張玉平,李思陽,楊勝江,李威,劉思琴
(1.長沙理工大學(xué) 土木工程學(xué)院,湖南 長沙 410114;2.貴州交通建設(shè)集團有限公司,貴州 貴陽 550001;3.廣西交通科學(xué)研究院,廣西 南寧 530007)
橋梁結(jié)構(gòu)施工和運營過程中,溫度作用會削弱結(jié)構(gòu)的承載能力,甚至使結(jié)構(gòu)發(fā)生開裂[1]。橋梁結(jié)構(gòu)設(shè)計對溫度作用主要表現(xiàn)為對均勻溫度(年溫差)和梯度溫度(日照溫差)2 個方面進行分析。其中,梯度溫度往往為橋梁設(shè)計的主要控制因素之一,尤其是對于閉口箱形截面主梁。鋼箱梁因其質(zhì)量輕、強度高、施工便捷等優(yōu)點在斜拉橋、懸索橋等大跨橋梁中廣泛應(yīng)用。國內(nèi)外學(xué)者對鋼箱梁溫度梯度模式等進行了大量研究,取得了不少成果。Capps等人[2-3]通過監(jiān)測傳統(tǒng)構(gòu)造形式的鋼箱梁溫度場,基于實測數(shù)據(jù)進行分析,得到了適用于英國地區(qū)的鋼箱梁溫度梯度模式。Lucas等人[4-5]基于法國諾曼底大橋鋼箱梁長期溫度實測數(shù)據(jù),給出了鋼箱梁豎向溫差的經(jīng)驗公式。Lee[6]制作瀝青鋪裝厚度分別為0、50、100、150 mm 的鋼箱梁模型,并基于4種模型溫度觀測數(shù)據(jù)得出韓國地區(qū)橋梁溫度梯度模式。
國內(nèi)針對鋼箱梁溫度梯度模式研究主要集中在江浙地區(qū),汪勁豐等人[7]采用傳統(tǒng)雙折線形式,而張玉平等人[8]則采用指數(shù)函數(shù)加一次函數(shù)形式描述鋼箱梁豎向溫度梯度分布。李國強等人[9]采用指數(shù)函數(shù)描述磁浮軌道梁豎向溫度梯度曲線??婇L青等人[10]在實測溫度數(shù)據(jù)基礎(chǔ)上,提出適合于六角形扁平鋼箱梁溫度梯度分布的曲線形式。周廣東等人[11-15]分別采用不同概率模型(單威布爾與正態(tài)分布加權(quán)、極值分布、雙威布爾加權(quán))研究扁平鋼箱梁溫度梯度模式。錢鯤等人[16]將浙江嘉紹大橋鋼箱梁實測溫度梯度模式與《公路橋涵設(shè)計通用規(guī)范》(JTG D60—2015)[17]及英國BS5400 規(guī)范[18]進行了對比。針對中國北方寒旱地區(qū)與中西部地區(qū)鋼箱梁溫度梯度模式研究成果并不多[19-22],但橋梁日照溫度作用對整體范圍內(nèi)有明顯的地域性差異,對于不同地區(qū),橋梁溫度作用模式與取值有所不同[23]。不同鋼箱梁截面形式,其溫度梯度模式也會有所不同[12][24],國內(nèi)一些學(xué)者對不同截面形式的鋼箱梁溫度梯度模式進行了研究,但針對PK 斷面鋼箱梁溫度梯度模式成果少見。文獻[20]研究了四川瀘州地區(qū)PK 斷面鋼箱梁在施工期間無鋪裝層的豎向溫度梯度,但其運營階段值得進一步研究。針對該問題,作者擬以瀘州市沱江四橋斜拉橋為工程背景,利用熱傳導(dǎo)原理建立運營階段帶鋪裝層的鋼箱梁有限元模型,將計算值與現(xiàn)場實測值進行對比。利用指數(shù)函數(shù)描述鋼箱梁豎向溫度梯度分布,并基于長期溫度監(jiān)測數(shù)據(jù),利用高斯混合模型描述運營階段PK 斷面鋼箱梁日最大正溫差的概率分布,并確定鋼箱梁豎向正溫差標準值。以期為瀘州及其周邊地區(qū)運營階段鋼箱梁橋豎向溫度梯度取值提供借鑒,也為完善箱梁溫度梯度相關(guān)的規(guī)范條文提供一定理論基礎(chǔ)和數(shù)據(jù)支撐。
根據(jù)傅里葉定律和能量守恒定律,建立鋼箱梁結(jié)構(gòu)在空間笛卡爾坐標系中的導(dǎo)熱微分方程:
式中:T為鋼箱梁任意一點在某一瞬時的溫度,其為空間笛卡爾坐標x,y,z與時間t的函數(shù);k為導(dǎo)熱系數(shù);Φ為結(jié)構(gòu)單位時間內(nèi)單位體積所產(chǎn)生的熱量,由于鋼箱梁無內(nèi)熱源,其值為0;ρ為鋼材密度;c為比熱容。
