劉紫妍,高艾
炎性衰老在血液系統(tǒng)疾病中的研究進(jìn)展
劉紫妍,高艾
首都醫(yī)科大學(xué)公共衛(wèi)生學(xué)院, 北京 100069
隨著人類壽命不斷增長,全球人口老齡化加劇,老年性疾病發(fā)病率也隨之上升。炎性衰老(inflamm-aging)指機(jī)體隨增齡出現(xiàn)的促炎狀態(tài)升高的現(xiàn)象。研究表明,炎性衰老與心腦血管疾病、神經(jīng)退行性病變以及骨關(guān)節(jié)病變具有一定關(guān)聯(lián),但其發(fā)生機(jī)制仍不明確,尤其在血液系統(tǒng)疾病方面的研究也較為少見。全身性炎癥如何通過衰老引起造血障礙進(jìn)而參與血液系統(tǒng)疾病的發(fā)生尚不明晰。本文主要從炎性衰老的發(fā)生機(jī)制、炎性衰老與血液系統(tǒng)疾病的關(guān)系等方面展開綜述,旨在揭示炎性衰老在血液系統(tǒng)疾病中的可能作用機(jī)制,為血液系統(tǒng)疾病的防治策略提供借鑒和參考。
炎性衰老;造血功能障礙;血液系統(tǒng)疾病
20世紀(jì)以來,人類壽命不斷增長,全球人口老齡化現(xiàn)狀不容樂觀。據(jù)統(tǒng)計(jì),全球范圍內(nèi)60歲以上人口比例從1990年的9.2%提高到2013年的11.7%,預(yù)計(jì)2050年將達(dá)21.1%[1]。2021年5月11日,國家統(tǒng)計(jì)局公布了第七次人口普查數(shù)據(jù)。現(xiàn)階段我國人口總數(shù)為:141,178萬人,老年人人口年齡分布數(shù)據(jù)如下:60歲及以上人口為26,402萬人,占18.70% (其中65歲及以上人口為19,064萬人,占13.50%)。與2010年相比,60歲及以上人口的比重上升5.44%。老齡化加劇也使得衰老領(lǐng)域的研究成為目前國內(nèi)外研究的熱點(diǎn)方向之一。衰老是生物體隨時(shí)間推移而自發(fā)出現(xiàn)的必然過程,存在于機(jī)體的多個(gè)層面(分子、細(xì)胞、組織、器官),持續(xù)發(fā)生于整個(gè)生命周期[2]。其主要以組織結(jié)構(gòu)退變、身體機(jī)能衰退及免疫力下降為特征,可導(dǎo)致多種如糖尿病、高血壓、骨質(zhì)疏松、阿爾茨海默病等老年性疾病的發(fā)病率升高[3]。
2000年,F(xiàn)ranceschi等[4]首次提出“炎性衰老(inflamm-aging)”的概念,認(rèn)為衰老通常伴隨應(yīng)對(duì)應(yīng)激源能力的下降和促炎狀態(tài)的進(jìn)行性升高。隨后,Giunta等[5]進(jìn)一步揭示并總結(jié)出“低水平、可控性、無癥狀、慢性和全身性”的炎性衰老特點(diǎn)。眾所周知,生物體一生都暴露于各種應(yīng)激源作用下,微小的應(yīng)激可以維持并增加各種類型生物和細(xì)胞的存活。炎癥通常被認(rèn)為是一種進(jìn)化上保守的“積極”現(xiàn)象,可對(duì)外來有害物質(zhì)作出反應(yīng)并中和其有害效應(yīng)。然而,炎癥狀態(tài)在生命早期和成年期對(duì)健康的有利影響將會(huì)在生命晚期變得不利[6]。隨著年齡增加,持續(xù)的外界刺激使巨噬細(xì)胞不斷處于激活狀態(tài),同時(shí)抗炎作用減弱導(dǎo)致炎癥調(diào)控網(wǎng)絡(luò)失衡,炎癥發(fā)展為不可控狀態(tài),年齡相關(guān)疾病的易感性和發(fā)生率隨之增加[5]。
