崔景新 孫旖檬 陳玲琳 許立偉
【摘要】阿爾茲海默?。ˋD)是一種進(jìn)行性神經(jīng)退行性疾病。許多證據(jù)表明神經(jīng)炎癥既是AD的原因也是結(jié)果。在AD患者大腦中,多種神經(jīng)細(xì)胞參與了炎癥反應(yīng)。本文通過(guò)綜述小膠質(zhì)細(xì)胞、星形膠質(zhì)細(xì)胞、神經(jīng)元在神經(jīng)炎癥中的作用,以期為AD的研究提供參考。
【關(guān)鍵詞】阿爾茨海默病;神經(jīng)炎癥;抗炎藥物
基金項(xiàng)目:廣西自然科學(xué)基金青年項(xiàng)目(2018GXNSFBA138028);廣西科技基地和人才專項(xiàng)(桂科 AD1911010)。
阿爾茨海默?。ˋlzheimer’s disease,AD)是一種進(jìn)行性神經(jīng)退行性疾病,其臨床表現(xiàn)為認(rèn)知能力下降,記憶力喪失,行為和情緒變化,運(yùn)動(dòng)協(xié)調(diào)能力喪失以及心理障礙等。隨著人口老齡化加劇, AD也成為本世紀(jì)醫(yī)學(xué)所面臨最大的挑戰(zhàn)之一。神經(jīng)病理學(xué)研究發(fā)現(xiàn),AD的形成原因是患者大腦老年斑中淀粉樣蛋白β(Beta-amyloid, Aβ)的聚集和大腦神經(jīng)原纖維纏結(jié)(Neurofibrillary tangles, NFTs)中的Tau蛋白的過(guò)度磷酸化。淀粉樣蛋白聚集開(kāi)始于癥狀發(fā)作之前的15–20年,并且在漫長(zhǎng)的過(guò)程之后,Tau蛋白過(guò)度磷酸化開(kāi)始從海馬的內(nèi)海馬區(qū)擴(kuò)散到皮層區(qū),導(dǎo)致大腦認(rèn)知能力下降和腦萎縮。因此,淀粉樣蛋白級(jí)聯(lián)假說(shuō)認(rèn)為,淀粉樣蛋白的積累是由于Aβ的產(chǎn)生和清除之間的平衡改變而引起的。然而,迄今為止,針對(duì)淀粉樣蛋白級(jí)聯(lián)的相關(guān)藥物未能在臨床試驗(yàn)中顯示出讓人滿意的療效,研發(fā)相關(guān)有效藥物尤為重要。
1? 神經(jīng)炎癥
在最近的幾十年中,出現(xiàn)了AD的第三個(gè)核心神經(jīng)病理學(xué)特征,即除大腦Aβ沉積和NFTs外,AD患者的大腦還表現(xiàn)出神經(jīng)炎癥。無(wú)論在動(dòng)物模型,還是死后人類的大腦,或者通過(guò)炎性過(guò)程中分子成像檢測(cè)都觀察到了AD的神經(jīng)炎性變化。有大量研究表明,在AD的早期疾病階段就存在持續(xù)的神經(jīng)炎癥。這些神經(jīng)炎癥主要由促炎細(xì)胞因子介導(dǎo),包括腫瘤壞死因子-α(Tumor necrosis factor α,TNF-α),白介素-1β(Interleukin-1β, IL-1β)和 白介素-6(Interleukin-6, IL-6)等。這些細(xì)胞因子大多由小膠質(zhì)細(xì)胞、星形膠質(zhì)細(xì)胞和神經(jīng)元釋放出來(lái)。隨著疾病的發(fā)生,這種早期炎癥進(jìn)一步促進(jìn)并加劇了Aβ和NFTs的產(chǎn)生,并進(jìn)一步導(dǎo)致神經(jīng)元毒性和死亡。這顯示了神經(jīng)炎癥既是AD的原因也是結(jié)果,其在AD的發(fā)病機(jī)理中發(fā)揮著非常關(guān)鍵的作用。流行病學(xué)研究表明,如果在神經(jīng)系統(tǒng)癥狀發(fā)作之前長(zhǎng)期使用抗炎藥可能可以預(yù)防AD 。因此,探討神經(jīng)炎癥的作用機(jī)制可以為治療AD帶來(lái)新的思路。
2? 多種神經(jīng)細(xì)胞參與AD神經(jīng)炎癥
在AD患者大腦中,通過(guò)激活神經(jīng)膠質(zhì)細(xì)胞和釋放促炎介質(zhì)來(lái)促進(jìn)神經(jīng)炎癥,在AD的發(fā)病機(jī)理中起著核心作用。小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞是介導(dǎo)神經(jīng)炎癥的兩種主要的神經(jīng)細(xì)胞類型,而神經(jīng)元也在AD的發(fā)展進(jìn)程中必不可少。
