楊帆 王帥 龍曼 趙凡 郭勁松 方芳
摘 要:為了研究胞外多糖對(duì)厭氧氨氧化顆粒污泥穩(wěn)定性的影響及其機(jī)理,采用可酶解多糖的淀粉酶對(duì)顆粒污泥進(jìn)行酶解。結(jié)果表明,α-淀粉酶處理組顆粒污泥外邊緣出現(xiàn)溶脹,而β-淀粉酶處理組顆粒污泥表面無明顯變化,但出現(xiàn)破碎且穩(wěn)定性明顯下降。表面性質(zhì)及XDLVO理論分析表明,酶解降低了顆粒污泥疏水性,增大了微生物之間的排斥力,從而影響了顆粒污泥的穩(wěn)定性。傅里葉紅外光譜掃描結(jié)果表明,酶解后污泥胞外聚合物疏水性官能團(tuán)含量明顯降低。共聚焦掃描發(fā)現(xiàn),α-淀粉酶處理組顆粒污泥外緣α-D-吡喃葡萄糖多糖含量明顯下降,而β-淀粉酶處理組β-D-吡喃葡萄糖多糖呈碎片狀分布。α-淀粉酶處理組表明,胞外多糖的疏水性作用、通過O—H官能團(tuán)與陽離子橋接或相互結(jié)合作用可以促進(jìn)微生物之間的聚集。β-淀粉酶處理組表明,胞外多糖長主鏈之間的纏結(jié)以及豐富的結(jié)合位點(diǎn)橋接形成骨架,增強(qiáng)了微生物之間的黏附,有利于顆粒污泥的穩(wěn)定。
關(guān)鍵詞:厭氧氨氧化;顆粒污泥;胞外多糖;酶解
中圖分類號(hào):X703 ? 文獻(xiàn)標(biāo)志碼:A ? 文章編號(hào):2096-6717(2022)01-0188-09
收稿日期:2021-01-30
基金項(xiàng)目:國家自然科學(xué)基金(51878091)
作者簡介:楊帆(1997- ),男,主要從事污水處理技術(shù)研究,E-mail:youngfan0117@163.com。
方芳(通信作者),女,教授,博士生導(dǎo)師,E-mail:fangfangcq@cqu.edu.cn。
Abstract: In order to study the effect and mechanism of extracellular polysaccharides on the stability of Anammox granular sludge, amylase which can enzymolyze polysaccharides was used to enzymatically hydrolyze granular sludge. The results showed that the outer edge of the granular sludge in the α-amylase treatment group swelled, while the surface of the granular sludge in the β-amylase treatment group did not change significantly, but it was broken and the stability was obviously reduced. The surface properties and XDLVO theoretical analysis showed that enzymatic hydrolysis reduced the hydrophobicity of granular sludge and increased the repulsive force between microorganisms, thereby affecting the stability of granular sludge. The results of Fourier infrared spectroscopy showed that the content of hydrophobic functional groups in extracellular polymers of sludge was significantly reduced after enzymatic hydrolysis. Confocal scanning found that the content of α-D-glucopyranose polysaccharide at the outer edge of the granular sludge in the α-amylase treatment group was significantly decreased, while the β-D-glucopyranose polysaccharide in the β-amylase treatment group was distributed in fragments. Therefore, the α-amylase treatment group showed that the hydrophobic effect of extracellular polysaccharides, binding to each other through O—H functional groups or bridging with cations can promote the aggregation between microorganisms. The β-amylase treatment group showed that the entanglement between the long backbones of extracellular polysaccharides and the bridging of abundant binding sites to form a skeleton enhanced the adhesion between microorganisms and was beneficial to the stability of granular sludge.