目前,已有許多研究表明炎性衰老與慢性疾病發(fā)生之間存在一定的關(guān)聯(lián)[7],如心腦血管疾病、癌癥、神經(jīng)退行性病變等[3]。但炎性衰老的發(fā)生機(jī)制至今仍不甚明確,其在血液系統(tǒng)方面的研究也較為少見。眾所周知,造血障礙是血液系統(tǒng)疾病發(fā)生的中間環(huán)節(jié)。然而,全身性炎癥如何通過衰老引起造血障礙進(jìn)而參與血液系統(tǒng)疾病的發(fā)生卻尚未明晰。因此,本文主要對(duì)炎性衰老的發(fā)生機(jī)制及其在血液系統(tǒng)中的相關(guān)研究進(jìn)行綜述,旨在揭示炎性衰老在血液系統(tǒng)疾病中的可能作用機(jī)制,為血液系統(tǒng)疾病的防治策略提供借鑒和參考。
炎性衰老的發(fā)生機(jī)制復(fù)雜,下面主要從氧化應(yīng)激學(xué)說(the theory of oxidative stress)、細(xì)胞因子學(xué)說(the theory of cytokines)、線粒體功能障礙(mito-chondrial dysfunction)和腸道微生物群變化(changes in the gut microbiota)等四個(gè)方面對(duì)其進(jìn)行闡述(表1)。
在許多衰老細(xì)胞中可觀察到自由基數(shù)量的增加[8]以及自由基清除酶含量水平的降低[9],提示衰老過程中形成了氧化應(yīng)激狀態(tài)。此外,衰老個(gè)體通常存在慢性促炎狀態(tài)的升高。而氧化應(yīng)激被認(rèn)為在衰老和年齡相關(guān)疾病的低度炎癥中發(fā)揮著重要作用[10]?;钚匝踝杂苫?relative oxygen species, ROS)增加以及翻譯后蛋白修飾可通過轉(zhuǎn)導(dǎo)蛋白MyD88分子激活Toll樣受體家族(Toll-like receptors, TLRs)信號(hào)通路,介導(dǎo)后續(xù)炎癥細(xì)胞因子的產(chǎn)生,引起慢性炎癥[11]。ROS還能直接引起NALP3炎癥小體激活,繼而啟動(dòng)核轉(zhuǎn)錄因子-κB(NF-κB)-半胱氨酸天冬氨酸蛋白酶1 (caspase1)炎癥復(fù)合體,加工白細(xì)胞介素-1前體(pro-interleukin-1, pro-IL-1)和白細(xì)胞介素-18前體(pro-interleukin-18, pro-IL-18)成為活性細(xì)胞因子[3,12],引發(fā)炎癥反應(yīng)。生理狀態(tài)下,約1/5的呼吸氧可產(chǎn)生自由基,然而在慢性炎癥狀態(tài)下,這一比例會(huì)進(jìn)一步升高,導(dǎo)致更多的自由基生成[13]。因此,上述過程形成了“自由基→氧化應(yīng)激→慢性炎癥→自由基”的惡性循環(huán),氧化損傷產(chǎn)物與細(xì)胞因子的積累最終導(dǎo)致細(xì)胞衰老和毒性死亡。
炎癥通常來源于體內(nèi)促炎和抗炎細(xì)胞因子水平的失衡[3]。炎性細(xì)胞因子在衰老和長壽中發(fā)揮重要作用。有研究表明,年齡較大受試者體內(nèi)高水平的促炎細(xì)胞因子與老年性疾病的發(fā)病和死亡風(fēng)險(xiǎn)增加相關(guān)[3]。此外,抗炎細(xì)胞因子的表達(dá)水平在老年人體內(nèi)也發(fā)生了變化[3]。白細(xì)胞介素10 (interleukin-10, IL-10)在細(xì)胞刺激研究中顯示出年齡相關(guān)的下降[14]。而腫瘤壞死因子β (tumor necrosis factor β, TNF-β)在百歲老人中表達(dá)水平上調(diào),提示免疫系統(tǒng)試圖抑制促炎反應(yīng)并恢復(fù)免疫穩(wěn)態(tài)[15]。
