国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

生態(tài)溝渠對農(nóng)田面源污染的消減機(jī)理及其影響因子分析

2022-02-15 01:12:00程浩淼葛恒軍朱騰義馮紹元
關(guān)鍵詞:溝渠面源底泥

程浩淼,季 書,葛恒軍,朱騰義,馮紹元

·農(nóng)業(yè)水土工程·

生態(tài)溝渠對農(nóng)田面源污染的消減機(jī)理及其影響因子分析

程浩淼1,2,季 書1,葛恒軍3,朱騰義1,馮紹元2※

(1. 揚(yáng)州大學(xué)環(huán)境科學(xué)與工程學(xué)院,揚(yáng)州 225127; 2. 揚(yáng)州大學(xué)水利科學(xué)與工程學(xué)院,揚(yáng)州 225127;3. 揚(yáng)州市勘測設(shè)計(jì)研究院有限公司,揚(yáng)州 225007)

農(nóng)業(yè)生產(chǎn)過程中肥料和農(nóng)藥的大量施用,造成農(nóng)田面源污染問題日益突出,開發(fā)農(nóng)田面源污染的減控技術(shù)對生態(tài)修復(fù)具有重要的意義。生態(tài)溝渠不僅兼具農(nóng)田排水溝的過水功能,同時是有效消減面源污染且適合中國農(nóng)情的重要生態(tài)措施之一。該研究闡述了生態(tài)溝渠對農(nóng)田面源污染的消減機(jī)理(底泥吸附及植物阻抗作用、植物/微生物吸收作用、降解去除作用);通過整理分析559組生態(tài)溝渠野外觀測試驗(yàn)數(shù)據(jù),剖析了污染物初始濃度、水力停留時間、植物種類、生物量這4個主要影響因子對農(nóng)田排水中N、P及農(nóng)藥去除率的影響;進(jìn)而采用多元線性回歸模型將多因子影響與N、P及農(nóng)藥去除率之間建立定量關(guān)系。結(jié)果表明總氮和總磷的去除率隨單一因子污染物初始濃度、水力停留時間或生物量增大而增大,但與植物種類沒有顯著關(guān)系(>0.05);且多元線性回歸模型結(jié)果表明污染物初始濃度的對總氮/總磷去除率的貢獻(xiàn)大于生物量。農(nóng)藥的去除率隨水力停留時間、生物量增大而增大,隨污染物初始濃度增大而減小,與植物種類沒有顯著關(guān)系(>0.05)。研究可為生態(tài)溝渠的合理構(gòu)建和設(shè)計(jì)提供理論和技術(shù)支撐。

生物量;氮;磷;生態(tài)溝渠;去除率;初始濃度;水力停留時間

0 引 言

中國是一個農(nóng)業(yè)大國,農(nóng)田面積僅占世界的7%,但要養(yǎng)活世界22%的人口;施用肥料和農(nóng)藥是確保農(nóng)作物穩(wěn)產(chǎn)、高產(chǎn)與優(yōu)產(chǎn)的重要手段。中國肥料、農(nóng)藥的單位面積用量分別是世界平均水平的2.5~3.0倍和2.0~2.5倍[1-2]。與此同時,中國肥料農(nóng)藥的利用率也低于世界平均水平:全球氮肥(N)、磷肥(P)、農(nóng)藥利用率分別為30%~60%,10%~20%和50%~60%[3-4],而中國分別為<35%,5%~10%和<40%[5]。大量施用于田間的N、P及農(nóng)藥會通過雨水沖刷、徑流、淋溶滲漏等方式進(jìn)入地表水或地下水,造成水體富營養(yǎng)化、生物多樣性減少等生態(tài)風(fēng)險(xiǎn)[6-8]。因此,開發(fā)農(nóng)田面源污染的減控技術(shù)對生態(tài)修復(fù)具有重要的意義。

目前,國內(nèi)外農(nóng)田面源污染的減控技術(shù)主要分為源頭控制、末端控制和過程控制[9]。其中,過程控制具有處理效果好、管控方便、投入低等優(yōu)勢,已成為了當(dāng)下控制面源污染的主要技術(shù)之一[10]。過程控制技術(shù)主要有生態(tài)溝渠、植被緩沖帶、人工濕地等[11]。其中,生態(tài)溝渠是在原農(nóng)田溝渠中種植具有凈化功能的植物,構(gòu)建獨(dú)特的水-底泥-植物-微生物多介質(zhì)系統(tǒng)[12]。在該系統(tǒng)中,農(nóng)田尾水中的N、P及農(nóng)藥會經(jīng)沉降吸附、植物吸收、微生物分解等環(huán)境過程,最終被逐漸消減。與植被緩沖帶、人工濕地等相比,生態(tài)溝渠運(yùn)行費(fèi)用更低且占地更少(僅占農(nóng)田面積的3%),在中國土地資源緊張的國情下有很好的推廣應(yīng)用前景[13-14]。

近年來,生態(tài)溝渠已成為中國處理農(nóng)田面源污染的研究熱點(diǎn)。張燕等[15]綜述了生態(tài)溝渠對P的凈化機(jī)理及影響因子,并探討了增加其除P效果的控制措施,如蓄水、清淤、投加外源微生物等措施。Kumwimba等[16]綜述了生態(tài)溝渠中營養(yǎng)鹽及有機(jī)物的去除機(jī)理、影響因子,并提出了構(gòu)建低級堰以刺激反硝化作用,進(jìn)而提高N的去除率。鐘珍梅等[6]綜述了生態(tài)溝渠中常見植物及其治理效果,并指出可采取挺水植物、浮水植物和沉水植物的垂直搭配,實(shí)現(xiàn)去除N、P及農(nóng)藥的目的。先前的綜述研究多集中于N、P的消減機(jī)理,而對農(nóng)藥去除效果的研究很少。同時,現(xiàn)有研究所考慮的影響因子通常為單一因子,而生態(tài)溝渠對農(nóng)田面源污染物的去除效果是受到多重因子復(fù)合影響的。因此,亟需開展相關(guān)研究厘清多因子與面源污染去除率之間的交互關(guān)系。

基于以上背景,本文綜述了生態(tài)溝渠消減農(nóng)田面源污染的相關(guān)文獻(xiàn),闡明了生態(tài)溝渠對N、P及農(nóng)藥的消減機(jī)理及影響因子;探索了污染物初始濃度(Initial Concentration,IC)、水力停留時間(Hydraulic Retention Time,HRT)、植物種類(Plant Species,PS)、生物量(Plant Biomass,BM)對N、P及農(nóng)藥的去除率的影響;進(jìn)而采用多元線性回歸方程模型(Multiple Linear Regression Model,MLR),探索了N、P及農(nóng)藥去除率與多重影響因子與之間的定量關(guān)系,以期為提高生態(tài)溝渠的面源污染去除效果奠定理論基石,同時也為生態(tài)溝渠的合理構(gòu)建和設(shè)計(jì)提供科學(xué)依據(jù)。

1 數(shù)據(jù)來源及處理

1.1 生態(tài)溝渠的野外觀測試驗(yàn)數(shù)據(jù)收集

為探明生態(tài)溝渠系統(tǒng)對農(nóng)田面源污染物(N、P及農(nóng)藥)的影響因子及去除效果,本文利用ISI Web of Science 和CNKI數(shù)據(jù)庫,對生態(tài)溝渠去除N、P及農(nóng)藥的野外觀測試驗(yàn)研究進(jìn)行了系統(tǒng)地調(diào)研。檢索標(biāo)準(zhǔn)如下:1)野外觀測試驗(yàn)或Field experiment;2)生態(tài)溝渠、農(nóng)田排水溝、Ecological ditch或Drainage ditch;3)農(nóng)業(yè)面源污染或Agricultural non-point source pollution。通過系統(tǒng)性檢索,獲得有41篇相關(guān)文獻(xiàn)(其中,SCI文獻(xiàn)17篇,中文文獻(xiàn)24篇),共計(jì)559組生態(tài)溝渠試驗(yàn)數(shù)據(jù),文獻(xiàn)時間跨度2001年1月—2022年4月。