Keywords:anaerobic ammonium oxidation; granular sludge; exo-polysaccharide; enzymolysis
厭氧氨氧化(Anaerobic Ammonium Oxidation, Anammox)反應(yīng)是指厭氧氨氧化菌在厭氧條件下以NO-2-N為電子受體,NH+4-N為電子供體,將NO-2-N和NH+4-N轉(zhuǎn)化為N2的過程[1]。厭氧氨氧化工藝脫氮效率高,且不需要額外的有機(jī)碳源,污泥產(chǎn)量低。而厭氧氨氧化顆粒污泥因其結(jié)構(gòu)致密,生物量高,可以促進(jìn)固液分離、增強(qiáng)污泥保留能力等[1-2],在Anammox工藝中得到了廣泛的應(yīng)用[3-4]。胞外聚合物(Extracellular Polymeric Substances, EPS)是細(xì)菌分泌在胞外的高分子聚合物,主要成分為蛋白和多糖[5],可以將微生物細(xì)胞黏附起來[6-7],是形成微生物聚集體的關(guān)鍵。因此,從EPS的角度探究影響Anammox顆粒污泥穩(wěn)定性的因素尤為重要。
有關(guān)顆粒污泥EPS的研究比較多[8-10],但多集中在胞外蛋白方面[11-12]。作為EPS中的主要成分之一,胞外多糖對(duì)顆粒污泥的影響日益受到重視[13]。Sajjad等[14]認(rèn)為胞外多糖中帶負(fù)電的基團(tuán)可與二價(jià)陽離子形成架橋作用,將微生物結(jié)合在一起。Lin等[15]認(rèn)為好氧顆粒污泥中的凝膠對(duì)其結(jié)構(gòu)穩(wěn)定具有重要作用,而多糖則是EPS的主要凝膠成分[16-17]。因此,從胞外多糖的角度深入探討影響Anammox顆粒污泥穩(wěn)定性的原因具有重要意義。
胞外多糖對(duì)Anammox顆粒污泥的形成和穩(wěn)定有重要作用[18]。有學(xué)者指出,胞外多糖通過形成聚合物來促進(jìn)微生物間的黏附,從而增強(qiáng)顆粒穩(wěn)定性[13]。此外,多糖交聯(lián)形成水凝膠也是維持顆粒穩(wěn)定的重要因素[16-17]。目前,已在好氧顆粒污泥胞外聚合物中鑒定出alginate多糖和granulan多糖兩種凝膠多糖[15, 19],它們可以在生物聚集體外形成結(jié)構(gòu)凝膠,有助于聚集體結(jié)構(gòu)的穩(wěn)定。胞外多糖通過氫鍵相連接,促進(jìn)污泥結(jié)構(gòu)穩(wěn)定[20]。Adav等[21]研究發(fā)現(xiàn),胞外多糖可以形成網(wǎng)格狀骨干以維持好氧顆粒污泥的穩(wěn)定性。Yuan等[22]認(rèn)為糖是一種具有長鏈的聚合物,可提供許多結(jié)合位點(diǎn),并通過鏈纏結(jié)來保持顆粒穩(wěn)定[23]。遺憾的是,這些研究沒有直接從多糖鏈結(jié)構(gòu)角度對(duì)胞外多糖的功能進(jìn)行更全面的認(rèn)識(shí)。
筆者采用可酶解多糖的兩種淀粉酶來水解Anammox顆粒污泥胞外多糖,研究酶解前后顆粒污泥的穩(wěn)定性,結(jié)合顆粒污泥表面性質(zhì)和XDLVO理論分析微生物的聚集,探討酶解前后污泥EPS的官能團(tuán)組成和胞外多糖空間分布,以期從胞外多糖的角度理解其對(duì)顆粒污泥穩(wěn)定性的影響及機(jī)理。
1 材料與方法
1.1 反應(yīng)器和廢水性質(zhì)
厭氧氨氧化顆粒污泥取自實(shí)驗(yàn)室長期穩(wěn)定運(yùn)行的厭氧氨氧化膨脹顆粒污泥床[12]。反應(yīng)器進(jìn)水為人工合成廢水,NH+4-N和NO-2-N濃度分別約為180、190 mg/L,總氮負(fù)荷為2.39 kg/(m3·d),進(jìn)水pH值為7.8~8.0,每升水添加微量元素1.25 mL,其配方參考Van de Graaf等[24]的研究。反應(yīng)器溫度控制在(32±1) ℃,脫氮性能保持穩(wěn)定,NH+4 -N、NO-2-N和TN的平均去除率分別為94%、97%和87%左右。
