劉璐 姜文瀾 楊雪嬌 楊先
[摘要] 新型降眼壓藥物Rho激酶抑制劑直接作用于青光眼根本的致病部位——小梁網(wǎng)及小梁網(wǎng)細(xì)胞,通過調(diào)節(jié)細(xì)胞周期、細(xì)胞骨架,促進(jìn)細(xì)胞增殖等多種機(jī)制降眼壓。本文將針對Rho激酶信號通路對小梁網(wǎng)細(xì)胞增殖作用機(jī)制的研究進(jìn)展進(jìn)行綜述。
[關(guān)鍵詞] 青光眼;rho相關(guān)激酶類;信號系統(tǒng);小梁網(wǎng);細(xì)胞增殖;綜述
[中圖分類號] R775;R345.57
[文獻(xiàn)標(biāo)志碼] A
[文章編號] 2096-5532(2022)01-0155-04
doi:10.11712/jms.2096-5532.2022.58.007
青光眼是不可逆性盲的主要病因[1]。降眼壓是唯一被證實(shí)可延緩青光眼進(jìn)展的干預(yù)措施[2]。已有研究結(jié)果顯示,與同年齡段正常人相比較,青光眼病人小梁網(wǎng)細(xì)胞(TMC)數(shù)量減少、小梁網(wǎng)(TM)結(jié)構(gòu)及功能障礙,導(dǎo)致房水外流阻力增加[3-5],從而引起眼壓升高。近來發(fā)現(xiàn)Rho激酶抑制劑(ROCKi)通過調(diào)控TMC細(xì)胞骨架降低房水外流阻力,并在被日本和美國批準(zhǔn)使用[6-7]。相關(guān)研究結(jié)果顯示,ROCKi可促進(jìn)人角膜內(nèi)皮細(xì)胞(CEC)的增殖[8-9]。在人眼的胚胎發(fā)育中,TMC和CEC均來源于神經(jīng)嵴[10]。本課題組前期研究結(jié)果顯示,ROCKi有促進(jìn)TMC增殖的作用,而對于ROCKi促進(jìn)TMC增殖機(jī)制的研究,則有助于發(fā)現(xiàn)青光眼治療新的靶點(diǎn)。本文將針對Rho/Rho激酶(ROCK)信號通路在促TMC增殖作用的機(jī)制展開綜述。
1 ROCK對細(xì)胞增殖影響的研究現(xiàn)狀
1.1 ROCK對細(xì)胞增殖的作用
ROCK屬于小G蛋白家族,在體內(nèi)主要通過調(diào)節(jié)細(xì)胞骨架、細(xì)胞形態(tài)與極性、細(xì)胞運(yùn)動(dòng)、囊泡運(yùn)輸、細(xì)胞周期進(jìn)展、細(xì)胞增殖以及新基因的表達(dá)等來發(fā)揮其功能[11]。已有研究結(jié)果表明,激活ROCK信號通路可以促進(jìn)多種腫瘤細(xì)胞的增殖[12]。在PC-3和DU145人前列腺癌細(xì)胞中,ROCK可以通過靶向LIM激酶-1和基質(zhì)金屬蛋白酶-2促進(jìn)腫瘤細(xì)胞的增殖[13];色域螺旋酶DNA結(jié)合蛋白4通過調(diào)節(jié)PHD指狀蛋白5,進(jìn)而激活ROCK促進(jìn)非小細(xì)胞肺癌腫瘤細(xì)胞的增殖[14]。NOBLET等[15]的研究結(jié)果也顯示,瘦素可以通過ROCK信號通路促進(jìn)血管平滑肌細(xì)胞的增殖。ROCK的過度表達(dá)通過作用于雌激素進(jìn)而促進(jìn)人子宮內(nèi)膜上皮細(xì)胞的增殖[16]。此外,ROCKi可能通過TGF-β信號轉(zhuǎn)導(dǎo)或LPA誘導(dǎo)的纖維化反應(yīng)來抑制成纖維細(xì)胞向肌成纖維細(xì)胞的轉(zhuǎn)化[17],從而抑制青光眼誘導(dǎo)的成纖維細(xì)胞的增殖[18]。然而,抑制ROCK也可促進(jìn)多種細(xì)胞的增殖。ROCKi(Y-27632)能通過ERK/MAPK途徑促進(jìn)牙周膜干細(xì)胞增殖[19];Y-27632通過上調(diào)Noggin蛋白的表達(dá)促進(jìn)人類脫落乳牙干細(xì)胞的增殖[20];還可通過旁分泌信號通路促進(jìn)黑素細(xì)胞的增殖[21]。所以,ROCK信號通路對不同細(xì)胞的增殖可能產(chǎn)生不同的作用。
1.2 ROCK在眼部促增殖的作用