1.2 統(tǒng)計(jì)分析方法

基于以上野外觀測試驗(yàn)數(shù)據(jù),生態(tài)溝渠對N、P及農(nóng)藥的去除效果主要影響因子有:IC、HRT、PS、BM。先進(jìn)行單因子影響分析,具體試驗(yàn)數(shù)據(jù)分組如下:1)分析生態(tài)溝渠中污染物去除率與其對應(yīng)IC的關(guān)系,包括:總氮(Total Nitrogen,TN)(64,為樣本數(shù)量)[17-29]、NH4+-N(28)[17,27,29-31]、NO3--N(22)[13,17-18,25,29-30,32]、總磷(Total Phosphorus,TP)(40)[13,20-21,26-27]、PO43--P(16)[30,33]、農(nóng)藥(39)[34-39];2)分析污染物去除率與其對應(yīng)HRT的關(guān)系,包括:TN(39)[20-22,24,28,36]、TP(34)[20-21,23,36]、農(nóng)藥(39)[34-39];3)分析污染物去除率與其對應(yīng)PS的關(guān)系,包括:TN(=67)[21-23,27,30,36,40]、TP(=66)[13,19-21,23-27,32]、農(nóng)藥(=39)[34-39];4)分析污染物去除率與其對應(yīng)BM的關(guān)系,包括:TN(36)[20,22-24,40-41]、TP(15)[20,23-24,40-41]、農(nóng)藥(15)[36,42-43]。其他影響因子,如溫度、水力負(fù)荷、降雨、干濕交替等未在統(tǒng)計(jì)范圍內(nèi)。采用Pearson相關(guān)進(jìn)行單因子分析,<0.05認(rèn)為有顯著相關(guān)性。

為探索TN、TP和農(nóng)藥去除率與其影響因子之間的相互關(guān)系,本文采用多元線性回歸模型(MLR)進(jìn)行分析,模型綜合考慮單因子分析中的4個變量:IC、HRT、BM、PS。同時2>0.50且<0.05認(rèn)為MLR有統(tǒng)計(jì)學(xué)意義。模型公式如下:

R=·IC+·HRT+·BM+·PS+(1)

式中R為污染物的去除率;下標(biāo)為TN,TP和Pes,分別代表TN、TP和農(nóng)藥,三者對應(yīng)的樣本數(shù)量分別為35,28和39;、、、和均為標(biāo)準(zhǔn)化系數(shù)。

2 結(jié)果與分析

2.1 生態(tài)溝渠對農(nóng)業(yè)面源污染的消減機(jī)理

生態(tài)溝渠對N、P及農(nóng)藥的去除方式主要有底泥吸附及植物阻抗作用、植物/微生物吸收作用、降解去除作用,見圖1。其主要去除路徑有:1)底泥吸附及植物阻抗作用:進(jìn)入生態(tài)溝渠上覆水中的N、P和農(nóng)藥分子會沉降到底泥后被吸附[44];同時,植物對水流的阻抗作用,會增大HRT,也會加速污染物的沉降,并抑制污染物的再懸浮釋放[45],從而增大底泥的吸附量。2)植物/微生物吸收作用:大量賦存于底泥的無機(jī)N、無機(jī)P和農(nóng)藥分子極易被植物及其根系微生物直接吸收并用于自身生長代謝[46-48]。3)植物/微生物降解作用:有機(jī)N在微生物作用下通過氨化/生物固定、亞硝化、硝化和反硝化作用生成氣體被去除(圖1a);顆粒態(tài)有機(jī)P在礦化作用下轉(zhuǎn)化為磷酸鹽并與活性Ca2+、Fe3+吸附結(jié)合成Ca(Fe-P)化合物[49-50](圖1b);此外,農(nóng)藥還會通過脫氫、脫氯、水解、還原、羥基化、環(huán)破裂等過程降解[51](圖1c)。

圖1 生態(tài)溝渠中營養(yǎng)鹽[29,45-46,49,52-53]及農(nóng)藥[42,51,54]的主要環(huán)境行為示意圖

2.2 影響生態(tài)溝渠消減效果的影響因子

2.2.1 初始濃度

如圖2f所示,Pes隨著ICPes的增大而減?。?0.05)。這可能是農(nóng)藥的降解存在多重機(jī)理的結(jié)果:一方面,較高的ICPes會對生態(tài)溝渠內(nèi)的降解微生物及植物產(chǎn)生毒性抑制作用,使微生物的代謝活動和植物的吸收作用減弱,進(jìn)而延緩農(nóng)藥的降解[21];另一方面,底泥的吸附作用會增強(qiáng)農(nóng)藥的消解,但存在明顯的拐點(diǎn)濃度。因此,ICPes越大,Pes越小。此外,還有研究表明不同種類的農(nóng)藥其降解半衰期及降解機(jī)制不同,其Pes隨ICPes的變化規(guī)律也有所不同[32],難以得出一致的結(jié)論。

圖2 初始濃度對營養(yǎng)鹽及農(nóng)藥去除率的影響

2.2.2 水力停留時間

如圖3a和3b所示,R均隨著水力停留時間(HRT)增大而增大(為TN和TP)。當(dāng)HRT>2 d時,R均集中在50%以上;當(dāng)HRT>4 d時,R均在90%以上。有研究表明,HRT存在優(yōu)化區(qū)間(TN: 0~5 d,TP: 0~4 d),當(dāng)HRT≤4 d時,R上升較快,繼續(xù)延長HRT,R增速放緩[40]。

對于TN(圖3a),隨著HRTTN的延長,TN也隨之升高,這是因?yàn)檩^長的HRTTN使得植物根系泌氧量增加,傳輸?shù)綔锨械难鯕饬恳搽S之增加,創(chuàng)造了利于微生物生長繁殖的好氧環(huán)境。同時,好氧環(huán)境也為硝化反硝化微生物提供了充足的反應(yīng)底物,從而使硝化反硝化反應(yīng)進(jìn)行的更徹底[61]。并且,延長HRTTN可提高TN與基質(zhì)中硝化微生物接觸與反應(yīng)時間,進(jìn)一步提高TP[62]。還有研究指出,適當(dāng)延長HRTTN可增加反應(yīng)的穩(wěn)定性[63]。類似地,Hunter等[64]研究稱,6 d HRT(RTN=80%)時的RTN顯著高于2 d HRT(RTN=53%)。

對于TP(圖3b),它隨著HRTTP的延長而升高,這是因?yàn)門P的去除主要依靠吸附沉淀作用,HRTTP越長,流速越慢,吸附質(zhì)不易被沖走[65]。此外,延長HRTTP可以促進(jìn)溶解性有機(jī)P轉(zhuǎn)化為溶解性無機(jī)P,進(jìn)而被植物吸收利用[66],并且有研究表明,當(dāng)HRTTP為2 d時,TP僅為29%,而延長至6 d時,去除率可達(dá)到55%[64]。

如圖3c所示,Pes隨著HRTPes增大而增大。這可能是由于HRTPes越長,底泥吸附量和植物吸收量越大[54];同時,較長的停留時間也會給生態(tài)溝渠中的農(nóng)藥降解菌提供充足的反應(yīng)時間,進(jìn)而提高降解率[37]。此外,HRTPes的延長也會加強(qiáng)農(nóng)藥的光解作用。

圖3 水力停留時間(HRT)對營養(yǎng)鹽及農(nóng)藥去除率的影響

2.2.3 植物種類

如圖4a和4b所示,PS(為TN和TP)對R的影響不顯著(>0.05)。在菖蒲、茭白、蘆葦、水蔥、香蒲5種常見水生植物的處理下,TN、TP的均值分別為76.6±2.8%和79.1±2.7%;較小的均值波動(<2.8%)也說明了該5種水生植物對R的影響不大。張樹楠等[20]的研究也得到類似的結(jié)論。

在圖4c中,在蘆葦、香蒲、美人蕉、再力花、燈芯草5種常見水生植物的處理下,除蘆葦外其他4種植物對Pes的影響均無明顯差異(>0.05),這可能是由于蘆葦擁有較大的生物量,對農(nóng)藥的吸附量也會變大;同時,較大型的挺水植物也可以增加農(nóng)藥在生態(tài)溝渠中流阻,進(jìn)而增加了農(nóng)藥的反應(yīng)時間。此外,還有研究表明植物去除污染物的關(guān)鍵在于其根系及莖葉,水生植物根系不僅為微生物提供附著的載體,根系分泌物還為微生物提供碳源,為微生物的生存和繁殖創(chuàng)造良好的條件[67];同時通過莖葉的傳送將光合作用產(chǎn)生的氧擴(kuò)散到根區(qū)周圍,使水中同時存在好氧和缺氧的環(huán)境,強(qiáng)化了各類微生物的協(xié)同作用,從而實(shí)現(xiàn)對污染物質(zhì)的分解轉(zhuǎn)化和去除[53,68]。因此,不同種類植物的在根系生物量相差較小的情況下(如:香蒲、美人蕉、再力花、燈芯草),對污染物的去除效果相差不大[69]。