1.2 實(shí)驗(yàn)方案
多糖是由糖苷鍵結(jié)合形成的糖鏈,為研究胞外多糖對(duì)顆粒污泥穩(wěn)定性的影響及機(jī)理,采用α-淀粉酶和β-淀粉酶分別水解顆粒污泥。α-淀粉酶可隨機(jī)水解α-1,4-糖苷鍵,而β-糖苷鍵則從非還原末端逐次水解α-1,4-糖苷鍵,但切斷至分支點(diǎn)的α-1,6-糖苷鍵前則會(huì)停止。因此,在α-淀粉酶作用下,多糖糖鏈被剪切成短鏈,而經(jīng)β-淀粉酶水解后僅多糖支鏈末端被水解,其主鏈并未被破壞。
將粒徑均勻的30 g顆粒污泥均分為3組并分裝在50 mL離心管中,設(shè)置為對(duì)照組、α-淀粉酶處理組和β-淀粉酶處理組,實(shí)驗(yàn)設(shè)計(jì)如表1所示。添加酶解液后,將3組污泥在恒溫振蕩器中以150 r/min,37 ℃的條件振蕩1 h。用去離子水沖洗酶解后的污泥,洗去殘留的酶解液,以用于后續(xù)分析,對(duì)于每個(gè)酶處理組和對(duì)照組進(jìn)行3次重復(fù)實(shí)驗(yàn)。實(shí)驗(yàn)所用淀粉酶均購于Coolaber公司,并按Adav等[21]的實(shí)驗(yàn)方法配置成相應(yīng)濃度的溶液。
1.3 Anammox顆粒污泥性能測(cè)試
顆粒污泥強(qiáng)度可以用來反映顆粒污泥酶解前后的穩(wěn)定性,采用超聲法測(cè)定顆粒污泥的強(qiáng)度[25]。將顆粒污泥放入裝有15 mL去離子水的25 mL錐形瓶中,然后將其置于20~25 kHz、65 W的超聲浴中,以2.5(開)~3 s(關(guān))為周期進(jìn)行超聲處理。收集超聲后的上清液,并用分光光度計(jì)在600 nm處測(cè)定吸光度,該值可代表上清液的濁度。
顆粒污泥表面疏水性采用基于正十二烷-水系統(tǒng)的微生物黏附烷烴試驗(yàn)測(cè)定[26]。將待測(cè)污泥研磨制成細(xì)胞懸浮液,用去離子水將細(xì)胞懸浮液的OD546,0調(diào)整到約0.3,取4 mL懸浮液用漩渦振蕩器充分混合2 min,隨后靜置沉降15 min,測(cè)定OD546.1。另取4 mL懸浮液與1 mL正十二烷充分混合,使用漩渦振蕩器充分混合2 min,隨后靜置15 min以保證分離,此時(shí)部分細(xì)胞懸浮液被吸附到烷烴相,而取水相測(cè)定OD546,2。測(cè)試重復(fù)3次,采用式(1)計(jì)算相對(duì)疏水度。
疏水度(%)=OD546,1-OD546,2OD546,0×100%(1)
Zeta電位可反映污泥表面帶電荷情況,將污泥充分碾磨制成懸浮液,并用0.1 mol/L的NaCl溶液調(diào)整懸浮液的OD546約為0.1,采用納米粒度及Zeta電位分析儀(Zetasizer Nano ZS90,英國)測(cè)試,每個(gè)樣品測(cè)試3次,取平均值。
污泥與水、甲酰胺和1-溴萘的接觸角被用于分析污泥的表面熱力學(xué)特性。接觸角的測(cè)定參照Liu等[27]的方法。用研缽研磨污泥制備污泥懸浮液,以0.45 μm的醋酸纖維素膜過濾。切下一片膜,用接觸角測(cè)量儀(SDC-100, Shengding, 中國)分別測(cè)定膜上污泥與水、甲酰胺和1-溴萘的接觸角。每個(gè)樣品測(cè)定10次,取平均值。
1.4 表面熱力學(xué)和XDLVO理論
根據(jù)污泥與水、甲酰胺和1-溴萘的接觸角,采用熱力學(xué)分析方法[28],可計(jì)算出Hamaker常數(shù)ABLB,界面吸附自由能ΔGadh、范德華作用自由能ΔGLWBL、Lewis酸堿水合作用自由能ΔGABBL等表面熱力學(xué)計(jì)算參數(shù),其中,ΔGadh是ΔGLWBL與ΔGABBL的和。比較這些熱力學(xué)參數(shù),可以分析酶解對(duì)厭氧氨氧化顆粒污泥表面特性的影響。