對式(1)求解,若獲得某時刻鋼箱梁溫度場的分布,還需要已知初始條件和邊界條件。初始條件為鋼箱梁起始時刻溫度分布,其計算式為:
式中:T0為坐標的已知函數(shù)。
邊界條件反映鋼箱梁結(jié)構(gòu)通過其表面與外界環(huán)境換熱情況,日照作用下鋼箱梁與外界進行熱交換,主要為太陽輻射、輻射換熱、對流換熱3種形式,鋼箱梁傳熱邊界條件的表達式為:
式中:n為邊界外法向方向;qc為對流換熱熱流密度;qr為輻射換熱熱流密度;qs為太陽輻射熱流密度。
根據(jù)牛頓冷卻定律,鋼箱梁與外界環(huán)境對流換熱的表達式為:
式中:hc為對流換熱系數(shù);Ta表示鋼箱梁外界空氣溫度;Ts表示鋼箱梁結(jié)構(gòu)表面溫度。
qr根據(jù)Stefen-Boltzmann定律,其表達式為:
式中:hr為輻射換熱系數(shù);ε為輻射率;σ為Stefen-Boltzmann 常 數(shù) , 其 值 為 5.677×10-8W/(m2·K4);T*為常數(shù),取值為273.15。
qs的表達式為:
式中:α為吸收率;I為太陽輻射強度總和,包括太陽直接輻射強度、太陽散射強度及地面反射強度。
通過式(4)、(5)、(7),式(3)又可以轉(zhuǎn)換為:
式中:h為綜合換熱系數(shù);Tsa為綜合大氣溫度。
在有限元軟件中,以T0作為初始溫度,將Tsa、h作為荷載加載到鋼箱梁各邊界上,即可求解鋼箱梁溫度場。
四川省瀘州市沱江四橋主橋采用獨塔雙索面斜拉橋結(jié)構(gòu)形式,主橋主梁采用鋼-砼混合梁,主跨為鋼箱梁,邊跨為混凝土梁,其中,主橋鋼箱梁斷面為半分離式雙箱截面形式,鋼箱梁中心線內(nèi)輪廓高為3.452 m,鋼箱梁全寬為49.0 m,鋼箱梁頂面設(shè)置2%雙向橫坡,底面水平,如圖1所示。主橋鋼箱梁段橋面鋪裝組成為:35 mm 改性瀝青SMA10+40 mm 澆筑式瀝青混凝GA10+Eliminator防水黏結(jié)系。該工程所在地屬亞熱帶濕潤季風氣候,冬暖夏熱,日照充足。受地形影響,該地區(qū)夏季雷雨天氣多,風速大部分為0~2 m/s 的微風,年平均氣溫為18 ℃左右。
圖1 沱江四橋鋼箱梁1/2標準橫斷面(單位:mm)Fig.1 Harf section of the steel box girder of the Tuojiang 4th Bridge(unit:mm)
采用ANSYS 有限元軟件建立模型,計算運營階段帶鋪裝層的鋼箱梁溫度場。采用shell57 殼單元模擬鋼箱梁,該單元有4 個節(jié)點;采用solid70實體單元模擬鋪裝層,該單元有8 個節(jié)點,且2 種單元每個節(jié)點均只有一個溫度自由度,單元示意圖如圖2~3所示。
圖2 shell57單元示意Fig.2 Sketch of the shell 57 element
圖3 solid70單元示意Fig.3 Sketch of the solid 70 element
本研究主要研究鋼箱梁豎向梯度溫度,在沱江四橋斜拉橋主跨中,沿縱橋向選擇一段12.0 m半幅鋼箱梁,按實際尺寸建立模型。有限元模型經(jīng)網(wǎng)格劃分后,由52 806個節(jié)點、37 962個單元組成,如圖4所示。
圖4 鋼箱梁單元劃分Fig.4 Element division of steel box girder
以 2018 年 7 月 20 日 6:00 鋼箱梁梁體實測溫度作為初始溫度,將鋼箱梁與外界熱交換按式(8)轉(zhuǎn)化成綜合大氣溫度和綜合換熱系數(shù),施加到鋼箱梁邊界上,求解 2018 年 7 月 20 日 6:00~18:00 的鋼箱梁溫度場。根據(jù)現(xiàn)場實測數(shù)據(jù)和文獻[25],確定材料物理參數(shù)見表1,鋼箱梁各邊界條件參數(shù)見表2~4。
表1 材料物理參數(shù)Table 1 Physical parameters of material