注:圖中箱體內(nèi)長實(shí)線、三角分別代表中位線、均值;箱體表示25%和75%的四分位數(shù),上、下邊緣分別表示第95和第5個百分位數(shù). 單個植物種類n<4不納入統(tǒng)計(jì)。

2.2.4 生物量

生態(tài)溝渠內(nèi)水生植物的BM是影響N、P去除率的關(guān)鍵因子之一。王令等[40]在長為80 m的溝渠研究水生植物的BM對N、P去除效果的影響,結(jié)果表明BM增大,TN、TP均有所升高。其中BM為1 453.6 g/m2時,TN為61.2%,TP為72.8%;BM為170.3 g/m2時,TN為51.8%,TP為64.8%。這與張樹楠等[41]對5種生物量相差較大的水生植物對N、P的吸收效果的研究結(jié)果類似:5種試驗(yàn)植物的N、P吸收量與BM為呈顯著的正相關(guān)(2=0.93,0.01)。其中,水生美人蕉的BM為3 100 g/m2,含N量為22.2 g/kg,含P量為3.0 g/kg。而燈芯草BM僅為1 300 g/m2,含N量僅為15.3 g/kg,含P量為3.3 g/kg。這表明BM越大,對N、P的吸收量越大。此外,余紅兵等[69]指出同一水生植物不同部位對N、P的吸收量存在差異,通常地上部分的N、P吸收量均大于地下部分。并且從不同部位的N、P濃度分布看,同一水生植物地上部分的N、P濃度均明顯大于地下部分,地上部分的N、P平均濃度是地下部分的5倍。這表明水生植物對N、P等污染物主要取決于地上部分的BM,植物地上部分可吸收N、P用于自身生長代謝,且BM越大,吸收量越大,而植物地下部分的作用更多在于為根系的微生物提供去除N、P的反應(yīng)場所及氧氣。

與N、P類似,Pes也會隨著BM的增大而提高。Li等[43]研究了12種植物對三唑磷的去除,結(jié)果表明,BM較大的植物,Pes越高。這是因?yàn)锽M大的植物往往根系發(fā)達(dá),發(fā)達(dá)的根系會促進(jìn)農(nóng)藥的吸附和吸收,同時,其根系附近的微生物群落種類多,數(shù)量大,活性高,從而促進(jìn)了微生物對三唑磷的降解。此外,Wang等[70]在對菖蒲去除毒死蜱的研究中表明,菖蒲不同部位對毒死蜱的吸收量不同,其中以根狀莖最多(60.8%),其次為根(38.1%)、葉(0.6%)和莖(0.5%)。這是由于根狀莖的BM最大,約占總BM的38%,因此對毒死蜱吸收量大于其他部位。

2.2.5 其他影響因子

此外,溫度、水力負(fù)荷、降雨、干濕交替等因子也是消減農(nóng)田面源污染物的影響因素。通常情況下,溫度升高,生態(tài)溝渠對N、P及農(nóng)藥的去除率也隨之提高[18,71]。這是由于較高的溫度會提升植物的光合作用和微生物的代謝速率[72],進(jìn)而導(dǎo)致N、P及農(nóng)藥分子的快速循環(huán)和降解[73-74]。當(dāng)生態(tài)溝渠長度一定,水力負(fù)荷越大,HRT越短,N、P及農(nóng)藥的去除率降低[75-76],同時水流速過大極易沖擊底泥和植物根吸附的污染物,使其重新釋放到水體中[77-78];水力負(fù)荷過低易造成生態(tài)溝渠底泥淤積,使水流不暢,影響去除效果。頻繁的降雨會使生態(tài)溝渠的主要功能向農(nóng)田排水轉(zhuǎn)變,以確保農(nóng)作物不淹不漬[79];此時,N、P及農(nóng)藥在溝渠內(nèi)HRT會減少,進(jìn)而削弱了溝渠的去除效果[15,66]。此外,溝渠的干濕交替狀態(tài)會創(chuàng)造出好氧或厭氧的環(huán)境,對微生物生長代謝造成影響,但目前干濕交替的生態(tài)溝渠對N、P及農(nóng)藥去除率的研究較少[15]。

2.2.6 多因子與生態(tài)溝渠中面源污染去除率的關(guān)聯(lián)分析

采用MLR對R與4個影響因子(IC、HRT、BMPS)進(jìn)行定量分析(為TN、TP和Pes)。PSR影響無明顯差異。因此,在對TN、TP和農(nóng)藥的分析中,未考慮PS。

TN=0.55ICTN+0.51BMTN(2)

TP=0.73ICTP+0.30BMTP(3)

Pes=?0.50ICPes+0.36HRTPes(4)

MLR分析結(jié)果表明,TN、TP、Pes的決定性系數(shù)(2)分別為0.80(=36,<0.01)、0.92(=27,<0.01)、0.56(=39,<0.01),表明IC、HRT及BMR有較好的擬合效果(2>0.50)。

對于TN和TP,MLR結(jié)果表明(式2~式3),IC和BM均與R存在顯著正相關(guān)關(guān)系(<0.01)(為TN和TP)。這是由于IC和BM越高,植物吸收量與底泥吸附量越大[80];同時較高的IC促使植物根系發(fā)達(dá),創(chuàng)造了好氧環(huán)境,進(jìn)而為底泥中的微生物的生長代謝提供了良好的場所。但也有研究表明[81],IC過高會抑制生態(tài)溝渠內(nèi)的植物生長;此外,底泥吸附的N、P達(dá)到飽和后會向水體重新釋放,進(jìn)而導(dǎo)致TN和TP下降。植物地上部分BM越大,對N、P的吸收量越大;如趙原等[82]在7種水生植物對N、P吸收量的研究表明,美人蕉地上部分BM為1.34 kg,其對N、P的吸收量分別為15.02、1.71 g/m2;而地上部分BM最小的菖蒲(0.45 kg),對N、P的吸收量分別為2.88、0.48 g/m2。MLR的標(biāo)準(zhǔn)化系數(shù)表明,IC對TN、TP的貢獻(xiàn)大于BM。這可能是由于IC的升高既會刺激生態(tài)溝渠中植物的吸收作用,又會增強(qiáng)微生物作用,進(jìn)而提高TN和TP。Geary等[83]研究表明,高濃度的N、P負(fù)荷下,N、P的去除主要依靠底泥吸附,而不是植物吸收。故IC較高時,BM對TN、TP的貢獻(xiàn)較小。此外,HRT為式(2)~式(3)中的排除變量(>0.05),這是由于HRT與TN、TP可能存在非線性關(guān)系的,這也與圖3的結(jié)果一致。

對于農(nóng)藥,根據(jù)MLR結(jié)果表明(式(4)),ICPes與Pes呈負(fù)相關(guān)關(guān)系。這可能是因?yàn)镮CPes過高,農(nóng)藥對降解微生物及植物產(chǎn)生毒性抑制作用,使微生物的代謝活動和植物的吸收作用減弱,進(jìn)而延緩農(nóng)藥的降解。也有研究表明[84],隨著ICPes的增大,Pes呈現(xiàn)先升高后降低的規(guī)律;這可能是由于低ICPes的農(nóng)藥會刺激生態(tài)溝渠中的降解微生物及活性酶,而高ICPes有顯著的抑制作用。此外,生態(tài)溝渠中不同種類農(nóng)藥對降解微生物的影響有明顯差異。姜偉麗等[85]研究得出草甘膦在低ICPes時對降解微生物活性無顯著影響,而高ICPes時會對其產(chǎn)生一定的激活作用;辛承友等[86]指出不同ICPes的阿特拉津?qū)到馕⑸锘钚缘挠绊憶]有明顯的規(guī)律性。同時,HRTPes與Pes呈正相關(guān)關(guān)系;這是由于HRTPes越長,植物吸收和底泥吸附作用越強(qiáng),且微生物的反應(yīng)時間越充足[87]。Smith等[88]研究表明,較短的HRTPes會導(dǎo)致農(nóng)藥還未完全沉降就被沖刷出生態(tài)溝渠,不利于農(nóng)藥的有效去除。此外,BMPes為式(4)中的排除變量(>0.05),這也說明了BMPes與Pes可能呈非線性關(guān)系的。這與Li[43]在12種植物對三唑磷的去除研究的結(jié)果一致。