根據(jù)熱力學(xué)參數(shù)和ζ電位,可以獲得以距離為變量的微生物間的相互作用總能量WT、壓縮雙電層能量WR、范德華能量WA和酸堿相互作用能量WAB[28],進(jìn)而可以從能量的角度解釋微生物聚集的機(jī)理。WT是WR、WA和WAB的總和,具體計(jì)算過程和參數(shù)取值在文獻(xiàn)[29]中有詳細(xì)的描述。
1.5 EPS含量及紅外光譜分析
采用堿提法提取顆粒污泥EPS[30]。EPS中的胞外蛋白使用BCA蛋白試劑盒(Solarbio,日本)進(jìn)行測(cè)定[31],以牛血清蛋白為參考標(biāo)準(zhǔn)。胞外多糖使用蒽酮硫酸法測(cè)定,并以葡萄糖作為參考標(biāo)準(zhǔn)[32]。
傅里葉紅外光譜(FTIR)可以有效檢測(cè)EPS中的官能團(tuán)[33]。將冷凍干燥的10 mg EPS樣品與KBr混合制成壓片,采用紅外光譜儀(Nicolet iS50, Thermo Fisher Scientific.,美國)在4 000~400 cm-1范圍內(nèi)對(duì)EPS樣品進(jìn)行紅外光譜掃描。所有FTIR光譜均進(jìn)行歸一化至最大發(fā)射1.0后進(jìn)行數(shù)據(jù)分析。
1.6 共聚焦激光掃描顯微鏡
共聚焦激光掃描顯微鏡(CLSM)可以直接觀察多糖的空間分布。參考Adav等[21]和Ni等[18]的方法,分別用20 μL Con A(0.25 g/L)、20 μL CW(0.3 g/L)染色胞外α-D-吡喃葡萄糖多糖和β-D-吡喃葡萄糖多糖。染色后將樣品置于共聚焦激光掃描顯微鏡(TCS SP8 CSU,Leica,德國)下觀察,采用LAS X共聚焦軟件進(jìn)行數(shù)據(jù)分析,并歸一化至最大發(fā)射1.0后進(jìn)行數(shù)據(jù)分析。
2 結(jié)果與分析
2.1 顆粒污泥穩(wěn)定性
圖1為酶解后Anammox顆粒污泥聚集體外觀形態(tài)和局部顯微鏡圖像。對(duì)照組的污泥形狀規(guī)則,呈橢球狀,邊緣清晰,無碎片。α-淀粉酶處理組的顆粒污泥外緣發(fā)生輕微溶脹,出現(xiàn)明顯透光現(xiàn)象,但無明顯破損。β-淀粉酶處理的顆粒污泥中出現(xiàn)了部分小碎片,但并未發(fā)生溶脹,且在顯微鏡下污泥結(jié)構(gòu)密實(shí),邊界清晰可見。
顆粒污泥結(jié)構(gòu)致密,具有一定的強(qiáng)度。采用超聲法研究多糖對(duì)污泥結(jié)構(gòu)穩(wěn)定性的影響,A600吸光度的大小可代表污泥經(jīng)超聲處理后上清液的濁度,用于表示污泥解體程度,即間接表明顆粒污泥強(qiáng)度[25],結(jié)果如圖2所示。β-淀粉酶處理組的顆粒污泥經(jīng)超聲處理后上清液在A600的吸光度迅速上升,表明顆粒發(fā)生了明顯的解體,顆粒污泥強(qiáng)度明顯降低。對(duì)照組和α-淀粉酶處理組的顆粒污泥在超聲處理下A600吸光度的變化較小。與對(duì)照組相比,α-淀粉酶水解后顆粒污泥強(qiáng)度基本不變,但經(jīng)超聲處理20 min后強(qiáng)度略有所下降。
2.2 顆粒污泥表面性質(zhì)
如表2所示,酶解前后污泥表面Zeta電位相差不大,多糖水解并未改變污泥表面的電負(fù)性。與對(duì)照組相比,經(jīng)α-淀粉酶和β-淀粉酶水解后,顆粒污泥的疏水度明顯降低。接觸角測(cè)定結(jié)果顯示,酶處理組與純水的接觸角明顯低于對(duì)照組,同樣表明酶解降低了Anammox顆粒污泥的表面疏水性。同時(shí),1-溴代萘是一種非極性物質(zhì),污泥與其接觸角越大則表明污泥親水性越強(qiáng),即疏水性減弱。
2.3 XDLVO理論分析
