癥部位的濃度。研究顯示,葛根素可通過抑制ERK1/2信號(hào)傳導(dǎo)途徑減輕大鼠肝纖維化
。(2)PI3K/AKT信號(hào)通路:PI3K是由p85和p110兩個(gè)亞基組成的異源二聚體。p85是調(diào)節(jié)PI3K主要功能的亞單位。p85亞基與磷酸化的PDGFR結(jié)合,催化磷脂酰基醇-4、5-二磷酸PIP2,生成第二信使磷脂?;?3、4、5-PIP3,第二信使活化并轉(zhuǎn)移到細(xì)胞膜與蛋白激酶B(protein kinaes B, PKB/AKT)結(jié)合,PKB、PKC激活脫離細(xì)胞膜進(jìn)入細(xì)胞核,激活靶基因,促進(jìn)肌動(dòng)蛋白重組,增加細(xì)胞遷移,介導(dǎo)代謝調(diào)節(jié),刺激細(xì)胞生長(zhǎng)和抑制細(xì)胞凋亡。研究顯示,血小板衍生的生長(zhǎng)因子BB(platelet derived growth factor BB, PDGF-BB)可通過激活PI3K/AKT/FoxM1信號(hào)通路誘導(dǎo)肝纖維化相關(guān)蛋白表達(dá)
。沉默上皮細(xì)胞粘附分子可通過PI3K/Akt/mTOR信號(hào)通路抑制酒精性肝炎小鼠的肝纖維化和HSC增殖
。(3)JAK/STAT信號(hào)通路:STATs包括STAT1、STAT2、STAT3、STAT4、STAT5a、STAT5b和STAT6共7個(gè)亞型。利匹韋林通過STAT1途徑誘導(dǎo)HSC凋亡來改善肝纖維化,在肝細(xì)胞發(fā)揮旁效應(yīng),從而促進(jìn)肝再生
。STAT3也與肝纖維化的發(fā)生發(fā)展密切相關(guān)
。
Hedgehog/Gli信號(hào)傳導(dǎo)通路是一個(gè)高度保守的信號(hào)傳導(dǎo)通路,包括經(jīng)典信號(hào)通路和非經(jīng)典信號(hào)通路。Hedgehog(Hh)信號(hào)通路由Hh配體、Ptc與Smo兩種蛋白受體和轉(zhuǎn)錄因子Gli組成
。在酗酒、病毒感染等原因?qū)е侣愿螕p傷的情況下,Hh信號(hào)被激活,從而使HSC活化
。Hh信號(hào)促進(jìn)靜態(tài)HSC向肌成纖維母細(xì)胞肝星狀細(xì)胞(myofibroblastic hepatic stellate cells, MF-HSC)過渡,并提供促進(jìn)MF-HSC積累的自分泌機(jī)制
。通過干擾Hh信號(hào)通路可以明顯減輕肝纖維化小鼠模型的肝纖維化程度,表明Hh信號(hào)通路的激活能促進(jìn)肝纖維化的發(fā)生發(fā)展。Feng等
研究表明,原花青素B2通過抑制Hh通路來抑制HSC的活化、ECM產(chǎn)生和血管生成,因此可逆轉(zhuǎn)體內(nèi)外的肝纖維化進(jìn)程。Lin等
研究表明,京尼平甙(geniposide, GP)通過Shh信號(hào)通路抑制HSC-T6細(xì)胞的活化和增殖,提示GP具有良好的抗纖維化作用,可改善小鼠肝纖維化,GP對(duì)Shh信號(hào)通路的調(diào)控作用可能為治療肝纖維化新的治療策略。在HSC活化和肝纖維化過程中,Hh基因信號(hào)通路受到多種機(jī)制的調(diào)控。研究發(fā)現(xiàn),肝細(xì)胞中的Hh信號(hào)具有時(shí)間依賴性并能反饋到生物鐘上,Hh信號(hào)主要由Gli因子介導(dǎo),通過平衡晝夜節(jié)律時(shí)鐘來維持肝臟脂質(zhì)代謝的穩(wěn)態(tài)
。
近年來,HSC活化相關(guān)信號(hào)傳導(dǎo)通路成為研究熱點(diǎn)。本文通過收集整理HSC活化相關(guān)信號(hào)通路相關(guān)文獻(xiàn),發(fā)現(xiàn)HSC活化機(jī)制復(fù)雜,涉及到多條信號(hào)傳導(dǎo)通路,除文中提及的信號(hào)通路外還有NF-κB信號(hào)通路、整合素信號(hào)通路、瘦素信號(hào)通路、Notch信號(hào)通路、VEGF信號(hào)通路等,但各種信號(hào)通路對(duì)于HSC活化的影響機(jī)制尚不確定,各個(gè)通路之間的串?dāng)_也會(huì)增加肝纖維化的復(fù)雜性。因此,還需要更多的研究來進(jìn)一步明確各個(gè)通路及通路之間調(diào)控肝纖維化進(jìn)程的機(jī)制,實(shí)現(xiàn)從實(shí)驗(yàn)到臨床的過渡,最終將基礎(chǔ)科學(xué)研究轉(zhuǎn)化為臨床成果。