3 結(jié) 論

近年來,生態(tài)溝渠已逐漸成為一種消減農(nóng)田面源污染的重要生態(tài)措施,本文綜述了當(dāng)前生態(tài)溝渠對N、P及農(nóng)藥的處理效果的研究,并剖析污染物去除率與其對應(yīng)的影響因子之間的定量關(guān)系,包括:初始濃度(Initial Concentration,IC)、水力停留時間(Hydraulic Retention Time,HRT)、生物量(Plant Biomass,BM)和植物種類(Plant Biomass,PS)(為TN 、TP或Pes),主要結(jié)論如下:

1)TN和TP的去除率均會隨著其對應(yīng)的IC、HRT、BM的增大而增大,這可能是由于較大的IC與HRT不僅促進(jìn)了植物與底泥的吸附,同時也為底泥微生物降解提供了良好的生存場所和反應(yīng)條件;BM越大,植物的養(yǎng)分需求量越大,同時其對水流的阻抗作用也越大,進(jìn)而增大了HRT,進(jìn)一步抑制營養(yǎng)鹽的再懸浮。此外,多元線性回歸模型(Multiple Linear Regression Model,MLR)結(jié)果表明,IC和BM與TN和TP的去除率顯著正相關(guān),同時IC對其去除率的貢獻(xiàn)大于BM。PS與營養(yǎng)鹽去除率不存在顯著性關(guān)系。

2)對于農(nóng)藥,其IC越高,去除率越低,這可能是由于農(nóng)藥對降解微生物及植物產(chǎn)生毒性抑制作用,使微生物的代謝活動和植物的吸收作用減弱。HRT與BM越大,植物吸收和底泥吸附作用越強(qiáng),且微生物反應(yīng)的底物與時間也得到增強(qiáng)農(nóng)藥去除率越高。MLR結(jié)果表明,農(nóng)藥去除率與IC呈負(fù)相關(guān)關(guān)系,與HRT呈正相關(guān)關(guān)系。

3)目前針對生態(tài)溝渠消減農(nóng)田面源污染的野外觀測試驗(yàn)主要停留在單一因子上,仍需補(bǔ)充開展多重因子交互影響的觀測試驗(yàn)研究;當(dāng)前的研究主要考慮了IC、HRT、BM和PS等常規(guī)因子,仍需研究水文及環(huán)境因子對影響生態(tài)溝渠去除效果的影響,如溫度、降雨、干濕交替等;生態(tài)溝渠對農(nóng)藥去除機(jī)制方面的研究目前仍處于起步階段,需要綜合分析農(nóng)藥結(jié)構(gòu)性質(zhì)、分異特性及其微生物學(xué)機(jī)制,為探明生態(tài)溝渠對農(nóng)藥去除機(jī)理的數(shù)據(jù)和理論支持。

[1] Liu Y B, Pan X B, Li J S. A 1961-2010 record of fertilizer use, pesticide application and cereal yields: A review[J]. Agronomy for Sustainable Development, 2015, 35(1): 83-93.

[2] Zhan X S, Shao C F, He R, et al. Evolution and efficiency assessment of pesticide and fertiliser inputs to cultivated land in China[J]. International Journal of Environmental Research and Public Health, 2021, 18(7): 3771.

[3] Glroto A S, Guimaraes G G F, Foschini M, et al. Role of slow-release nanocomposite fertilizers on nitrogen and phosphate availability in soil[J]. Scientific Reports, 2017, 7: 40632.

[4] Tarafder C, Daizy M, Alam M M, et al. Formulation of a hybrid nanofertilizer for slow and sustainable release of micronutrients[J]. Acs Omega, 2020, 5(37): 23960-23966.

[5] 李姍,沈成波. 調(diào)控作物硝態(tài)氮代謝和利用的研究進(jìn)展[J/OL]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2022:1-9[2022-01-26]. https://kns.cnki.net/kcms/detail/32.1148.s.20220124.0915.002.html.

Li Shan, Shen Chengbo. Research progress on regulation of nitrate metabolism and utilization in crops[J/OL]. Journal of Nanjing Agricultural University, 2022: 1-9[2022-01-26]. (in Chinese with English abstract)

[6] 鐘珍梅,黃毅斌,李艷春,等. 我國農(nóng)業(yè)面源污染現(xiàn)狀及草類植物在污染治理中的應(yīng)用[J]. 草業(yè)科學(xué),2017,34(2):428-435.

Zhong Zhenmei, Huang Yibing, Li Yanchun, et al. Current state of agricultural environmental pollution and herbaceous plants used in controlling pollution in China[J]. Pratacultural Science, 2017, 34(2): 428-435. (in Chinese with English abstract)

[7] 陶園,徐靜,任賀靖,等. 黃河流域農(nóng)業(yè)面源污染時空變化及因素分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(4):257-264.

Tao Yuan, Xu Jing, Ren Hejing, et al. Spatiotemporal evolution of agricultural non-point source pollution and its influencing factors in the Yellow River Basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(4): 257-264. (in Chinese with English abstract)

[8] 杜軍,楊培嶺,李云開,等. 不同灌期對農(nóng)田氮素遷移及面源污染產(chǎn)生的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(1):66-74.

Du Jun, Yang Peiling, Li Yunkai, et al. Effect of different irrigation seasons on the transfer of N in different types farmlands and the no-point pollution production[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(1): 66-74. (in Chinese with English abstract)

[9] 吳永紅,胡正義,楊林章. 農(nóng)業(yè)面源污染控制工程的“減源-攔截-修復(fù)”(3R)理論與實(shí)踐[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(5):1-6.

Wu Yonghong, Hu Zhengyi, Yang Linzhang. Strategies for controlling agricultural non-point source pollution: Reduce-retain-restoration (3R) theory and its practice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of theCSAE), 2011, 27(5): 1-6. (in Chinese with English abstract)

[10] 鄧雄. 農(nóng)業(yè)非點(diǎn)源污染的研究進(jìn)展、存在的問題及發(fā)展[J]. 中山大學(xué)學(xué)報(bào)(自然科學(xué)版),2007,46(增刊2):244-247.

Deng Xiong. The research progresses problems and prospects of non-point source pollution[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2007, 46(Suppl.2): 244-247. (in Chinese with English abstract)

[11] 單立楠,丁能飛,王洪才,等. 蔬菜地面源污染生態(tài)攔截系統(tǒng)與效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(20):168-178.

Shan Linan, Ding Nengfei, Wang Hongcai, et al. Effect of ecological interception system in reducing non-point source pollution from vegetable fields[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of theCSAE), 2013, 29(20): 168-178. (in Chinese with English abstract)

[12] 潘延鑫,馮紹元,井思媛,等. 鹽堿化改良區(qū)農(nóng)田排水溝水體與底泥界面微環(huán)境特征分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(2):258-167.

Pan Yanxin, Feng Shaoyuan, Jing Siyuan, et al. Characteristics analysis of micro-environment of sediment-water interface in drainage ditches in reclamation areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(2): 258-267. (in Chinese with English abstract)

[13] 黃俁晴,陳婷婷,李勇,等. 流域溝渠植草攔截農(nóng)田氮磷入河污染的有效性研究[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2021,27(11):1993-2000.

Huang Yuqing, Chen Tingting, Li Yong, et al. Effectiveness of grass planting in drainage ditches to intercept nitrogen and phosphorus pollution from farmland into rivers[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(11): 1993-2000. (in Chinese with English abstract)

[14] Ren Y B, Ren N Q, Li X K, et al. Efficiency of urban wetlands in removing agricultural non-point source pollution[J]. Asian Journal of Chemistry, 2013, 25(9): 4726-4730.

[15] 張燕,閻百興,劉秀奇,等. 農(nóng)田排水溝渠系統(tǒng)對磷面源污染的控制[J]. 土壤通報(bào),2012,43(3):745-750.