在眼部,ROCKi可促進(jìn)人類CEC的增殖[22],局部使用ROCKi對于治療大皰性角膜病、Fushs角膜營養(yǎng)不良以及局灶性水腫的角膜內(nèi)皮功能障礙均有重要作用[23-24]。在人眼的發(fā)育過程中,角膜內(nèi)皮和基質(zhì)、小梁網(wǎng)、大部分鞏膜和睫狀肌等都是由神經(jīng)嵴衍生出來的,而所有的血管內(nèi)皮、其余部分鞏膜、Schlemm管和眼外肌肉等都來自中胚層[25]。神經(jīng)嵴細(xì)胞是通過上皮-間充質(zhì)轉(zhuǎn)化從背神經(jīng)管產(chǎn)生的多能遷徙細(xì)胞[26]。神經(jīng)嵴細(xì)胞的遷徙遍布整個(gè)胚胎,小GTP酶的活性、細(xì)胞骨架的重塑、細(xì)胞的黏附和細(xì)胞膜的運(yùn)動(dòng)都是其有效的定向遷徙所必需的。已有研究結(jié)果顯示,角膜內(nèi)皮在其整個(gè)生命周期中處于細(xì)胞周期的G1期,而細(xì)胞周期G1/S過程的調(diào)節(jié)在細(xì)胞增殖中起核心作用。有絲分裂刺激誘導(dǎo)細(xì)胞進(jìn)入G1期,G1期是細(xì)胞復(fù)制DNA的準(zhǔn)備階段,ROCKi激活PI3-激酶信號,隨之調(diào)節(jié)G1/S進(jìn)展所需通路(細(xì)胞周期蛋白-D1(cycliinD1)、cyclinD 3上調(diào)[27];周期蛋白依賴性激酶(CDK)2和CDK4、CKD6的上調(diào),以及P27的下調(diào)[27]),從而促進(jìn)CEC增殖??梢哉J(rèn)為ROCKi主要通過調(diào)控CEC的細(xì)胞周期進(jìn)而調(diào)控其細(xì)胞增殖。此外,研究還發(fā)現(xiàn)激活Rho-ROCK-經(jīng)典骨形態(tài)蛋白信號與mi302b-Oct4-Sox2-Nanog的網(wǎng)絡(luò)激活相關(guān)聯(lián),可以將成年CEC重新編程為神經(jīng)嵴樣細(xì)胞[28]。
此外,研究發(fā)現(xiàn)ROCKi對眼部其他細(xì)胞也有促增殖作用[29-32]。ROCKi可增加視網(wǎng)膜神經(jīng)節(jié)細(xì)胞軸突的再生[29];可通過誘導(dǎo)參與細(xì)胞的多種成分來促進(jìn)視網(wǎng)膜色素上皮細(xì)胞增殖、附著,并抑制其凋亡[30-31]。ROCKi還可誘導(dǎo)體外培養(yǎng)的角膜緣上皮細(xì)胞的增殖并促進(jìn)體內(nèi)上皮傷口愈合[32]。
2 TMC增殖的研究現(xiàn)狀
TMC是一種兼有內(nèi)皮細(xì)胞、肌成纖維細(xì)胞、巨噬細(xì)胞的特性為一體的特殊細(xì)胞,主要負(fù)責(zé)調(diào)節(jié)房水的流出阻力[33]。有研究表明,TMC保留了成年干細(xì)胞的特性[34]。小梁網(wǎng)干細(xì)胞(TMSCs)可以在眼球的TM組織中存在,并有能力分化為TMC,從而誘導(dǎo)TM再生[34]。ZHU等[35]發(fā)現(xiàn),在轉(zhuǎn)基因小鼠青光眼模型中移植誘導(dǎo)多能干細(xì)胞衍生TM樣細(xì)胞(iPSC-TM)可以刺激其眼內(nèi)源性TMC的增殖,從而增加房水流出,降低眼壓。另有研究表明,熱休克蛋白70(Hsp 70)可以通過抑制Smad途徑抑制TMC的凋亡,促進(jìn)TMC的增殖[36]。WANG等[37]研究發(fā)現(xiàn),H2O2可使TMC增殖顯著減少,凋亡增加,而miR-17-5p可抑制H2O2的上述作用,使TMC的增殖顯著增加。miR-144-3p的過度表達(dá)通過抑制氧化應(yīng)激TMC中纖維連接蛋白-1的表達(dá),促進(jìn)TMC增殖與遷移[38]。miR-200c-3p的過度表達(dá)通過抑制半胱天冬酶-3(caspase-3)和凋亡調(diào)節(jié)因子 Bax的表達(dá),靶向磷酸酶和張力蛋白(PTEN)激活PTEN/AKT/mTOR信號通路,分別增強(qiáng)TMC增殖,抑制TMC凋亡[39]。綜上所述,TMC可認(rèn)為是可再生細(xì)胞,通過促進(jìn)其增殖來促進(jìn)房水流出,進(jìn)而降低眼壓。
3 ROCKi促進(jìn)TMC增殖的可能機(jī)制
3.1 ROCKi通過調(diào)控細(xì)胞周期促進(jìn)TMC增殖
