国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

一類(lèi)波動(dòng)方程耦合方程組解的破裂*

2022-03-29 02:57杜嘉儀明森楊婕蘇業(yè)芹
關(guān)鍵詞:方程組跨度情形

杜嘉儀, 明森, 楊婕, 蘇業(yè)芹

(1.中北大學(xué) 數(shù)學(xué)系,山西 太原 030051;2.中北大學(xué) 大數(shù)據(jù)學(xué)院,山西 太原 030051;3.西南財(cái)經(jīng)大學(xué) 證券與期貨學(xué)院,四川 成都 611130)

1 引言

近來(lái),波動(dòng)方程解的破裂性態(tài)及其生命跨度的估計(jì)引起廣泛關(guān)注[1-8].利用Kato引理,文[3]得到二維帶冪次型非線性項(xiàng)波動(dòng)方程解的破裂,但未給出解的生命跨度估計(jì).文[4]證明了外區(qū)域上二維波動(dòng)方程的初邊值問(wèn)題解的破裂性態(tài).利用檢驗(yàn)函數(shù)方法建立了解的生命跨度的上界估計(jì).文[5]利用檢驗(yàn)函數(shù)方法和迭代方法研究了帶阻尼項(xiàng)的波動(dòng)方程耦合方程組的小初值問(wèn)題,其中非線性項(xiàng)為冪次型非線性項(xiàng)|v|p,|u|q.得到次臨界和臨界情形解的破裂以及生命跨度的上界估計(jì).

本文利用檢驗(yàn)函數(shù)方法研究如下非線性波動(dòng)方程耦合方程組的初邊值問(wèn)題.

(1)

其中,0<ε<ε0,Γss(2,p,q)=max{Fss(2,p,q),Fss(2,q,p)}≥0,C是與ε無(wú)關(guān)的正常數(shù).

下面給出證明定理1時(shí)需用到的一些引理以及問(wèn)題(1)弱解的定義.

引理1[4]存在函數(shù)φ0(x)=ln(r/r0)滿足

引理2[4]存在λ0∈(0,1/(2r0)),使得?λ∈(0,λ0),φλ(x)滿足

并且

?tba(x,t)=-ba+1(x,t),

引理4[4]令λ∈(0,λ0),記q′=q/(q-1).則有

引理5[4]假設(shè)2

其中,δ、K1、K2>0,p1、p2>1.若p2

定義1若(u,v)是問(wèn)題(1)的弱解,則(u,v)∈(C([0,T),H1(Ωc))∩C1([0,T),L2(Ωc)))2且

并且

(2)

(3)

2 定理1的證明

證明令

記ηT(t)=η(t/T),θM(t)=θ(t/M),M∈R+.計(jì)算得到

(ψ1)t=-λψ1,(ψ1)tt=λ2ψ1=Δψ1.

(4)

(Ⅰ)次臨界情形Γss(2,p,q)>0

(5)

經(jīng)計(jì)算可知

運(yùn)用H?lder不等式及引理1,有

(6)

結(jié)合(5)式和(6)式可得

(7)

(8)

利用H?lder不等式及引理4,可得

(9)

(10)

由(8)-(10)式得到

(11)

類(lèi)似于(7)式和(11)式的推導(dǎo),有

(12)

(13)

利用(7)式和(12)式,有

(14)

結(jié)合(11)式和(14)式,可得

(Ⅱ)臨界情形Γss(2,p,q)=0,p≠q

記a=1/2-1/q.將(11)式代入(12)式中,并結(jié)合引理3,可得

(15)

(16)

利用H?lder不等式、引理1及引理3,可得

(17)

(18)

由(16)-(18)式得

(19)

結(jié)合(12)式和(19)式,有

(20)

(21)

計(jì)算可得

(22)

利用(20)-(22)式,得到

(23)

利用(15)式、(21)式、(23)式和引理5,選取p1=pq,p2=pq-p+1,δ=εpq,從而得到T(ε)≤exp(Cε-q(pq-1)).同理可得T(ε)≤exp(Cε-p(pq-1)).因此,T(ε)≤exp(Cε-min(p(pq-1),q(pq-1))).

(Ⅲ)臨界情形Γss(2,p,q)=0,p=q

利用(11)式、(21)式及引理3,有

(24)

其中a=1/2-1/p.由(16)式和引理3可得

所以

(25)

于是,由(21)式、(22)式和(25)式得

Yp(M)≤C(lnM)p-1MY′(M).

(26)

結(jié)合(24)式、(26)式及引理5,選取p1=p2=p,δ=εp,從而可得T(ε)≤exp(Cε-p(p-1)).

本文將文[4]中研究的問(wèn)題推廣為耦合方程組情形,利用非負(fù)截?cái)嗪瘮?shù)構(gòu)造檢驗(yàn)函數(shù)得到問(wèn)題(1)次臨界及臨界情形解的生命跨度估計(jì),簡(jiǎn)化了文[5]中利用迭代方法得到的部分結(jié)果.另外,當(dāng)問(wèn)題(1)中p=q時(shí),本文結(jié)果完善了文[3]中解的生命跨度估計(jì).

猜你喜歡
方程組跨度情形
緩粘結(jié)預(yù)應(yīng)力技術(shù)在大跨度梁中的應(yīng)用
深入學(xué)習(xí)“二元一次方程組”
大跨度連續(xù)鋼箱梁橋設(shè)計(jì)研究分析
大跨度連續(xù)剛構(gòu)橋線形控制分析
《二元一次方程組》鞏固練習(xí)
有限二階矩情形與重尾情形下的Hurst參數(shù)
避免房地產(chǎn)繼承糾紛的十二種情形
四種情形拖欠勞動(dòng)報(bào)酬構(gòu)成“拒不支付”犯罪
一類(lèi)次臨界Bose-Einstein凝聚型方程組的漸近收斂行為和相位分離
“挖”出來(lái)的二元一次方程組