[1] Aydln MM, Ak?alh KC. Liver fibrosis [J]. Turk J Gastroenterol, 2018, 29(1): 14-21. DOI: 10.5152/tjg.2018.17330.
[2] Trivedi P, Wang S, Friedman SL. The power of plasticity-metabolic regulation of hepatic stellate cells [J]. Cell Metab, 2021, 33(2): 242-257. DOI: 10.1016/j.cmet.2020.10.026.
[3] Campana L, Iredale JP. Regression of liver fibrosis [J]. Semin Liver Dis, 2017, 37(1): 1-10. DOI: 10.1055/s-0036-1597816.
[4] Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis [J]. Adv Drug Deliv Rev, 2017, 121: 27-42. DOI: 10.1016/j.addr.2017.05.007.
[5] Mu M, Zuo S, Wu RM, et al. Ferulic acid attenuates liver fibrosis and hepatic stellate cell activation via inhibition of TGF-β/Smad signaling pathway [J]. Drug Des Devel Ther, 2018, 12: 4107-4115. DOI: 10.2147/DDDT.S186726.
[6] Dewidar B, Meyer C, Dooley S, et al. TGF-β in hepatic stellate cell activation and liver fibrogenesis-updated 2019 [J]. Cells, 2019, 8(11): 1419. DOI: 10.3390/cells8111419.
[7] 楊萍芬, 牛艷芬. TGF-β1/Smad信號(hào)通路在組織纖維化中的研究進(jìn)展[J]. 國(guó)際藥學(xué)研究雜志, 2019, 46(10): 738-744. DOI: 10.13220/j.cnki.jipr.2019.10.002.
Yang PF, Niu YF. TGF-β1/Smad signaling pathway in tissue fibrosis:research advances [J]. J Int Pharm Res, 2019, 46(10): 738-744. DOI: 10.13220/j.cnki.jipr.2019.10.002.
[8] Liu J, Kong D, Qiu J, et al. Praziquantel ameliorates CCl4 -induced liver fibrosis in mice by inhibiting TGF-β/Smad signalling via up-regulating Smad7 in hepatic stellate cells [J]. Br J Pharmacol, 2019, 176(24): 4666-4680. DOI: 10.1111/bph.14831.
[9] Russell JO, Monga SP. Wnt/β-catenin signaling in liver development, homeostasis, and pathobiology [J]. Annu Rev Pathol, 2018, 13: 351-378. DOI: 10.1146/annurev-pathol-020117-044010.
[10] Nishikawa K, Osawa Y, Kimura K. Wnt/β-catenin signaling as a potential target for the treatment of liver cirrhosis using antifibrotic drugs [J]. Int J Mol Sci, 2018, 19(10): 3103. DOI: 10.3390/ijms19103103.
[11] Perugorria MJ, Olaizola P, Labiano I, et al. Wnt-β-catenin signalling in liver development, health and disease [J]. Nat Rev Gastroenterol Hepatol, 2019, 16(2): 121-136. DOI: 10.1038/s41575-018-0075-9.