2.1? 小膠質(zhì)細(xì)胞介導(dǎo)神經(jīng)炎癥反應(yīng)產(chǎn)生
小膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)中的常駐免疫細(xì)胞,是介導(dǎo)大腦炎癥反應(yīng)的關(guān)鍵調(diào)節(jié)劑。當(dāng)腦部發(fā)生急性炎癥性損傷時(shí),小膠質(zhì)細(xì)胞會(huì)啟動(dòng)炎癥反應(yīng),例如增強(qiáng)吞噬作用,有效清除Aβ并分泌Aβ降解酶,或者產(chǎn)生或分泌抑炎細(xì)胞因子,通過(guò)清除病原體并幫助組織修復(fù)來(lái)發(fā)揮神經(jīng)保護(hù)作用。但是,如果損傷持續(xù)存在,則會(huì)出現(xiàn)慢性炎癥,可刺激小膠質(zhì)細(xì)胞釋放神經(jīng)毒性細(xì)胞因子引發(fā)炎癥反應(yīng),損害中樞神經(jīng)系統(tǒng),并導(dǎo)致神經(jīng)元功能障礙。研究表明,Aβ可以刺激NF-κB依賴性途徑,并與小膠質(zhì)細(xì)胞表面結(jié)合,激活細(xì)胞外信號(hào)調(diào)節(jié)激酶和絲裂原活化蛋白激酶(Mitogen-activated protein kinase,MAPK)途徑,從而觸發(fā)促炎介質(zhì)產(chǎn)生。反過(guò)來(lái),這會(huì)導(dǎo)致小膠質(zhì)細(xì)胞功能障礙,最終使神經(jīng)元和其他神經(jīng)細(xì)胞失調(diào)并受損,從而導(dǎo)致AD患者的認(rèn)知能力下降。
2.2? 星形膠質(zhì)細(xì)胞促進(jìn)炎癥介質(zhì)釋放
星形膠質(zhì)細(xì)胞是哺乳動(dòng)物中樞神經(jīng)系統(tǒng)中分布最廣泛的細(xì)胞,對(duì)維持大腦的穩(wěn)態(tài)環(huán)境至關(guān)重要。對(duì)于許多已知的在AD中失調(diào)的基本中樞神經(jīng)系統(tǒng)功能,如鈣的調(diào)節(jié)、基礎(chǔ)突觸傳遞、長(zhǎng)時(shí)程增強(qiáng)(Long time potentiation ,LTP)、皮層回路維持和突觸修剪等,星形膠質(zhì)細(xì)胞網(wǎng)絡(luò)被認(rèn)為控制著突觸前和突觸后終末的功能以及它們的雙向突觸可塑性。研究表明,星形膠質(zhì)細(xì)胞是AD中促炎細(xì)胞因子的主要來(lái)源。星形膠質(zhì)細(xì)胞激活導(dǎo)致IL-1β和IL-18等炎性介質(zhì)的釋放增加。這些促炎細(xì)胞因子向神經(jīng)元發(fā)出信號(hào),并影響Aβ產(chǎn)生、Tau加工和功能信號(hào)傳導(dǎo)。同時(shí),星形膠質(zhì)細(xì)胞上具有趨化因子和炎性細(xì)胞因子的受體,例如,IL-1β受體和TNF-α受體,這些因子能夠與受體結(jié)合,激活星形膠質(zhì)細(xì)胞,從而導(dǎo)致炎癥反應(yīng)的發(fā)生。另外,研究表明,AD患者的整個(gè)大腦皮質(zhì)中的星形膠質(zhì)細(xì)胞會(huì)積聚Aβ,并且這種積聚與AD病理學(xué)的擴(kuò)展呈正相關(guān),這提示星形膠質(zhì)細(xì)胞在AD發(fā)生中具有重要作用。
2.3? 神經(jīng)元增加炎癥因子及介質(zhì)的產(chǎn)生和表達(dá)
在中樞神經(jīng)系統(tǒng)中,神經(jīng)元能夠增加炎癥因子的產(chǎn)生和表達(dá),在神經(jīng)炎癥中也起著關(guān)鍵作用。同時(shí),神經(jīng)元也能夠表達(dá)重要介質(zhì),如CD22和CD200等,這些因子可以調(diào)節(jié)AD炎癥反應(yīng)過(guò)程和結(jié)果。在AD大腦中,低水平的抗炎因子CD22和CD200參與慢性炎癥的發(fā)生。神經(jīng)元能夠分泌CD22和CD200,它們會(huì)被小膠質(zhì)細(xì)胞表達(dá)的受體所識(shí)別,下調(diào)小膠質(zhì)細(xì)胞的促炎表型。