以接觸角和Zeta電位值計(jì)算酶解前后Anammox顆粒污泥表面熱力學(xué)參數(shù),結(jié)果如表3所示。
3 討論
顆粒污泥被認(rèn)為具有水凝膠的性質(zhì)[17],水凝膠可通過氫鍵、疏水性作用和鏈纏結(jié)等保持顆粒污泥的穩(wěn)定[23]。多糖是EPS的主要凝膠成分[15],可以通過氫鍵與Ca2+形成穩(wěn)定的鏈間交聯(lián)和橋接,形成將細(xì)胞結(jié)合在一起的“蛋盒模型”[16]。此外,多糖是一種兩親性聚合物,可以將疏水性基團(tuán)插入親水性基團(tuán)中,并通過這種有序的結(jié)構(gòu)提高顆粒的穩(wěn)定性。因此,采用對(duì)Anammox顆粒污泥進(jìn)行酶解以破壞多糖的結(jié)構(gòu)來探究多糖對(duì)Anammox顆粒污泥穩(wěn)定性的影響。
顆粒污泥表面特性及熱力學(xué)分析表明,胞外多糖的酶解阻礙了顆粒污泥微生物的聚集,從而影響了顆粒污泥的穩(wěn)定性。疏水性作用對(duì)微生物的聚集非常重要[34],且疏水性越強(qiáng)顆粒污泥越穩(wěn)定[40]。研究中,酶解導(dǎo)致顆粒污泥疏水度和穩(wěn)定性明顯下降,基于XDLVO理論分析進(jìn)一步表明,酶解提高了污泥聚集的能量勢(shì)壘,阻礙了微生物之間的聚集[41],從而影響了顆粒污泥內(nèi)部的穩(wěn)定性。因此,多糖可以在疏水性作用下降低微生物聚集的排斥力,促進(jìn)微生物之間的聚集,從而影響顆粒穩(wěn)定性。
α-淀粉酶處理組顆粒污泥被酶解部分發(fā)生明顯溶脹,β-淀粉酶處理組則出現(xiàn)顆粒污泥破碎且顆粒強(qiáng)度下降的現(xiàn)象,這表明多糖之間的交聯(lián)結(jié)合以及鏈結(jié)構(gòu)對(duì)維持顆粒穩(wěn)定性也有著重要作用。Caudan等[20]對(duì)顆粒污泥進(jìn)行染色以及淀粉酶水解的研究發(fā)現(xiàn),多糖會(huì)在細(xì)菌群落之間交聯(lián)形成水凝膠的屏障,為聚集體提供凝聚力。此外,多糖鏈上豐富的官能團(tuán)可以提供足夠的結(jié)合位點(diǎn)[42],而其較長的碳主鏈也可以確保細(xì)胞間相互作用[22]。α-淀粉酶處理組顆粒污泥外緣被酶解,由于對(duì)多糖主鏈以及支鏈的同時(shí)破壞,EPS疏水性官能團(tuán)和羥基含量明顯降低,影響了多糖之間的交聯(lián)結(jié)合,從而導(dǎo)致α-淀粉酶水解后污泥外緣發(fā)生明顯溶脹。而β-淀粉酶僅破壞多糖支鏈末端,因此,β-淀粉酶處理組顆粒污泥外觀并無明顯變化,這表明多糖主鏈之間的纏結(jié)可以維持顆粒的形態(tài)穩(wěn)定,但顆粒穩(wěn)定性明顯下降,說明多糖支鏈末端的結(jié)合位點(diǎn)之間的交聯(lián)也有助于維持顆粒污泥穩(wěn)定。因此,多糖豐富的官能團(tuán)以及長主鏈可通過交聯(lián)結(jié)合以及鏈纏結(jié)等作用促進(jìn)顆粒污泥的穩(wěn)定性。
通過對(duì)顆粒污泥胞外多糖的酶解可以了解到多糖性質(zhì)如何影響聚集體。胞外多糖的疏水性,骨架作用以及形成水凝膠等都會(huì)影響微生物的聚集過程,進(jìn)而影響聚集體的形態(tài)。不同的反應(yīng)器運(yùn)行工況往往會(huì)影響胞外多糖的性質(zhì)。Yin等[43]研究發(fā)現(xiàn),在氮不足的情況下,AGS的顆粒結(jié)構(gòu)不規(guī)則且疏松,而且胞外多糖的顯著增加被認(rèn)為是影響顆粒穩(wěn)定性的原因。Liu等[44]研究發(fā)現(xiàn),更大的剪切力會(huì)刺激胞外多糖的產(chǎn)生,并促進(jìn)造粒。因而可以通過調(diào)節(jié)反應(yīng)器工況以影響胞外多糖的性質(zhì),從而影響聚集體形成、形態(tài)以及保持聚集體的穩(wěn)定。
4 結(jié)論