表1 炎性衰老的發(fā)生機(jī)制
Sasaki等[16]發(fā)現(xiàn)炎性細(xì)胞因子處理可通過產(chǎn)生ROS并激活A(yù)TM/p53/p21 (WAF1/Cip1)途徑誘導(dǎo)膽道上皮細(xì)胞衰老。和癌基因誘導(dǎo)可導(dǎo)致細(xì)胞內(nèi)DNA損傷,引起NF-κB和C/EBPβ轉(zhuǎn)錄因子表達(dá)上調(diào)進(jìn)而分泌大量促炎細(xì)胞因子,后者與趨化因子受體2 (CXC receptor 2, CXCR2)反應(yīng),以依賴的方式引起人成纖維細(xì)胞衰老[17]。近期,有研究發(fā)現(xiàn),Ras-GAP SH3結(jié)合蛋白1 (Ras-GTPase activating protein SH3 binding protein 1, G3BP1)通過胞漿環(huán)狀GMP-AMP合成酶(cytoplasmic cyclic GMP- AMP synthase, cGAS)激活NF-κB和STAT3途徑,促進(jìn)衰老相關(guān)分泌表型(senescent-associated secretory phenotype, SASP),分泌促炎細(xì)胞因子并導(dǎo)致細(xì)胞衰老[18]。以上研究對(duì)年齡相關(guān)疾病的發(fā)生過程做出了解釋,揭示了炎性細(xì)胞因子引起衰老的可能機(jī)制。
線粒體功能障礙是衰老的標(biāo)志和促進(jìn)衰老表型發(fā)展的重要機(jī)制[19]。通常認(rèn)為衰老過程中伴有自噬功能的降低,繼而會(huì)影響線粒體融合和分裂間的平衡,引發(fā)線粒體質(zhì)量控制(mitochondrial quality control, MQC)障礙、氧化應(yīng)激和慢性炎癥[3]。受損線粒體DNA (mitochondrial DNA, mtDNA)、線粒體轉(zhuǎn)錄因子A (mitochondrial transcription factor A, TFAM)以及TFAM-mtDNA復(fù)合物均屬于線粒體來源的損傷相關(guān)分子模式(damage-associated molecular patterns, DAMPs)。MQC過程受損會(huì)導(dǎo)致細(xì)胞氧化猝滅(ROS積累)以及DAMPs釋放,循環(huán)DAMPs通過與TLRs、NLRP3或干擾素基因DNA傳感系統(tǒng)的刺激因子(STING)-cGAS通路相互作用,激活炎癥反應(yīng)[20]。其中,無細(xì)胞線粒體mtDNA的積累被證明與慢性炎癥狀態(tài)的維持正相關(guān)[21],再次將線粒體功能障礙與炎性衰老相關(guān)聯(lián)。近期,Iske等[21]在實(shí)驗(yàn)?zāi)P椭邪l(fā)現(xiàn),senolytics處理老年供體動(dòng)物可清除衰老細(xì)胞并減少無細(xì)胞線粒體mtDNA的釋放,并延長心臟同種異體移植物的存活時(shí)間,提示糾正線粒體功能障礙可能是未來延緩炎性衰老的重要手段之一。