另外,神經(jīng)元還通過(guò)惡化局部炎癥反應(yīng),從而引起自身破壞。在不同AD動(dòng)物模型中,神經(jīng)元功能的缺陷被認(rèn)為是補(bǔ)體級(jí)聯(lián)蛋白變化的結(jié)果。此外,有文獻(xiàn)報(bào)道,Aβ肽能夠在其他經(jīng)典前體蛋白過(guò)表達(dá)之前誘導(dǎo)編碼I型干擾素(Interferon,IFN)細(xì)胞因子IFN-α和IFN-β基因的神經(jīng)元產(chǎn)生促炎細(xì)胞因子,這些促炎細(xì)胞因子可調(diào)節(jié)Aβ誘導(dǎo)的神經(jīng)毒性。
3 總結(jié)與展望
當(dāng)前,針對(duì)神經(jīng)炎癥來(lái)開(kāi)發(fā)有效的抗AD藥物是必然的,但是,仍需要開(kāi)展更多與神經(jīng)炎癥相關(guān)的研究。膠質(zhì)細(xì)胞和神經(jīng)元是在大腦神經(jīng)炎癥中起關(guān)鍵作用的主要細(xì)胞類型,針對(duì)性研究有望為AD發(fā)病機(jī)制及藥物研發(fā)提供新的思路。
作者貢獻(xiàn):崔景新負(fù)責(zé)搜集文獻(xiàn)與文章撰寫;孫旖檬參與文章修改與參考文獻(xiàn)整理;陳玲琳和許立偉負(fù)責(zé)綜述的框架設(shè)計(jì)和文章修改。
利益沖突:所有作者均聲明不存在利益沖突。
參考文獻(xiàn)
[1]?? Livingston G, Sommerlad A, Orgeta V, et al. Dementia prevention, intervention, and care [J]. Lancet, 2017, 390: 2673-2734.
[2]?? Hickman RA, Faustin A, Wisniewski T. Alzheimer disease and its growing epidemic: Risk factors, biomarkers, and the urgent need for therapeutics [J]. Neurol Clin, 2016, 34: 941-953.
[3]?? Chen XQ, Mobley WC. Alzheimer disease pathogenesis: insights from molecular and cellular biology studies of oligomeric abeta and tau species [J]. Front Neurosci, 2019, 13: 659.
[4]?? DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer's disease [J]. Mol Neurodegener, 2019, 14: 32.
[5]?? Gutierrez A,? Vitorica J. Toward a new concept of Alzheimer's disease models: a perspective from neuroinflammation [J]. J Alzheimers Dis, 2018, 64: S329-S338.
[6]?? Sung PS, Lin PY, Liu CH, et al. Neuroinflammation and neurogenesis in Alzheimer's disease and potential therapeutic approaches [J]. Int J Mol Sci, 2020, 21.
[7]?? Aminzadeh M, Roghani M, Sarfallah A, et al. TRPM2 dependence of ROS-induced NLRP3 activation in Alzheimer's disease [J]. Int Immunopharmacol, 2018, 54: 78-85.
[8]?? Kinney JW, Bemiller SM, Murtishaw AS, et al. Inflammation as a central mechanism in Alzheimer's disease [J]. Alzheimers Dement (N Y), 2018, 4: 575-590.