ROCK已被證明可以調(diào)節(jié)細(xì)胞周期,特別是調(diào)節(jié)諸多參與G1/S轉(zhuǎn)換的基因表達(dá),ROCK在有絲分裂中起關(guān)鍵作用[40-43]。在有絲分裂后期,ROCK直接通過調(diào)節(jié)肌動(dòng)蛋白和肌球蛋白收縮環(huán),參與胞質(zhì)分裂[40]。然而,Rho/ROCK信號通路調(diào)控細(xì)胞周期的具體機(jī)制尚未完全清楚。研究證明,在多數(shù)腫瘤細(xì)胞,ROCK激活可以調(diào)節(jié)細(xì)胞G1/S期,上調(diào)cyclinD1,下調(diào)P21、P27的表達(dá)[41]。但也有研究表明,在肝細(xì)胞中抑制ROCK可以上調(diào)cyclinD1[42]。在CEC中,抑制ROCK可降低cyclinD1、cyclinD3、CDK4和CDK6的表達(dá),并延緩細(xì)胞的核移位,進(jìn)而延遲細(xì)胞進(jìn)入S期[43]。不同細(xì)胞類型中ROCK抑制作用的差異表明,ROCK的下游效應(yīng)信號可能取決于不同的細(xì)胞類型。
人TMC與CEC均起源于神經(jīng)嵴細(xì)胞,如前所述,我們可以認(rèn)為ROCKi可以通過調(diào)控細(xì)胞周期進(jìn)而促進(jìn)細(xì)胞增殖。細(xì)胞周期分為分裂間期(G1、S、G2)和分裂期(M)。細(xì)胞由G1期向S期轉(zhuǎn)化主要受G1期CDK激酶及CDK激酶抑制劑的調(diào)控。細(xì)胞周期G1/S過程的調(diào)節(jié)在細(xì)胞增殖中起核心作用,G1期是細(xì)胞復(fù)制DNA的準(zhǔn)備階段。我們可以認(rèn)為ROCKi通過激活PI3-激酶信號,隨之調(diào)節(jié)G1/S期進(jìn)展所需通路(引起cyclinD1、cyclinD3、CDK2、CDK4、CDK6表達(dá)的上調(diào),以及P27的下調(diào)),從而促進(jìn)TMC增殖,進(jìn)而增加房水流出,降低眼壓。
3.2 ROCKi促進(jìn)TMC增殖的其他機(jī)制
研究表明,ROCK依賴細(xì)胞增殖的調(diào)節(jié)是通過抑制肌球蛋白收縮性來實(shí)現(xiàn)的[44]。WU等[45]發(fā)現(xiàn),新型ROCKi(Y-27632)通過抑制caspase-3表達(dá)促進(jìn)絨猴誘導(dǎo)的多能干細(xì)胞的增殖并減少其凋亡。在心血管疾病中,ROCK對內(nèi)皮細(xì)胞增殖的影響主要?dú)w因于其對細(xì)胞骨架的作用。例如,局部黏著斑激酶的減少可以促進(jìn)RhoA/ROCK活性,進(jìn)而增強(qiáng)細(xì)胞骨架張力,創(chuàng)造一種促進(jìn)增殖的條件[27]。此外,ROCK的活化誘導(dǎo)增加了β-連環(huán)蛋白及其轉(zhuǎn)錄靶點(diǎn)c-myc的表達(dá),進(jìn)而促進(jìn)細(xì)胞系和小鼠表皮細(xì)胞的增殖[46]。
我們前期研究表明,ROCKi可以促進(jìn)TMC的增殖,但其具體機(jī)制尚未明確。綜上所述,我們可認(rèn)為ROCKi可能通過調(diào)控細(xì)胞周期及相關(guān)因子、調(diào)節(jié)肌球蛋白收縮、調(diào)節(jié)細(xì)胞骨架、抑制caspase-3的表達(dá)和活性,以及調(diào)節(jié)β-連環(huán)蛋白、c-myc的表達(dá)來促進(jìn)TMC增殖。見圖1。
4 小結(jié)
ROCKi已經(jīng)作為新型降眼壓藥物在國外上市,其降眼壓的機(jī)制主要是通過改變TMC形態(tài)、細(xì)胞運(yùn)動(dòng)、平滑肌收縮、胞質(zhì)分裂等影響細(xì)胞骨架,改變細(xì)胞外基質(zhì),增加房水流出,進(jìn)而降低眼壓。然而,我們的前期研究已表明,ROCKi可通過促進(jìn)TMC增殖,達(dá)到中遠(yuǎn)期降眼壓效果。但其具體機(jī)制十分復(fù)雜,可能通過調(diào)控細(xì)胞周期及相關(guān)因子、肌球蛋白收縮、細(xì)胞骨架,抑制caspase-3的表達(dá)和活性,以及調(diào)節(jié)β-連環(huán)蛋白、c-myc的表達(dá)來促進(jìn)TMC增殖,增加房水外流,進(jìn)而降低眼壓。因此,還需要繼續(xù)展開相關(guān)研究探索ROCKi促進(jìn)TMC增殖的具體機(jī)制,明確其降眼壓的相關(guān)機(jī)制,從而為臨床應(yīng)用新型降眼壓藥物提供更好的理論依據(jù)及支持。