Zhang Yan, Yan Baixing, Liu Xiuqi, et al. Measures for controlling phosphorus from agricultural non-point source pollutions in drainage ditch systems[J]. Chinese Journal of Soil Science, 2012, 43(3): 745-750. (in Chinese with English abstract)

[16] Kumwimba M N, Meng F G, Iseyemi O, et al. Removal of non-point source pollutants from domestic sewage and agricultural runoff by vegetated drainage ditches (VDDs): Design, mechanism, management strategies, and future directions[J]. Science of the Total Environment, 2018, 639: 742-759.

[17] 周邶邶,馮鈺婷,劉泉. 川中丘陵區(qū)生態(tài)溝渠對徑流無機(jī)含氮化合物的截除效果[J/OL]. 西華師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2021:1-8[2021-06-05]. https://kns.cnki.net/kcms/detail/ 51.1699.N.20210604.1346.002.html.

Zhou Beibei, Feng Yuting, Liu Quan. Interception effct of ecological ditches on inorganic nitrogenous compounds from runoff in hilly areas of central Sichuan[J/OL]. Journal of China West Normal University (Natural Sciences), 2021:1-8[2021-06-05]. https://kns.cnki.net/kcms/detail/51.1699.N. 20210604. 1346.002.html. (in Chinese with English abstract)

[18] Chen L, Liu F, Wang Y, et al. Nitrogen removal in an ecological ditch receiving agricultural drainage in subtropical central China[J]. Ecological Engineering, 2015, 82: 487-492.

[19] 金聰穎,韓建華,劉文政,等. 不同植物配置的生態(tài)溝渠對稻田氮磷養(yǎng)分流失攔截效果分析[J]. 天津農(nóng)林科技,2020,73(3):4-5,7.

Jin Congying, Han Jianhua, Liu Wenzheng, et al. Analysis of the interception effect of ecological ditches with different plants on the loss of nitrogen and phosphorus in paddy fields[J]. Science and Technology of Tianjin Agriculture and Forestry, 2020, 73(3): 4-5, 7. (in Chinese with English abstract)

[20] 張樹楠,肖潤林,劉鋒,等. 生態(tài)溝渠對氮、磷污染物的攔截效應(yīng)[J]. 環(huán)境科學(xué),2015,36(12):4516-4522.

Zhang Shunan, Xiao Runlin, Liu Feng, et al. Interception effect of vegetated drainage ditch on nitrogen and phosphorus from drainage ditches[J]. Environmental Science, 2015, 36(12): 4516-4522. (in Chinese with English abstract)

[21] 涂佳敏. 生態(tài)溝渠處理農(nóng)田氮磷污水的實(shí)驗(yàn)與模擬研究[D]. 天津:天津大學(xué),2014.

Tu Jiamin. Experiment and Simulation on Nitrogen and Phosphorus Removal of Ecological Ditch[D]. Tianjin: Tianjin University, 2014. (in Chinese with English abstract)

[22] Han H H, Cui Y L, Gao R, et al. Study on nitrogen removal from rice paddy field drainage by interaction of plant species and hydraulic conditions in eco-ditches[J]. Environmental Science and Pollution Research, 2019, 26(7): 6492-6502.

[23] Kumwimba M N, Dzakpasu M, Zhu B, et al. Uptake and release of sequestered nutrient in subtropical monsoon ecological ditch plant species[J]. Water Air and Soil Pollution, 2016, 227(11): 405.

[24] 王振旗,沈根祥,錢曉雍,等. 抗侵蝕型生態(tài)溝渠構(gòu)建及其稻田應(yīng)用效果[J]. 環(huán)境工程學(xué)報(bào),2014,8(9):4047-4052.

Wang Zhenqi, Shen Genxiang, Qian Xiaoyong, et al. Construction of anti-erosion ecological ditch and its application effct in paddy field[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 4047-4052. (in Chinese with English abstract)

[25] Vymazal J, Brezinova T D. Removal of nutrients, organics and suspended solids in vegetated agricultural drainage ditch[J]. Ecological Engineering, 2018, 118: 97-103.

[26] Cui N X, Zhang X, Cai M, et al. Roles of vegetation in nutrient removal and structuring microbial communities in different types of agricultural drainage ditches for treating farmland runoff[J]. Ecological Engineering, 2020, 155: 105941.

[27] 喬斌. 農(nóng)田生態(tài)溝渠對稻田降雨徑流氮磷的去除實(shí)驗(yàn)與模擬研究[D]. 天津:天津大學(xué),2016.

Qiao Bing. Experiment and Simulation Study of Agricultural Ecological Ditch on Nitrogen and Phosphorus Removal in the Rainfall Runoff of a Paddy Rice Field[D]. Tianjin: Tianjin University, 2016. (in Chinese with English abstract)

[28] Tyler H L, Moore M T, Locke M A. Influence of three aquatic macrophytes on mitigation of nitrogen species from agricultural runoff[J]. Water Air and Soil Pollution, 2012, 223(6): 3227-36.

[29] 張燕,閻百興,?;?,等. 三江平原農(nóng)田源頭排水溝渠截留排水中氮素動態(tài)[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2012,28(2):176-180.

Zhang Yan, Yan Baixing, Zhu Hui, et al. Dynamics of nitrogen in farmland-originating drainage water retained in ditches in the Sanjiang plain[J]. Journal of Ecology and Rural Environment, 2012, 28(2): 176-180. (in Chinese with English abstract)

[30] 張燕. 農(nóng)田排水溝渠對氮磷的去除效應(yīng)及管理措施[D]. 長春:中國科學(xué)院研究生院(東北地理與農(nóng)業(yè)生態(tài)研究所),2013.

Zhang Yan. Removal Effect and Management Measures of Nitrogen and Phosphorus in Agricultural Drainage Ditches[D]. Changchun: University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology), 2013. (in Chinese with English abstract)

[31] Zhang S, Liu F, Xiao R, et al. Effects of vegetation on ammonium removal and nitrous oxide emissions from pilot-scale drainage ditches[J]. Aquatic Botany, 2016, 130: 37-44.

[32] 朱曉瑞,張春雪,鄭向群,等. 天津地區(qū)生態(tài)溝渠不同植物配置對氮磷去除效果研究[J]. 環(huán)境污染與防治,2020,42(2):170-175.

Zhu Xiaorui, Zhang Chunxue, Zheng Xiangqun, et al. Study on nitrogen and phosphorus purification effect of different plant configurations in ecological ditch in Tianjin area[J]. Environmental Pollution & Control, 2020, 42(2): 170-175. (in Chinese with English abstract)

[33] 陳志超,張志勇,劉海琴,等. 4種水生植物除磷效果及系統(tǒng)磷遷移規(guī)律研究[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2015,38(1):107-112.

Chen Zhichao, Zhang Zhiyong, Liu Haiqin, et al. Research on removal efficiency of phosphorus by four aquatic macrophytes and rule of phosphorus migration in systems[J]. Journal of Nanjing Agricultural University, 2015, 38(1): 107-112. (in Chinese with English abstract)

[34] Lizotte R E, Moore M T, Locke M A, et al. Effects of vegetation in mitigating the toxicity of pesticide mixtures in sediments of a wetland mesocosm[J]. Water Air and Soil Pollution, 2011, 220(1/2/3/4): 69-79.

[35] 曲軍輝. 人工濕地對三種農(nóng)藥去除效果的研究[D]. 蘇州:蘇州大學(xué),2018.

Qu Junhui. Study on Removal Effect of Three Kinds of Pesticides by Constructed Wetlands[D]. Suzhou: Soochow University, 2018. (in Chinese with English abstract)

[36] 靳聰聰. 六種水生植物在農(nóng)藥面源污染控制中的作用研究[D]. 廣州:暨南大學(xué),2017.

Jin Congcong. The Role of Six Aquatic Plants in Non-point Source Pollution Control of Pesticides[D]. Guangzhou: Jinan University, 2017. (in Chinese with English abstract)

[37] 趙夢云,熊家晴,鄭于聰,等. 植物收割對人工濕地中污染物去除的長期影響[J]. 水處理技術(shù),2019,45(11):112-116.

Zhao Mengyun, Xiong Jiaqing, Zheng Yucong, et al. Long-term effect of plant harvesting on pollutants removal in constructed wetlands[J]. Technology of Water Treatment, 2019, 45(11): 112-116. (in Chinese with English abstract)

[38] 張繼彪,王曦曦,李培培,等. 人工濕地處理甲胺磷廢水的試驗(yàn)研究[J]. 環(huán)境科學(xué)與技術(shù),2010,33(10):154-157.