[12] DeBruine ZJ, Xu HE, Melcher K. Assembly and architecture of the Wnt/β-catenin signalosome at the membrane [J]. Br J Pharmacol, 2017, 174(24): 4564-4574. DOI: 10.1111/bph.14048.
[13] Harb J, Lin PJ, Hao J. Recent development of Wnt signaling pathway inhibitors for cancer therapeutics [J]. Curr Oncol Rep, 2019, 21(2): 12. DOI: 10.1007/s11912-019-0763-9.
[14] Rong X, Liu J, Yao X, et al. Human bone marrow mesenchymal stem cells-derived exosomes alleviate liver fibrosis through the Wnt/β-catenin pathway [J]. Stem Cell Res Ther, 2019, 10(1): 98. DOI: 10.1186/s13287-019-1204-2.
[15] Zhang C, Liu XQ, Sun HN, et al. Octreotide attenuates hepatic fibrosis and hepatic stellate cells proliferation and activation by inhibiting Wnt/β-catenin signaling pathway, c-Myc and cyclin D1 [J]. Int Immunopharmacol, 2018, 63: 183-190. DOI: 10.1016/j.intimp.2018.08.005.
[16] Huang GR, Wei SJ, Huang YQ, et al. Mechanism of combined use of vitamin D and puerarin in anti-hepatic fibrosis by regulating the Wnt/β-catenin signalling pathway [J]. World J Gastroenterol, 2018, 24(36): 4178-4185. DOI: 10.3748/wjg.v24.i36.4178.
[17] Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors [J]. Cancer Treat Rev, 2018, 62: 50-60. DOI: 10.1016/j.ctrv.2017.11.002.
[18] Kim MJ, Huang Y, Park JI. Targeting Wnt signaling for gastrointestinal cancer therapy: present and evolving views [J]. Cancers (Basel), 2020, 12(12): 3638. DOI: 10.3390/cancers12123638.
[19] Jia Y, Yuan L, Xu T, et al. Herbal medicine Gan-fu-kang downregulates Wnt/Ca
signaling to attenuate liver fibrogenesis in vitro and in vivo [J]. Mol Med Rep, 2016, 13(6): 4705-4714. DOI: 10.3892/mmr.2016.5148.
[20] Wang JN, Li L, Li LY, et al. Emerging role and therapeutic implication of Wnt signaling pathways in liver fibrosis [J]. Gene, 2018, 674: 57-69. DOI: 10.1016/j.gene.2018.06.053.
[21] VanderVorst K, Dreyer CA, Konopelski SE, et al. Wnt/PCP signaling contribution to carcinoma collective cell migration and metastasis [J]. Cancer Res, 2019, 79(8): 1719-1729. DOI: 10.1158/0008-5472.CAN-18-2757.
[22] Jeng KS, Lu SJ, Wang CH, et al. Liver fibrosis and inflammation under the control of ERK2 [J]. Int J Mol Sci, 2020, 21(11): 3796. DOI: 10.3390/ijms21113796.
[23] Zhu X, Jia X, Cheng F, et al. c-Jun acts downstream of PI3K/AKT signaling to mediate the effect of leptin on methionine adenosyltransferase 2B in hepatic stellate cells in vitro and in vivo [J]. J Pathol, 2020, 252(4): 423-432. DOI: 10.1002/path.5536.
[24] Hu X, Zhou Y. Curcumin reduces methionine adenosyltransferase 2B expression by interrupting phosphorylation of p38 MAPK in hepatic stellate cells [J]. Eur J Pharmacol, 2020, 886: 173424. DOI: 10.1016/j.ejphar.2020.173424.
[25] Elfeky MG, Mantawy EM, Gad AM, et al. Mechanistic aspects of antifibrotic effects of honokiol in con A-induced liver fibrosis in rats: emphasis on TGF-β/SMAD/MAPK signaling pathways [J]. Life Sci, 2020, 240: 117096. DOI: 10.1016/j.lfs.2019.117096.
[26] Jia Y, Wang F, Guo Q, et al. Curcumol induces RIPK1/RIPK3 complex-dependent necroptosis via JNK1/2-ROS signaling in hepatic stellate cells [J]. Redox Biol, 2018, 19: 375-387. DOI: 10.1016/j.redox.2018.09.007.