[參考文獻(xiàn)]
[1]STEIN J D, KHAWAJA A P, WEIZER J S. Glaucoma in adults-screening, diagnosis, and management: a review[J]. JAMA, 2021,325(2):164-174.
[2]SHALABY W S, SHANKAR V, RAZEGHINEJAD R, et al. Current and new pharmacotherapeutic approaches for glaucoma[J]. Expert Opinion on Pharmacotherapy, 2020,21(16):2027-2040.
[3]KUMAR A, XU Y, DU Y Q. Stem cells from human trabecular meshwork hold the potential to develop into ocular and no-nocular lineages after long-term storage[J]. Stem Cells and Development, 2020,29(1):49-61.
[4]YUN H, WANG Y, ZHOU Y, et al. Human stem cells home to and repair laser-damaged trabecular meshwork in a mouse model[J]. Commun Biol, 2018,1:216.
[5]ALVARADO J, MURPHY C, JUSTER R. Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals[J]. Ophthalmology, 1984,91(6):564-579.
[6]KOMIZO T, ONO T, YAGI A, et al. Additive intraocular pressure-lowering effects of the rho kinase inhibitor ripasudil in japanese patients with various subtypes of glaucoma[J]. Japanese Journal of Ophthalmology, 2019,63(1):40-45.
[7]BERRINO E, SUPURAN C T. Rho-kinase inhibitors in the management of glaucoma[J]. Expert Opinion on Therapeutic Patents, 2019,29(10):817-827.
[8]KINOSHITA S, KOIZUMI N, UENO M, et al. Injection of cultured cells with a rock inhibitor for bullous keratopathy[J]. The New England Journal of Medicine, 2018,378(11):995-1003.
[9]SCHLTZER-SCHREHARDT U, ZENKEL M, STRUNZ M, et al. Potential functional restoration of corneal endothelial cells in fuchs endothelial corneal dystrophy by rock inhibitor (ripasudil)[J]. American Journal of Ophthalmology, 2021,224:185-199.
[10]TIAN H Y, SANDERS E, REYNOLDS A, et al. Ocular anterior segment dysgenesis upon ablation of p120 catenin in neural crest cells[J]. Investigative Ophthalmology & Visual Science, 2012,53(9):5139-5153.