Zhang Jibiao, Wang Xixi, Li Peipei, et al. Treatment of methamidophos wastewater with constructed wetland[J]. Environmental Science & Technology, 2010, 33(10): 154-157. (in Chinese with English abstract)

[39] 吳仲堅(jiān). 有機(jī)氯農(nóng)藥β-HCH在潛流人工濕地中的凈化過程研究[D]. 桂林:桂林理工大學(xué),2017.

Wu Zhongjian. Study on Purification Process of Organochlorine Pesticide-HCH in Subsurface Flow Constructed Wetland[D]. Guiling: Guilin University of Technology, 2017. (in Chinese with English abstract)

[40] 王令,王文杰,夏訓(xùn)峰. 生態(tài)溝渠對農(nóng)村生活污水脫氮除磷效果的研究[J]. 環(huán)境科學(xué)與技術(shù),2015,38(8):196-199.

Wang Ling, Wang Wenjie, Xia Xunfeng. Denitrification and phosphorus removal of rural sewage by ecological ditch[J]. Environmental Science & Technology, 2015, 38(8): 196-199. (in Chinese with English abstract)

[41] 張樹楠,肖潤林,余紅兵,等. 水生植物刈割對生態(tài)溝渠中氮、磷攔截的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2012,20(8):1066-1071.

Zhang Shunan, Xiao Runlin, Yu Hongbing, et al. Effects of cutting aquatic plants on nitrogen and phosphorus interception in ecological ditches[J]. Chinese Journal of Eco-Agriculture, 2012, 20(8): 1066-1071. (in Chinese with English abstract)

[42] 李本行. 生態(tài)溝渠和人工濕地組合系統(tǒng)處理兩種農(nóng)藥的研究及工程方案設(shè)計(jì)[D]. 北京:北京林業(yè)大學(xué),2017.

Li Benhang. Removal of Two Kinds of Pesticides by an Integrated Ecological Ditches with Constructed Wetland System and Engineering Design[D]. Beijing: Beijing Forestry University, 2017. (in Chinese with English abstract)

[43] Li Z, Xiao H P, Cheng S P, et al. A comparison on the phytoremediation ability of triazophos by different macrophytes[J]. Journal of Environmental Sciences, 2014, 26(2): 315-322.

[44] 梁雪,賀鋒,徐棟,等. 人工濕地植物的功能與選擇[J]. 水生態(tài)學(xué)雜志,2012,33(1):131-138.

Liang Xue, He Feng, Xu Dong, et al. Plant function and selection for constructed wetlands[J]. Journal of Hydroecology, 2012, 33(1): 131-138. (in Chinese with English abstract)

[45] 段四喜,張磊,楊芳,等. 典型生態(tài)攔截措施水質(zhì)凈化效果研究[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),2021:1-12[2021-04-21]. https://doi.org/10.13254/j.jare.2021.0026.

Duan Sixi, Zhang Lei, Yang Fang, et al. Study on water purification effect of typical ecological interception measures[J]. Journal of Agricultural Resources and Environment, 2021: 1-12[2021-04-21]. https://doi.org/10.13254/j.jare.2021.0026. (in Chinese with English abstract)

[46] 崔虎,王莉霞,歐洋,等. 濕地生態(tài)系統(tǒng)磷遷移轉(zhuǎn)化機(jī)制研究進(jìn)展[J]. 水生態(tài)學(xué)雜志,2020,41(2):105-112.

Cui Hu, Wang Lixia, Ou Yang, et al. Research progres on phosphorus migration and transformation in wetland ecosystem[J]. Journal of Hydroecology, 2020, 41(2): 105-112. (in Chinese with English abstract)

[47] 李華超,陳宗晶,陳章和. 六種濕地植物根際氧化還原電位的日變化[J]. 生態(tài)學(xué)報(bào),2014,34(20):5766-5773.

Li Huachao, Chen Zongjing, Chen Zhanghe. Daily variation of the rhizosphere redox potential of six wetland plants[J]. Acta Ecologica Sinica, 2014, 34(20): 5766-5773. (in Chinese with English abstract)

[48] Kroger R, Moore M T. Phosphorus dynamics within agricultural drainage ditches in the lower Mississippi Alluvial Valley[J]. Ecological Engineering, 2011, 37(11): 1905-1909.

[49] 文湘華,錢易,顧夏聲. 生物穩(wěn)定塘碳、氮、磷物質(zhì)遷移轉(zhuǎn)化模型的研究[J]. 生態(tài)學(xué)報(bào),1992,12(3):193-200.

Wen Xianghua, Qian Yi, Gu Xiasheng. An ecological model for biological stabilization pond[J]. Acta Ecologica Sinica, 1992, 12(3): 193-200. (in Chinese with English abstract)

[50] 楊大文,楊詩秀,莫漢宏. 農(nóng)藥在土壤中遷移及其影響因素的初步研究[J]. 土壤學(xué)報(bào),1992,29(4):383-391.

Yang Dawen, Yang Shixiu, Mo Hanhong. Transport of pesticide in unsaturated soil and its influence factors[J]. Acta Pedologica Sinica, 1992, 29(4): 383-391. (in Chinese with English abstract)

[51] Lee S, Gan J K, Crowley D E, et al. Microbial transformation of pyrethroid insecticides in aqueous and sediment phases[J]. Environmental Toxicology and Chemistry, 2004, 23(1): 1-6.

[52] 徐紅燈,席北斗,翟麗華. 溝渠沉積物對農(nóng)田排水中氨氮的截留效應(yīng)研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2007,26(5):1924-1928.

Xu Hongdeng, Xi Beidou, Zhai Lihua. Interception effect of ditch sediment on NH4+-N in agricultural drainage ditch[J]. Journal of Agro-Environment Science, 2007, 26(5): 1924-1928. (in Chinese with English abstract)

[53] 余紅兵. 生態(tài)溝渠水生植物對農(nóng)區(qū)氮磷面源污染的攔截效應(yīng)研究[D]. 長沙:湖南農(nóng)業(yè)大學(xué),2012.

Yu Hongbing. Interception Effects of Aquatic plants on Nitrogen and Phosphorus Non-point Source Pollution of Agricultural Areas in Ecological Ditch[D]. Changsha: Hunan Agricultural University, 2012. (in Chinese with English abstract)

[54] Elsaesser D, Stang C, Bakanov N, et al. The landau stream mesocosm facility: Pesticide mitigation in vegetated flow-through streams[J]. Bulletin of Environmental Contamination and Toxicology, 2013, 90(6): 640-645.

[55] 王志榮,莊海峰,鄭良燕,等. 生態(tài)溝渠對農(nóng)田排水中菌群組分、耐藥基因譜及氮磷濃度的影響[J]. 環(huán)境化學(xué),2022,41(9):3055-3064.

Wang Zhirong, Zhuang Haifeng, Zheng Liangyan, et al. Effects of ecological ditches on bacterial community composition, antibiotic resistance gene profiles, nitrogen and phosphorus concentrations in farmland drainage[J]. Environmental Chemistry, 2022, 41(9): 3055-3064. (in Chinese with English abstract)

[56] 尹黎明,張樹楠,李寶珍,等. 溝渠濕地技術(shù)對農(nóng)業(yè)徑流中氮去除機(jī)理及應(yīng)用研究進(jìn)展[J]. 農(nóng)業(yè)現(xiàn)代化研究,2014,35(5):583-587.

Yin Liming, Zhang Shunan, Li Baozhen, et al. Progress of the ditch wetland technologies in research mechanism and application of removing nitrogen from agricultural surface runoff[J]. Research of Agricultural Modernization, 2014, 35(5): 583-587. (in Chinese with English abstract)

[57] 王迪,李紅芳,劉鋒,等. 亞熱帶農(nóng)區(qū)生態(tài)溝渠對農(nóng)業(yè)徑流中氮素遷移攔截效應(yīng)研究[J]. 環(huán)境科學(xué),2016,37(5):1717-1723.

Wang Di, Li Hongfang, Liu Feng, et al. Interception effect of ecological ditch on nitrogen transport in agricultural runoff in subtropical China[J]. Environmental Science, 2016, 37(5): 1717-1723. (in Chinese with English abstract)

[58] 姜婷婷,李昱含,謝雨陽,等. 游離氨對污水生物脫氮的影響綜述[J]. 應(yīng)用化工,2020,49(9):2308-2312,2318.