表2 鋼箱梁各邊界對流換熱系數(shù)Table 2 Convective heat transfer coefficient of the boundary of steel box girder W/(m2·℃)
表3 鋼箱梁各邊界不同時刻太陽輻射強度Table 3 Solar radiation intensity of steel box girder boundary under different periods I W·m-2
表4 橋址處大氣溫度Table 4 Atmospheric temperature of the bridge site ℃
選擇沱江四橋斜拉橋運營階段主跨跨中上游幅截面進行溫度場觀測,共布置36 個溫度測點,測點安放如圖5所示,其中,36號測點用于測量鋼箱梁底板外側(cè)環(huán)境溫度。測試儀器采用磁吸式溫度傳感器(測量誤差在±0.25℃范圍內(nèi))和通道采集箱,如圖 6~7 所示。從 2018 年 7 月—2019 年 1月對運營階段鋼箱梁溫度場進行全天候觀測,每隔1 h 對所有測點觀測1 次。隨機選取1 組實測數(shù)據(jù)(測試時間為2018 年7 月20 日)與對應(yīng)有限元模型求解結(jié)果進行對比,如圖8所示。
圖5 沱江四橋鋼箱梁溫度測點布置(單位:mm)Fig.5 Thermal observation points lagout of the Tuojiang 4th Bridge(unit:mm)
圖6 磁吸式溫度傳感器布置示意Fig.6 Layout of magnetic suction temperature sensor
圖7 通道采集箱Fig.7 Channel acquisition box
圖8 鋼箱梁實測溫度與計算值對比Fig.8 Comparison of measured value and calculated value of steel box girder
從圖8中可以看出,鋼箱梁溫度實測值與計算值吻合較好,實測值與計算值最大溫差不超過2.1℃,且兩者溫度隨時間走勢基本一致,因此可以驗證本文有限元模型的準確性。由于受地域影響,測點達到溫度峰值時間與文獻[29-30]類似,較我國沿海地區(qū)鋼箱梁溫度到達溫度峰值的時間偏晚。
描述橋梁結(jié)構(gòu)最不利豎向溫度梯度分布主要有多次拋物線、指數(shù)函數(shù)曲線、多折線3 種形式。本研究收集了運營階段鋼箱梁7—8 月份頂、底板溫差最大時縱隔板的30 組實測溫度數(shù)據(jù)進行對比分析。在日照作用下,沿梁高方向豎向正溫差接近指數(shù)函數(shù)分布形式。故采用最小二乘法,按式(11)對鋼箱梁豎向溫度梯度分布進行擬合,并將擬合結(jié)果與實測數(shù)據(jù)對比,兩者差值均在2℃以內(nèi),如圖9所示。
圖9 縱隔板實測數(shù)據(jù)與擬合數(shù)據(jù)對比Fig.9 Comparison of the measured value and the fitted value of the longitudinal clapboard
式中:y為距離鋼箱梁頂距離;Ty為計算點與梁底正溫差;Tdd為鋼箱梁頂?shù)兹兆畲笳郎夭?;a為指數(shù)系數(shù)常數(shù),本研究取值為1.144。
箱梁結(jié)構(gòu)豎向正溫差主要是由于頂板受太陽輻射影響大,底板受太陽輻射影響小導(dǎo)致,因此,橋梁結(jié)構(gòu)一年內(nèi)最大豎向正溫差總是在夏季出現(xiàn)。本研究以夏季實測數(shù)據(jù)作為樣本,采用統(tǒng)計分析方法獲得日最大正溫差的概率密度函數(shù),選取高斯混合模型描述鋼箱梁日最大正溫差概率密度分布,其表達式為:
式中:wi為第i個高斯函數(shù)權(quán)重比;n為高斯混合模型中成分個數(shù);ui和σi分別為相應(yīng)的均值和標準差。