[9]?? Swanson A, Wolf T, Sitzmann A, et al. Neuroinflammation in Alzheimer's disease: Pleiotropic roles for cytokines and neuronal pentraxins [J]. Behav Brain Res, 2018, 347: 49-56.
[10] Pimplikar SW. Neuroinflammation in Alzheimer's disease: from pathogenesis to a therapeutic target [J]. J Clin Immunol, 2014, 34 Suppl 1: S64-9.
[11] Obulesu M, Jhansilakshmi M. Neuroinflammation in Alzheimer's disease: an understanding of physiology and pathology [J]. Int J Neurosci, 2014, 124: 227-35.
[12] Jin X, Yamashita T. Microglia in central nervous system repair after injury [J]. J Biochem, 2016, 159: 491-6.
[13] Calsolaro V, Edison P. Neuroinflammation in Alzheimer's disease: Current evidence and future directions [J]. Alzheimers Dement, 2016, 12: 719-32.
[14] Fu WY, Wang X, Ip NY. Targeting neuroinflammation as a therapeutic strategy for Alzheimer's disease: Mechanisms, drug candidates, and new opportunities [J]. ACS Chem Neurosci, 2019, 10: 872-879.
[15] Phillips EC, Croft CL, Kurbatskaya K, et al. Astrocytes and neuroinflammation in Alzheimer's disease [J]. Biochem Soc Trans, 2014, 42: 1321-5.
[16] Pannasch U, Rouach N. Emerging role for astroglial networks in information processing: from synapse to behavior [J]. Trends Neurosci, 2013, 36: 405-17.
[17] Morales I, Guzman-Martinez L, Cerda-Troncoso C, et al. Neuroinflammation in the pathogenesis of Alzheimer's disease. A rational framework for the search of novel therapeutic approaches [J]. Front Cell Neurosci, 2014, 8: 112.
[18] Morales I, Guzmán-Martínez L, Cerda-Troncoso C, et al. Neuroinflammation in the pathogenesis of Alzheimer's disease. A rational framework for the search of novel therapeutic approaches [J]. Front Cell Neurosci, 2014, 8: 112.
[19] Yap JKY, Pickard BS, Chan EWL, et al. The Role of neuronal NLRP1 inflammasome in Alzheimer's disease: Bringing neurons into the neuroinflammation game [J]. Mol Neurobiol, 2019, 56: 7741-7753.
[20] Da Mesquita S, Ferreira AC, Sousa JC, et al. Insights on the pathophysiology of Alzheimer's disease: The crosstalk between amyloid pathology, neuroinflammation and the peripheral immune system [J]. Neurosci Biobehav Rev, 2016, 68: 547-562.
[21] Mott RT, Ait-Ghezala G, Town T, et al. Neuronal expression of CD22: novel mechanism for inhibiting microglial proinflammatory cytokine production [J]. Glia, 2004, 46: 369-79.
[22] Walker DG, Dalsing-Hernandez JE, Campbell NA, et al. Decreased expression of CD200 and CD200 receptor in Alzheimer's disease: a potential mechanism leading to chronic inflammation [J]. Exp Neurol, 2009, 215: 5-19.
[23] Uddin MS, Kabir MT, Mamun AA, et al. Pharmacological approaches to mitigate neuroinflammation in Alzheimer's disease [J]. Int Immunopharmacol, 2020, 84: 106479.
[24] Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? [J]. Nat Med, 2006, 12: 1005-15.
[25] Wyss-Coray T, Yan F, Lin AH, et al. Prominent neurodegeneration and increased plaque formation in complement-inhibited Alzheimer's mice [J]. Proc Natl Acad Sci U S A, 2002, 99: 10837-42.
[26] Taylor JM, Minter MR, Newman AG, et al. Type-1 interferon signaling mediates neuro-inflammatory events in models of Alzheimer's disease [J]. Neurobiol Aging, 2014, 35: 1012-23.
作者簡(jiǎn)介:崔景新,女,碩士研究生,主要從事神經(jīng)藥理學(xué)研究,E-mail:843054706@qq.com
*通訊作者:陳玲琳,女,講師,碩士研究生導(dǎo)師,主要從事神經(jīng)藥理學(xué)研究, E-mail::nnchenlinglinnn@163.com
2951500783362