Jiang Tingting, Li Yuhan, Xie Yuyang, et al. Review of the effect of free ammonia on biological nitrogen removal in wastewater[J]. Applied Chemical Industry, 2020, 49(9): 2308-2312, 2318. (in Chinese with English abstract)

[59] 張芳. 不同水生植物對富營養(yǎng)化水體凈化效果和機(jī)理的比較[D]. 南京:南京理工大學(xué),2016.

Zhang Fang. Comparison of Efficiency and Mechanisms in Eutrophic Water Treatment Using Different Types of Aquatic Plants[D]. Nanjing: Nanjing University of Science & Technology, 2016. (in Chinese with English abstract)

[60] 汪文強(qiáng),王子芳,高明. 5種水生植物的脫氮除磷效果及其對水體胞外酶活的影響[J]. 環(huán)境工程學(xué)報(bào), 2016,10(10):5440-5446.

Wang Wenqiang, Wang Zifang, Gao Ming. Efficiency of removing nitrogen and phosphorous and effects on extracellular enzyme activity in water body by five hydrophytesv[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5440-5446. (in Chinese with English abstract)

[61] Kroger R, Holland M M, Moore M T, et al. Hydrological variability and agricultural drainage ditch inorganic nitrogen reduction capacity[J]. Journal of Environmental Quality, 2007, 36(6): 1646-1652.

[62] Kroger R, Cooper C M, Moore M T. A preliminary study of an alternative controlled drainage strategy in surface drainage ditches: Low-grade weirs[J]. Agricultural Water Management, 2008, 95(6): 678-684.

[63] Jia Z, Chen C, Luo W, et al. Hydraulic conditions affect pollutant removal efficiency in distributed ditches and ponds in agricultural landscapes[J]. Science of the Total Environment, 2019, 649: 712-721.

[64] Hunter R G, Combs D L, George D B. Nitrogen, phosphorous, and organic carbon removal in simulated wetland treatment systems[J]. Archives of Environmental Contamination and Toxicology, 2001, 41(3): 274-281.

[65] Bois P, Huguenot D, Norini M P, et al. Herbicide degradation and copper complexation by bacterial mixed cultures from a vineyard stormwater basin[J]. Journal of Soils and Sediments, 2011, 11(5): 860-873.

[66] 王曉玲,喬斌,李松敏,等. 生態(tài)溝渠對水稻不同生長期降雨徑流氮磷的攔截效應(yīng)研究[J]. 水利學(xué)報(bào),2015,46(12):1406-1413.

Wang Xiaoling, Qiao Bin, Li Songmin, et al. Studies on the interception effects of ecological ditch on nitrogen and phosphorus in the rainfall runoff of different rice growth period[J]. Journal of Hydraulic Engineering, 2015, 46(12): 1406-1413. (in Chinese with English abstract)

[67] 路璐,楊培嶺,李云開,等. 水生植物對河湖中回用的再生水富營養(yǎng)化的控制效應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(增刊2):196-203.

Lu Lu, Yang Peiling, Li Yunkai, et al. Control effects of aquatic plants on eutrophication in reclaimed water river-lake[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of theCSAE), 2011, 27 (Suppl.2): 196-203. (in Chinese with English abstract)

[68] 范晶,郜瑩,肖洋. 哈爾濱市9種濕地植物在不同HRT下凈污效果研究[J]. 森林工程,2012,28(6):22-24,27.

Fan Jing, Gao Ying, Xiao Yang. Study on the pollutant removal efficiency of nine wetland plants in Harbin[J]. Forest Engineering, 2012, 28(6): 22-24, 27. (in Chinese with English abstract)

[69] 余紅兵,肖潤林,楊知建,等. 五種水生植物生物量及其對生態(tài)溝渠氮、磷吸收效果的研究[J]. 核農(nóng)學(xué)報(bào),2012,26(5):798-802.

Yu Hongbing, Xiao Runlin, Yang Zhijian, et al. Biomass and effects of five aquatic plants uptake of nitrogen and phosphorus in ecological ditch[J]. Journal of Nuclear Agricultural Sciences, 2012, 26(5): 798-802. (in Chinese with English abstract)

[70] Wang C, Liu B, Xu D, et al. Mitigation of wastewater-borne chlorpyrifos in constructed wetlands: The role of vegetation on partitioning[J]. Polish Journal of Environmental Studies, 2017, 26(1): 347-354.

[71] Kumwimba M N, Zhu B. Effectiveness of vegetated drainage ditches for domestic sewage effluent mitigation[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 98(5): 682-689.

[72] Vymazal J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment, 2007, 380(1/2/3): 48-65.

[73] Kumwimba M N, Dzakpasu M, Zhu Bo, et al. Nutrient removal in a trapezoidal vegetated drainage ditch used to treat primary domestic sewage in a small catchment of the upper Yangtze River[J]. 2017, 31(1): 72-79.

[74] 王納川,付新喜,陳永華,等. 人工濕地除磷基質(zhì)及其凈化機(jī)理研究進(jìn)展[J]. 環(huán)境生態(tài)學(xué),2021,3(2):53-61.

Wang Nachuan, Fu Xinxi, Chen Yonghua, et al. Research progress on phosphorus removal fillers and purification mechanism of constructed wetlands[J]. Environmental Ecology, 2021, 3(2), 53-61. (in Chinese with English abstract)

[75] 李詠梅,魏海林. 人工濕地對有機(jī)農(nóng)藥煙嘧磺隆去除的試驗(yàn)[J]. 同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,40(10):1532-1535,1547.

Li Yongmei, Wei Hailin. Experimental study on removal of organic pesticide nicosulfuron by constructed wetland[J]. Journal of Tongji University (Natural science), 2012, 40(10): 1532-1535, 1547. (in Chinese with English abstract)

[76] Bouldin J, Farris J, Moore M, et al. Vegetative and structural characteristics of agricultural drainages in the Mississippi Delta landscapes[J]. 2004, 132(3): 403-411.

[77] 張德喜. 不同人工濕地植物對生活污水凈化效果研究[J]. 基因組學(xué)與應(yīng)用生物學(xué),2018,37(4):1621-1628.

Zhang Dexi. Study on purification efficiency of domestic wastewater by different constructed wetland plants[J]. Genomics and Applied Biology, 2018, 37(4): 1621-1628. (in Chinese with English abstract)

[78] Andersen J H, Murray C, Kaartokallio H, et al. A simple method for confidence rating of eutrophication status classifications[J]. Marine Pollution Bulletin, 2010, 60(6): 919-924.

[79] Wang X, Li J, Li S, et al. A study on removing nitrogen from paddy field rainfall runoff by an ecological ditch-zeolite barrier system[J]. Environmental Science and Pollution Research, 2017, 24(35): 27090-27103.

[80] 許航,陳煥壯,熊啟權(quán),等. 水生植物塘脫氮除磷的效能及機(jī)理研究[J]. 哈爾濱建筑大學(xué)學(xué)報(bào),1999,32(4):69-73.

Xu Hang, Chen Huanzhuang, Xiong Qiquan, et al. Studies on the efficiencies and mechanisms of N and P removal in macrohydrophyte ponds[J]. Journal of Harbin University of Civil Engineering and Architecture, 1999, 32(4): 69-73. (in Chinese with English abstract)

[81] 舒同,周佳林,段婧婧,等. 黑麥草草簾浮床對農(nóng)田排水中氮的去除效果[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2022,38(6):787-794.

Shu Tong, Zhou Jialin, Duan Jingjing, et al. Study on nitrogen removal effect for farmland drainage by floating ryegrass mat[J]. Journal of Ecology and Rural Environment, 2022, 38(6): 787-794. (in Chinese with English abstract)

[82] 趙原,王彥,汪濤,等. 川中丘陵區(qū)高富集氮、磷溝渠植物的篩選[J]. 環(huán)境污染與防治,2015,37(10):12-16.

Zhao Yuan, Wang Yan, Wang Tao, et al. Screening for high nitrogen and phosphorus enrichment ditch plants in the Hilly Area of Central Sichuan Basin[J]. Environmental Pollution & Control, 2015, 37(10): 12-16. (in Chinese with English abstract)

[83] Geary P M, Moore J A. Suitability of a treatment wetland for dairy wastewaters[J]. Water Science and Technology, 1999, 40(3): 179-185.

[84] 黃小輝. 江西省雙季稻區(qū)氮磷肥和除草劑二氯喹啉酸的農(nóng)藝效應(yīng)研究[D]. 杭州:浙江大學(xué),2020.