[27] Ying HZ, Chen Q, Zhang WY, et al. PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics (Review) [J]. Mol Med Rep, 2017, 16(6): 7879-7889. DOI: 10.3892/mmr.2017.7641.
[28] Lim BJ, Lee WK, Lee HW, et al. Selective deletion of hepatocyte platelet-derived growth factor receptor α and development of liver fibrosis in mice [J]. Cell Commun Signal, 2018, 16(1): 93. DOI: 10.1186/s12964-018-0306-2.
[29] Wang X, Gao Y, Li Y, et al. Roseotoxin B alleviates cholestatic liver fibrosis through inhibiting PDGF-B/PDGFR-β pathway in hepatic stellate cells [J]. Cell Death Dis, 2020, 11(6): 458. DOI: 10.1038/s41419-020-2575-0.
[30] Yang L, Zheng L, Chng WJ, et al. Comprehensive analysis of ERK1/2 substrates for potential combination immunotherapies [J]. Trends Pharmacol Sci, 2019, 40(11): 897-910. DOI: 10.1016/j.tips.2019.09.005.
[31] Li X, Zhang H, Pan L, et al. Puerarin alleviates liver fibrosis via inhibition of the ERK1/2 signaling pathway in thioacetamide-induced hepatic fibrosis in rats [J]. Exp Ther Med, 2019, 18(1): 133-138. DOI: 10.3892/etm.2019.7534.
[32] Du Z, Lin Z, Wang Z, et al. SPOCK1 overexpression induced by platelet-derived growth factor-BB promotes hepatic stellate cell activation and liver fibrosis through the integrin α5β1/PI3K/Akt signaling pathway [J]. Lab Invest, 2020, 100(8): 1042-1056. DOI: 10.1038/s41374-020-0425-4.
[33] Zhang Z, Wen H, Weng J, et al. Silencing of EPCAM suppresses hepatic fibrosis and hepatic stellate cell proliferation in mice with alcoholic hepatitis via the PI3K/Akt/mTOR signaling pathway [J]. Cell Cycle, 2019, 18(18): 2239-2254. DOI: 10.1080/15384101.2019.1642067.
[35] Yang L, Han B, Zhang M, et al. Activation of BK channels prevents hepatic stellate cell activation and liver fibrosis through the suppression of TGFβ1/SMAD3 and JAK/STAT3 profibrotic signaling pathways [J]. Front Pharmacol, 2020, 11: 165. DOI: 10.3389/fphar.2020.00165.
[36] Machado MV, Diehl AM. Hedgehog signalling in liver pathophysiology [J]. J Hepatol, 2018, 68(3): 550-562. DOI: 10.1016/j.jhep.2017.10.017.
[37] Ding J, Li HY, Zhang L, et al. Hedgehog signaling, a critical pathway governing the development and progression of hepatocellular carcinoma [J]. Cells, 2021, 10(1): 123. DOI: 10.3390/cells10010123.
[38] Gao L, Zhang Z, Zhang P, et al. Role of canonical Hedgehog signaling pathway in liver [J]. Int J Biol Sci, 2018, 14(12): 1636-1644. DOI: 10.7150/ijbs.28089.
[39] Feng J, Wang C, Liu T, et al. Procyanidin B2 inhibits the activation of hepatic stellate cells and angiogenesis via the Hedgehog pathway during liver fibrosis [J]. J Cell Mol Med, 2019, 23(9): 6479-6493. DOI: 10.1111/jcmm.14543.
[40] Lin X, Li J, Xing YQ. Geniposide, a sonic hedgehog signaling inhibitor, inhibits the activation of hepatic stellate cell [J]. Int Immunopharmacol, 2019, 72: 330-338. DOI: 10.1016/j.intimp.2019.04.016.
[41] Marbach-Breitrück E, Matz-Soja M, Abraham U, et al. Tick-tock hedgehog-mutual crosstalk with liver circadian clock promotes liver steatosis [J]. J Hepatol, 2019, 70(6): 1192-1202. DOI: 10.1016/j.jhep.2019.01.022.