[11]CROSAS-MOLIST E, SAMAIN R, KOHLHAMMER L, et al. Rhogtpase signalling in cancer progression and dissemination[J]. Physiological Reviews, 2021. doi:10.1152/physrev.00045.2020.
[12]HUMPHRIES B, WANG Z S, LI Y F, et al. Arhgap18 downregulation by mir-200b suppresses metastasis of triple-negative breast cancer by enhancing activation of rhoa[J]. Cancer Research, 2017,77(15):4051-4064.
[13]GONG H, ZHOU L, KHELFAT L, et al. Rho-associated protein kinase (rock) promotes proliferation and migration of pc-3 and du145 prostate cancer cells by targeting lim kinase 1 (limk1) and matrix metalloproteinase-2 (mmp-2)[J]. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2019, 25:3090-3099.
[14]XU N, LIU F, WU S, et al. Chd4 mediates proliferation and migration of non-small cell lung cancer via the rhoa/rock pathway by regulating phf5a[J]. BMC Cancer, 2020,20(1):262.
[15]NOBLET J N, GOODWILL A G, SASSOON D J, et al. Leptin augments coronary vasoconstriction and smooth muscle proliferation via a rho-kinase-dependent pathway[J]. Basic Research in Cardiology, 2016,111(3):25.
[16]HUANG Z X, MAO X M, WU R F, et al. Rhoa/rock pathway mediates the effect of oestrogen on regulating epithelial-mesenchymal transition and proliferation in endometriosis[J]. Journal of Cellular and Molecular Medicine, 2020,24(18):10693-10704.
[17]HONJO M, TANIHARA H. Impact of the clinical use of rock inhibitor on the pathogenesis and treatment of glaucoma[J]. Japanese Journal of Ophthalmology, 2018,62(2):109-126.
[18]PITHA I, OGLESBY E, CHOW A, et al. Rho-kinase inhibition reduces myofibroblast differentiation and proliferation of scleral fibroblasts induced by transforming growth factor β and experimental glaucoma[J]. Translational Vision Science & Technology, 2018,7(6):6.
[19]WANG T, KANG W Y, DU L Q, et al. Rho-kinase inhibitor y-27632 facilitates the proliferation, migration and pluripotency of human periodontal ligament stem cells[J]. Journal of Cellular and Molecular Medicine, 2017, 21(11):3100-3112.
[20]YANG S, XIN C J, ZHANG B, et al. Synergistic effects of rho kinase inhibitor y-27632 and noggin overexpression on the proliferation and neuron-like cell differentiation of stem cells derived from human exfoliated deciduous teeth[J]. IUBMB Life, 2020,72(4):665-676.
[21]MI J, FENG Y, WEN J, et al. A rock inhibitor promotes keratinocyte survival and paracrine secretion, enhancing establishment of primary human melanocytes and melanocyte-keratinocyte co-cultures[J]. Pigment Cell & Melanoma Research, 2020,33(1):16-29.
[22]MEEKINS L C, ROSADO-ADAMES N, MADDALA R, et al. Corneal endothelial cell migration and proliferation enhanced by rho kinase (rock) inhibitors in in vitro and in vivo models[J]. Investigative Ophthalmology & Visual Science, 2016,57(15):6731-6738.
[23]MOURA-COELHO N, TAVARES FERREIRA J, BRUXELAS C P, et al. Rho kinase inhibitors-a review on the phy-siology and clinical use in ophthalmology[J]. Albrecht Von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie, 2019, 257(6):1101-1117.
[24]KOIZUMI N, OKUMURA N, UENO M, et al. New therapeutic modality for corneal endothelial disease using rho-associated kinase inhibitor eye drops[J]. Cornea, 2014: S25-S31.
[25]GAGE P J, RHOADES W, PRUCKA S K, et al. Fate maps of neural crest and mesoderm in the mammalian eye[J]. Investigative Ophthalmology & Visual Science, 2005,46(11):4200-4208.
[26]THIERY J P. Epithelial-mesenchymal transitions in development and pathologies[J]. Current Opinion in Cell Biology, 2003,15(6):740-746.
[27]LIU J, WADA Y, KATSURA M, et al. Rho-associated coiled-coil kinase (rock) in molecular regulation of angiogenesis[J]. Theranostics, 2018,8(21):6053-6069.