對(duì)Anammox顆粒污泥進(jìn)行酶解的結(jié)果表明,多糖對(duì)顆粒污泥的穩(wěn)定性有著重要作用。經(jīng)α-淀粉酶處理后,顆粒污泥外邊緣出現(xiàn)溶脹,但污泥穩(wěn)定性并無明顯變化,而經(jīng)β-淀粉酶處理后,顆粒污泥表面并無變化,但污泥出現(xiàn)破碎且穩(wěn)定性明顯下降。
對(duì)酶解前后污泥表面性質(zhì)的表征發(fā)現(xiàn),酶解降低了污泥疏水性,但未改變污泥表面電負(fù)性。XDLVO理論的分析表明,Anammox顆粒污泥經(jīng)淀粉酶處理后,污泥微生物聚集的能量勢(shì)壘被提高,即多糖可以促進(jìn)微生物間的聚集從而促進(jìn)顆粒污泥穩(wěn)定性。FTIR結(jié)果表明,經(jīng)淀粉酶水解后,污泥EPS中疏水性官能團(tuán)和羥基含量明顯降低。共聚焦掃描顯微鏡發(fā)現(xiàn),α-淀粉酶處理組顆粒污泥外緣α-D-吡喃葡萄糖多糖含量明顯下降,而β-淀粉酶處理組β-D-吡喃葡萄糖多糖則呈碎片狀分布。
α-淀粉酶處理組表明胞外多糖的疏水性作用、通過O—H官能團(tuán)與陽離子橋接或相互結(jié)合作用可以促進(jìn)微生物之間的聚集。β-淀粉酶處理組表明胞外多糖長主鏈之間的纏結(jié)以及支鏈末端豐富的結(jié)合位點(diǎn)橋接形成骨架增強(qiáng)了微生物之間的黏附,有利于顆粒污泥的穩(wěn)定。參考文獻(xiàn):
[1] SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems:A review [J]. Biotechnology Advances, 2010, 28(6): 882-894.
[2] 劉曉猛. 微生物聚集體的相互作用及形成機(jī)制[D]. 合肥: 中國科學(xué)技術(shù)大學(xué), 2008.
LIU X M. Interactions and formation mechanisms of microbial aggregates [D]. Hefei: University of Science and Technology of China, 2008. (in Chinese)
[3] ?JETTEN M S M, WAGNER M, FUERST J, et al. Microbiology and application of the anaerobic ammonium oxidation (‘a(chǎn)nammox’) process [J]. Current Opinion in Biotechnology, 2001, 12(3): 283-288.
[4] ?LACKNER S, GILBERT E M, VLAEMINCK S E, et al. Full-scale partial nitritation/anammox experiences: An application survey [J]. Water Research, 2014, 55: 292-303.
[5] ?YUAN D Q, WANG Y L. Influence of extracellular polymeric substances on rheological properties of activated sludge [J]. Biochemical Engineering Journal, 2013, 77: 208-213.
[6] ?WINGENDER J, NEU T R, FLEMMING H C. Microbial extracellular polymeric substances: Characterization, structure and function [M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999.