健康成年人的每個(gè)身體棲息地(如腸道、皮膚、口腔、陰道等)都有一個(gè)獨(dú)特的細(xì)菌微生物群落組合。個(gè)體內(nèi)微生物群具有相對(duì)穩(wěn)定性,意味著微生物群與人類宿主間存在穩(wěn)定的互利共存關(guān)系[22]。Claesson等[23]對(duì)人群調(diào)查發(fā)現(xiàn),老年人糞便樣本中的主導(dǎo)菌群為擬桿菌門(Bacteroidaceae),而較年輕受試者則為硬壁菌門(Firmicutes)。這種菌群比例構(gòu)成在動(dòng)物體內(nèi)截然相反。一項(xiàng)對(duì)小鼠()腸道菌群的分類學(xué)分析證明,小鼠衰老過程中伴隨硬壁菌/擬桿菌的比例增加[24]。以上證據(jù)表明,衰老與腸道微生物群落組成的改變密切相關(guān)。
動(dòng)物模型證據(jù)表明,微生物群和微生物組在促炎和抗炎反應(yīng)之間保持著微妙的平衡[25]。而衰老相關(guān)的消化道變化、體力活動(dòng)減少和藥物攝入增加可引起腸道微生物菌群改變,增加機(jī)體對(duì)傳染病及其他慢性疾病的易感性[22,26]。年齡相關(guān)的微生物群變化還可以通過增加腸道通透性,引起年齡相關(guān)炎癥和巨噬細(xì)胞功能下降[27]。此外,無菌條件下小鼠的循環(huán)促炎細(xì)胞因子水平不會(huì)出現(xiàn)年齡相關(guān)的增加[27],再次證明微生物群與炎癥間的緊密聯(lián)系。
目前發(fā)現(xiàn),年輕或年老小鼠的糞便溶解物脂多糖組分(lipopolysaccharide fraction of fecal lysates, LFL)可增加野生型小鼠腹腔巨噬細(xì)胞和的表達(dá)及NF-κB的激活[24]。而6可通過抑制細(xì)胞周期素依賴性激酶CDK4和CDK6的活性引起細(xì)胞衰老,通過細(xì)胞周期蛋白A2/CDK1調(diào)節(jié)細(xì)胞增殖,結(jié)果表明LFL可加速炎性衰老過程[24]。治療上,地中海飲食(低糖、低脂、高膳食纖維)被發(fā)現(xiàn)可通過調(diào)節(jié)腸道微生物群而對(duì)機(jī)體產(chǎn)生有益作用,逆轉(zhuǎn)病理性衰老[28]。而近期一項(xiàng)針對(duì)老年人的隨機(jī)對(duì)照交叉飲食干預(yù)項(xiàng)目表明,富含多酚類的食物能改善老年人腸道通透性增加的狀況并減少炎癥細(xì)菌因子入血[29]。綜上所述,腸道微生物變化—炎癥—衰老之間的關(guān)系基本明確,腸道微生物的影響因素如生活方式改變、飲食構(gòu)成等可能成為未來干預(yù)衰老的重要策略與方向。
盡管以上四方面內(nèi)容從單一的角度揭示了炎性衰老發(fā)生的可能機(jī)制與通路,但機(jī)體發(fā)生的生命活動(dòng)是復(fù)雜多樣的,事實(shí)上,可能同時(shí)存在兩種及以上機(jī)制同時(shí)參與炎性衰老的發(fā)生。首先,氧化應(yīng)激水平升高可以在一定程度上促進(jìn)炎性細(xì)胞因子的分泌,引起過度炎癥[30]。且近期有研究發(fā)現(xiàn),早衰小鼠的免疫細(xì)胞會(huì)同時(shí)表現(xiàn)出氧化應(yīng)激升高和促炎細(xì)胞因子表達(dá)水平增加[31],這解釋了小鼠免疫衰老的發(fā)生原因。其次,線粒體是細(xì)胞氧化與抗氧化平衡的調(diào)節(jié)中樞,增強(qiáng)的炎癥或氧化狀態(tài)可以導(dǎo)致線粒體功能障礙[32]。反之亦然,抑制mtDNA釋放可以減輕衰老過程中的炎癥反應(yīng)[33]。最后,研究發(fā)現(xiàn)腸道微生物菌群改變可以影響腸細(xì)胞的線粒體動(dòng)力學(xué),進(jìn)而影響宿主的壽命[34]??傊?,以上四種機(jī)制之間相互聯(lián)系,相互作用,共同參與著炎性衰老的發(fā)生。