Huang Xiaohui. Exploring the Agronomic Effect of Nitrogen and Phosphorus Fertilizers and Herbicide Quincloracin the Double-season Rice Region of Jiangxi Province[D]. Hangzhou: Zhejiang University, 2020. (in Chinese with English abstract)

[85] 姜偉麗,馬小艷,彭軍,等. 除草劑草甘膦對棉田土壤酶活性的影響[J]. 棉花學(xué)報(bào),2014,26(5):431-437.

Jiang Weili, Ma Xiaoyan, Peng Jun, et al. Effects of glyphosate on soil enzyme activities in cotton fields[J]. Cotton Science, 2014, 26(5): 431-437. (in Chinese with English abstract)

[86] 辛承友,朱魯生,王軍,等. 阿特拉津?qū)Σ煌柿ν寥懒姿崦傅挠绊慬J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2004,23(3):479-483.

Xin Chengyou, Zhu Lusheng, Wang Jun, et al. Effects of atrazine on phosphatase in soils with different fertility[J].Journal of Agro-Environment Science, 2004, 23(3): 479-483. (in Chinese with English abstract)

[87] 丁浩,凌云,徐亞同,等. 夢清園蘆葦濕地根際微生物特性研究[J]. 四川環(huán)境,2007,26(2):6-10.

Ding Hao, Ling Yun, Xu Yatong, et al. Investigation on rhizosphere microbes of bulrush wetland of Mengqing garden[J]. Sichuan Environment, 2007, 26(2): 6-10. (in Chinese with English abstract)

[88] Smith S, Lizotte R, Moore M T, et al. Toxicity assessment of diazinon in a constructed wetland using Hyalella azteca[J]. Environmental Contamination and Toxicology, 2007, 79(1): 58-61.

Dissipation mechanisms of ecological ditch on agricultural non-point source pollution and their influencing factors

Cheng Haomiao1,2, Ji Shu1, Ge Hengjun3, Zhu Tengyi1, Feng Shaoyuan2※

(1.,,225127,;2.,,225127,;3..,.,225007,)

Agricultural Non-Point Source Pollution (ANSP) has posed a great challenge in modern agriculture worldwide, due mainly to the massive application of fertilizers and pesticides in fields. It is of great significance to develop ecological restoration technologies to mitigate the ANSP. Among them, an ecological ditch can function as a farmland drainage ditch and constructed wetland in recent years. Most previous studies have focused on the dissipation mechanisms of nitrogen (N) and phosphorus (P). However, it is still lacking in the pesticide removal in the ecological ditch. Meanwhile, it is a high demand for the multiple factors analysis rather than the commonly-used single factor analysis, because the dissipation mechanisms of the ecological ditch were influenced by the interaction of multiple factors. In this review, a literature survey was performed on the field experiments of ecological ditches using the ISI Web of Science and CNKI databases from 2001 to 2022. The dissipation mechanisms of ANSP included sediment sorption and plant resistance, as well as plant/microorganism absorption and degradation. The search criteria involved field experiment, ecological ditch or drainage ditch, and ANSP. A total of 559 groups of field experimental data were analyzed to explore the removal rates of total nitrogen, ammonia nitrogen, nitrate nitrogen, total phosphorus, orthophosphate, and pesticides. Four influencing factors were taken into account, i.e., the Initial Contaminant Concentration (IC), Hydraulic Retention Time (HRT), Plant Species (PS), and Plant Biomass (BM). Other influencing factors were also discussed, such as the temperature, hydraulic load, rainfall, and alternate wetting and drying. Both single and multiple factors analysis were carried out using correlation analysis and Multiple Linear Regression Model (MLR), respectively. The results indicated that both total nitrogen and total phosphorus increased as the IC, HRT and BM increased (<0.01), while the PShad no significant correlation with total nitrogen and total phosphorus(>0.05). The reason was that the sorption and uptake processes were stimulated by the higherIC, HRT and BM, whereas, the resuspension was inhibited by the higherHRT and BM in the ecological ditchThe MLR analysis demonstrated thatthe coefficient of determination (2) was 0.80 and 0.92 for thetotal nitrogen and total phosphorus, respectively. Both the IC and BM showed a positive correlation with thetotal nitrogen and total phosphorus (<0.05). Therefore, the high IC and BM greatly contributed to the high total nitrogen and total phosphorus.Particularly, the contribution ratio of IC was higher than that of BMin the MLR equations for the total nitrogen and total phosphorus. The high concentration gradient was attributed to the contribution of the ecological ditch. The diffusion of nutrients was promoted from the overlying water to pore water in the sediment. As such, more favorable absorption conditions were provided for the sediment microorganisms and plants. The single-factor analysis indicated that the pesticide declined as the IC raised (<0.05), in terms of pesticides. The toxicity of pesticides might inhibit the pesticide-degradation ability of the microorganisms and plants in high IC condition, further weakening the metabolic activity of microorganisms and the absorption of plants. The pesticides raised significantly, as the HRT increased (<0.05), indicating the longer microbial reaction for the higher pesticide removal rate. Besides, the MLR equation for the pesticides showed reliable statistical parameters in the training set with the2=0.56. The pesticides in the MLR were negatively correlated with the IC (<0.05), but positively correlated with the HRT (<0.05), which were consistent with the single-factor analysis. Therefore, it is very necessary to supplement the experimental research on the interaction of multiple factors in the future. It is also of great significance to investigate the other hydrologic and environmental factors on the removal efficiencies of ecological ditches. Future research can also explore the effects of pesticide structures and microbiological mechanisms on pesticide removal in ecological ditches.

biomass; nitrogen; phosphorus; ecological ditch; removal rate; initial concentration; hydraulic retention time

10.11975/j.issn.1002-6819.2022.21.006

X52

A

1002-6819(2022)-21-0042-11

程浩淼,季書,葛恒軍,等. 生態(tài)溝渠對農(nóng)田面源污染的消減機(jī)理及其影響因子分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(21):42-52.doi:10.11975/j.issn.1002-6819.2022.21.006 http://www.tcsae.org

Haomiao Cheng, Shu Ji, Hengjun Ge, et al. Dissipation mechanisms of ecological ditch on agricultural non-point source pollution and their influencing factors[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(21): 42-52. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.21.006 http://www.tcsae.org

2022-05-12

2022-08-10

國家自然科學(xué)基金資助項(xiàng)目(42177365、51809226);江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金項(xiàng)目(CX(21)3071)

程浩淼,博士,副教授,博士生導(dǎo)師,研究方向?yàn)檗r(nóng)業(yè)面源污染及污染物輸移規(guī)律。Email:yzchhm@yzu.edu.cn

馮紹元,博士,教授,博士生導(dǎo)師,研究方向?yàn)檗r(nóng)田排水與面源污染治理。Email:syfeng@yzu.edu.cn

猜你喜歡
溝渠面源底泥
農(nóng)業(yè)面源污染的危害與治理
澄江市農(nóng)業(yè)面源污染成因及對策
淺析農(nóng)田建設(shè)項(xiàng)目中溝渠施工技術(shù)及受到破壞后的治理方法
魅力中國(2021年50期)2021-11-30 03:16:04
河道底泥脫水固化處理處置技術(shù)的研究
灌區(qū)溝渠對氮磷的截留機(jī)理及去除效果研究
基于SWAT模型的漳河流域面源污染模擬研究
洞庭湖典型垸內(nèi)溝渠水體富營養(yǎng)化評價(jià)
底泥吸附水體中可轉(zhuǎn)化態(tài)氮研究進(jìn)展
冪律流底泥的質(zhì)量輸移和流場
農(nóng)業(yè)面源污染對水質(zhì)的影響及防治對策
肇州县| 无极县| 县级市| 桐梓县| 博罗县| 沙坪坝区| 济宁市| 嘉善县| 汝南县| 子长县| 延寿县| 荆州市| 新丰县| 富民县| 札达县| 石泉县| 会东县| 东兰县| 闽侯县| 福清市| 乐亭县| 桐梓县| 文成县| 思茅市| 铜陵市| 建水县| 崇明县| 灵山县| 鄂尔多斯市| 新巴尔虎右旗| 大荔县| 海门市| 宁明县| 横山县| 资兴市| 丹凤县| 久治县| 凤山县| 嘉禾县| 敦化市| 永定县|