[7] ?LONG G Y, ZHU P T, SHEN Y, et al. Influence of extracellular polymeric substances (EPS) on deposition kinetics of bacteria [J]. Environmental Science & Technology, 2009, 43(7): 2308-2314.
[8] ?FENG C J, LOTTI T, LIN Y M, et al. Extracellular polymeric substances extraction and recovery from anammox granules: Evaluation of methods and protocol development [J]. Chemical Engineering Journal, 2019, 374: 112-122.
[9] ?LU H F, ZHENG P, JI Q X, et al. The structure, density and settlability of anammox granular sludge in high-rate reactors [J]. Bioresource Technology, 2012, 123: 312-317.
[10] ?LOTTI T, CARRETTI E, BERTI D, et al. Hydrogels formed by anammox extracellular polymeric substances: Structural and mechanical insights [J]. Scientific Reports, 2019, 9(1): 11633.
[11] ?BOLEIJ M, PABST M, NEU T R, et al. Identification of glycoproteins isolated from extracellular polymeric substances of full-scale anammox granular sludge [J]. Environmental Science & Technology, 2018, 52(22): 13127-13135.
[12] ?FANG F, YANG M M, WANG H, et al. Effect of high salinity in wastewater on surface properties of anammox granular sludge [J]. Chemosphere, 2018, 210: 366-375.
[13] ?PUAL A, BRAUCHI S, REYES J G, et al. Dynamics of extracellular polymeric substances in UASB and EGSB reactors treating medium and low concentrated wastewaters [J]. Water Science and Technology, 2003, 48(6): 41-49.
[14] ?SAJJAD M, KIM K S. Studies on the interactions of Ca2+ and Mg2+ with EPS and their role in determining the physicochemical characteristics of granular sludges in SBR system [J]. Process Biochemistry, 2015, 50(6): 966-972.
[15] ?LIN Y M, DE KREUK M, VAN LOOSDRECHT M C M, et al. Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant [J]. Water Research, 2010, 44(11): 3355-3364.
[16] ?SEVIOUR T, YUAN Z G, VAN LOOSDRECHT M C M, et al. Aerobic sludge granulation:A tale of two polysaccharides [J]. Water Research, 2012, 46(15): 4803-4813.
[17] ?SEVIOUR T, PIJUAN M T, NICHOLSON T, et al. Understanding the properties of aerobic sludge granules as hydrogels [J]. Biotechnology and Bioengineering, 2009, 102(5): 1483-1493.
[18] ?NI S Q, SUN N, YANG H L, et al. Distribution of extracellular polymeric substances in anammox granules and their important roles during anammox granulation [J]. Biochemical Engineering Journal, 2015, 101: 126-133.
[19] ?SEVIOUR T W, LAMBERT L K, PIJUAN M T, et al. Selectively inducing the synthesis of a key structural exopolysaccharide in aerobic granules by enriching for Candidatus “Competibacter phosphatis” [J]. Applied Microbiology and Biotechnology, 2011, 92(6): 1297-1305.
[20] ?CAUDAN C, FILALI A, SPRANDIO M, et al. Multiple EPS interactions involved in the cohesion and structure of aerobic granules [J]. Chemosphere, 2014, 117: 262-270.
[21] ?ADAV S S, LEE D J, TAY J H. Extracellular polymeric substances and structural stability of aerobic granule [J]. Water Research, 2008, 42(6/7): 1644-1650.
[22] ?YUAN S J, SUN M, SHENG G P, et al. Identification of key constituents and structure of the extracellular polymeric substances excreted by Bacillus megaterium TF10 for their flocculation capacity [J]. Environmental Science & Technology, 2011, 45(3): 1152-1157.
[23] ?YAN Z R, ZHU Y Y, MENG H S, et al. Insights into thermodynamic mechanisms driving bisphenol A (BPA) binding to extracellular polymeric substances (EPS) of activated sludge [J]. Science of the Total Environment, 2019, 677: 502-510.
[24] ?VAN DE GRAAF A A, DE BRUIJN P, ROBERTSON L A, et al. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor [J]. Microbiology, 1996, 142(8): 2187-2196.