[28]ZHU Y T, LI F, HAN B, et al. Activation of rhoa-rock-bmp signaling reprograms adult human corneal endothelial cells[J]. The Journal of Cell Biology, 2014, 206(6):799-811.
[29]DING J, YU J Z, LI Q Y, et al. Rho kinase inhibitor fasudil induces neuroprotection and neurogenesis partially through astrocyte-derived g-csf[J]. Brain, Behavior, and Immunity, 2009, 23(8):1083-1088.
[30]CROZE R H, THI W J, CLEGG D O. Rock inhibition promotes attachment, proliferation, and wound closure in human embryonic stem cell-derived retinal pigmented epithelium[J]. Translational Vision Science & Technology, 2016,5(6):7.
[31]NI Y, QIN Y, FANG Z, et al. Rock inhibitor y-27632 promotes human retinal pigment epithelium survival by altering cellular biomechanical properties[J]. Current Molecular Medicine, 2017,17(9):637-646.
[32]SUN C C, CHIU H T, LIN Y F, et al. Y-27632, a rock inhibitor, promoted limbal epithelial cell proliferation and cor-neal wound healing[J]. PLoS One, 2015,10(12):e0144571.
[33]BUFFAULT J, LABB A, HAMARD P, et al. The trabecular meshwork: Structure, function and clinical implications. A review of the literature[J]. Journal Francais d’Ophtalmologie, 2020,43(7):e217-e230.
[34]SUN H, ZHU Q, GUO P, et al. Trabecular meshwork cells are a valuable resource for cellular therapy of glaucoma[J]. Journal of Cellular and Molecular Medicine, 2019, 23(3):1678-1686.
[35]ZHU W, GODWIN C R, CHENG L, et al. Transplantation of ipsc-tm stimulates division of trabecular meshwork cells in human eyes[J]. Scientific Reports, 2020,10(1):2905.
[36]CAO Y N, GAO L, TANG R H, et al. Hsp70 protects human trabecular meshwork cells injury induced by uvb through smad pathway[J]. Die Pharmazie, 2017,72(6):334-337.
[37]WANG X Y, LI Z J, BAI J, et al. Mir-17-5p regulates the proliferation and apoptosis of human trabecular meshwork cells by targeting phosphatase and tensin homolog[J]. Molecular Medicine Reports, 2019,19(4):3132-3138.
[38]YIN R X, CHEN X Y. Regulatory effect of mir-144-3p on the function of human trabecular meshwork cells and fibronectin-1[J]. Experimental and Therapeutic Medicine, 2019,18(1):647-653.
[39]SHEN Y F, ZHU Y, RONG F. Mir-200c-3p regulates the proliferation and apoptosis of human trabecular meshwork cells by targeting pten[J]. Molecular Medicine Reports, 2020,22(2):1605-1612.
[40]DAVID M, PETIT D, BERTOGLIO J. Cell cycle regulation of rho signaling pathways[J]. Cell Cycle (Georgetown, Tex), 2012,11(16):3003-3010.
[41]COLEMAN M L, MARSHALL C J, OLSON M F. Ras and rho gtpases in g1-phase cell-cycle regulation[J]. Nature Reviews Molecular Cell Biology, 2004,5(5):355-366.
[42]WELSH C F. Rho gtpases as key transducers of proliferative signals in g1 cell cycle regulation[J]. Breast Cancer Research and Treatment, 2004,84(1):33-42.
[43]CHEN J, GUERRIERO E, LATHROP K, et al. Rho/rock signaling in regulation of corneal epithelial cell cycle progression[J]. Investigative Ophthalmology & Visual Science, 2008,49(1):175-183.
[44]KMPER S, MARDAKHEH F K, MCCARTHY A, et al. Rho-associated kinase (rock) function is essential for cell cycle progression, senescence and tumorigenesis[J]. eLife, 2016,5:e12994.
[45]WU Y H, SHU J H, HE C W, et al. Rock inhibitor y27632 promotes proliferation and diminishes apoptosis of marmoset induced pluripotent stem cells by suppressing expression and activity of caspase-3[J]. Theriogenology, 2016,85(2):302-314.
[46]SCHOFIELD A V, BERNARD O. Rho-associated coiled-coil kinase (rock) signaling and disease[J]. Critical Reviews in Biochemistry and Molecular Biology, 2013,48(4):301-316.
(本文編輯 于國藝)
3194500338270