利用Matlab自帶的EM 算法對高斯混合模型進行參數(shù)估計,高斯混合模型參數(shù)取值見表5。日最大正溫差的概率密度直方圖和擬合曲線如圖10 所示。利用P-P圖和Q-Q圖如圖11所示,驗證采用該高斯混合模型的合理性。從圖11 中可以看出,所有點幾乎都位于斜率等于1的直線上,驗證了采用該高斯混合模型描述鋼箱梁日最大正溫差概率分布的合理性。
表5 日最大正溫差高斯混合模型參數(shù)取值Table 5 Parameter selection of the Gaussian mixture model for daily maximum positive temperature difference
圖10 日最大正溫差頻率直方圖與擬合曲線Fig.10 Frequency histogram and fitting curve of daily maximum positive temperature difference
圖11 高斯混合模型檢驗Fig.11 Ⅰnspection of the Gaussian mixture model
溫度作用屬于可變作用,歐洲結(jié)構(gòu)設(shè)計標準規(guī)定溫度作用特征值是具有重現(xiàn)期為50 a 的作用值[31],按照我國橋梁規(guī)范中規(guī)定的設(shè)計基準期100 a 計算,則設(shè)計基準期內(nèi)最大溫度作用超過標準值次數(shù)的數(shù)學(xué)期望為2次。
設(shè)一年內(nèi)最大豎向溫差超過標準值的超越概率為P,并考慮到年最大豎向溫差總是出現(xiàn)在夏季,鋼箱梁豎向正溫差標準值TB按下式計算:
式中:F(TB)為夏季日最大正溫差的分布函數(shù);n為一年內(nèi)夏季總天數(shù);P取0.02。
經(jīng)計算,得到鋼箱梁豎向正溫差標準值為18.4℃,根據(jù)《公路橋涵設(shè)計通用規(guī)范》(JTG D60—2015)[17]中線性內(nèi)插,得到75 mm 瀝青混凝土鋪裝層豎向正溫差標準值為17℃,對比發(fā)現(xiàn)本研究取值要略高于規(guī)范取值。表明:中國規(guī)范對橋梁溫度作用的規(guī)定并不能涵蓋所有地區(qū),橋梁溫度作用代表值與地域、氣候的關(guān)系較大。
結(jié)合擬合的豎向溫度梯度曲線,最終獲得了運營階段鋼箱梁豎向正溫度梯度模型,如圖12 所示,其表達式為:Ty= 18.4e-1.144y。
圖12 運營階段PK斷面鋼箱梁豎向正溫度梯度模式Fig.12 Vertical positive temperature gradient model of the PK section of steel box girder at operation stage
1)根據(jù)熱傳導(dǎo)與有限元基本理論,借助ANSYS 軟件計算運營階段鋼箱梁溫度場,并通過對比計算值與現(xiàn)場實測值,發(fā)現(xiàn)結(jié)果吻合較好,表明采用本方法和參數(shù)計算運營階段鋼箱梁溫度場可行。
2)采用Ty=Tdde-ay能較好地描述運營階段鋼箱梁日最大正溫差分布形式。對于帶瀝青混凝土鋪裝層鋼箱梁豎向正溫差標準值,《公路橋涵設(shè)計通用規(guī)范》(JTG D60—2015)[17]只對厚度為50 mm與100 mm 給出了具體取值。基于高斯混合模型,得到瀝青混凝土鋪裝層厚度為75 mm 的鋼箱梁豎向正溫差標準值18.4 ℃,其值要高于按規(guī)范中線性內(nèi)插得到的值。因此,針對規(guī)范不同厚度鋪裝采用線性內(nèi)插法是否合理值得進一步研究,后續(xù)工作可以針對不同鋪裝厚度鋼箱梁溫度梯度模式展開研究。
3)本方法計算瀘州市沱江四橋運營階段日照作用下,PK 斷面鋼箱梁豎向正溫度梯度模式為:Ty= 18.4e-1.144y,該模式可為瀘州市及周邊氣候環(huán)境相似地區(qū)運營階段PK 斷面鋼箱梁橋豎向溫度梯度取值提供一定參考和借鑒。目前針對我國西南地區(qū)PK 斷面鋼箱梁溫度梯度模式研究成果還比較少,還需多地區(qū)實橋測試與研究。