[25] ?WAN C L, ZHANG P, LEE D J, et al. Disintegration of aerobic granules: Role of second messenger cyclic di-GMP [J]. Bioresource Technology, 2013, 146: 330-335.
[26] ?PEMBREY R S, MARSHALL K C, SCHNEIDER R P. Cell surface analysis techniques:What do cell preparation protocols do to cell surface properties [J]. Applied and Environmental Microbiology, 1999, 65(7): 2877-2894.
[27] ?LIU X M, SHENG G P, LUO H W, et al. Contribution of extracellular polymeric substances (EPS) to the sludge aggregation [J]. Environmental Science & Technology, 2010, 44(11): 4355-4360.
[28] ?VAN OSS C J. Hydrophobicity of biosurfaces-Origin, quantitative determination and interaction energies [J]. Colloids and Surfaces B: Biointerfaces, 1995, 5(3/4): 91-110.
[29] ?ZHANG A Y, WANG S, YANG M M, et al. Influence of NaCl salinity on the aggregation performance of anammox granules [J]. Journal of Water Process Engineering, 2021, 39: 101687.
[30] ?LIANG Z W, LI W H, YANG S Y, et al. Extraction and structural characteristics of extracellular polymeric substances (EPS), pellets in autotrophic nitrifying biofilm and activated sludge [J]. Chemosphere, 2010, 81(5): 626-632.
[31] ?RAS M, GIRBAL-NEUHAUSER E, PAUL E, et al. Protein extraction from activated sludge: An analytical approach [J]. Water Research, 2008, 42(8/9): 1867-1878.
[32] ?LOEWUS F A. Improvement in anthrone method for determination of carbohydrates [J]. Analytical Chemistry, 1952, 24(1): 219.
[33] ?WANG J Q, NIE S P, KAN L J, et al. Comparison of structural features and antioxidant activity of polysaccharides from natural and cultured Cordyceps sinensis [J]. Food Science and Biotechnology, 2017, 26(1): 55-62.
[34] ?HOU X L, LIU S T, ZHANG Z T. Role of extracellular polymeric substance in determining the high aggregation ability of anammox sludge [J]. Water Research, 2015, 75: 51-62.
[35] ?GUO X, WANG X, WANG X, et al. Composition analysis of fractions of extracellular polymeric substances from an activated sludge culture and identification of dominant forces affecting microbial aggregation [J]. Scientific Reports, 2016, 6: 28391.
[36] ?WANG Y X, YIN J Y, HUANG X J, et al. Structural characteristics and rheological properties of high viscous glucan from fruit body of Dictyophora rubrovolvata [J]. Food Hydrocolloids, 2020, 101: 105514.
[37] ?WANG L L, WANG L F, SHI Q S, et al. Purification and molecular weight distribution of a key exopolysaccharide component of Bacillus megaterium TF10 [J]. Journal of Environmental Sciences, 2018, 63: 9-15.
[38] ?HUANG Z S, WANG Y F, JIANG L, et al. Mechanism and performance of a self-flocculating marine bacterium in saline wastewater treatment [J]. Chemical Engineering Journal, 2018, 334: 732-740.
[39] ?LOTTI T, CARRETTI E, BERTI D, et al. Extraction, recovery and characterization of structural extracellular polymeric substances from anammox granular sludge [J]. Journal of Environmental Management, 2019, 236: 649-656.
[40] ?LIU Y, YANG S F, TAY J H, et al. Cell hydrophobicity is a triggering force of biogranulation [J]. Enzyme and Microbial Technology, 2004, 34(5): 371-379.
[41] ?HERMANSSON M. The DLVO theory in microbial adhesion [J]. Colloids and Surfaces B: Biointerfaces, 1999, 14(1-4): 105-119.
[42] ?YIN C Q, MENG F G, CHEN G H. Spectroscopic characterization of extracellular polymeric substances from a mixed culture dominated by ammonia-oxidizing bacteria [J]. Water Research, 2015, 68: 740-749.
[43] ?YIN Y J, SUN J, LIU F Y, et al. Effect of nitrogen deficiency on the stability of aerobic granular sludge [J]. Bioresource Technology, 2019, 275: 307-313.
[44] ?LIU Y, TAY J H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge [J]. Water Research, 2002, 36(7): 1653-1665.
(編輯 黃廷)