現(xiàn)已公認(rèn)所有造血和免疫細(xì)胞均起源于具有自我更新能力和多系分化潛能的骨髓造血干細(xì)胞(hematopoietic stem cells, HSCs)。穩(wěn)定狀態(tài)下,HSCs處于休眠狀態(tài),日常造血主要由HSCs下游高度增殖的造血祖細(xì)胞(hematopoietic progenitor cells, HPCs)維持;然而,當(dāng)發(fā)生感染、炎癥等情況時(shí),HSCs表面的模式識(shí)別受體或細(xì)胞因子/趨化因子受體可識(shí)別病原體來源分子或由激活免疫細(xì)胞釋放的促炎信號(hào)[35],進(jìn)而激活HSCs,誘導(dǎo)其增殖、遷移和分化以應(yīng)對(duì)感染。HSCs響應(yīng)造血刺激而從休眠狀態(tài)中退出會(huì)引起正常HSCs消耗和增殖分化功能障礙,分子水平上表現(xiàn)為HSCs中DNA損傷的累積,后者被認(rèn)為是衰老的標(biāo)志以及年齡相關(guān)組織變性和惡性轉(zhuǎn)化的主要因素[36]。
衰老過程中,HSCs自我更新能力會(huì)降低,導(dǎo)致適應(yīng)性免疫系統(tǒng)和先天免疫系統(tǒng)的功能下降,最終引起機(jī)體對(duì)感染的易感性升高[37]。同時(shí),衰老HSCs的髓系分化潛能增加,表現(xiàn)為髓系偏向HSCs (CD150highCD34?LSK)、髓系祖細(xì)胞、髓系細(xì)胞數(shù)量增加以及B細(xì)胞和T細(xì)胞池縮小,分子分析顯示衰老HSCs中髓系和巨核細(xì)胞相關(guān)基因的上調(diào)和淋巴分化基因的下調(diào)[38]。這種偏向可增加免疫系統(tǒng)對(duì)先天免疫的依賴性,增強(qiáng)基礎(chǔ)炎癥水平及髓系瘤變風(fēng)險(xiǎn)[38]。髓源性抑制細(xì)胞(myeloid-derived suppressor cells, MDSCs)是HSCs向髓系分化而產(chǎn)生的下游效應(yīng)細(xì)胞。衰老伴發(fā)的促炎性變化可刺激MDSCs生成顯著增加,繼而抑制宿主的免疫防御,影響有害物質(zhì)清除,增加感染和腫瘤發(fā)生的易感性[39]。炎癥過程與衰老過程中的造血變化有相似之處。暴露于慢性炎癥刺激下的HSC池也會(huì)出現(xiàn)自我更新能力降低和表征髓系分化偏向的CD150highHSC的比例增加[35]。由此推斷,“炎性衰老”可能有助于啟動(dòng)或加速HSCs功能損害后的造血異常。
骨髓微環(huán)境對(duì)于維持HSCs穩(wěn)態(tài)至關(guān)重要。血管周圍骨髓微環(huán)境主要由間充質(zhì)基質(zhì)細(xì)胞(mesen-chymal stromal cells, MSCs)和內(nèi)皮細(xì)胞(endothe-lial cells, ECs)組成[40]。衰老MSCs的分化潛能相比成骨而更利于向脂肪細(xì)胞生成傾斜[41]。相似的,促炎細(xì)胞因子基底水平增加也可能引發(fā)骨髓中衰老相關(guān)的髓系偏向和脂肪生成,髓系細(xì)胞和脂肪細(xì)胞進(jìn)一步增加促炎細(xì)胞因子的釋放,形成正反饋機(jī)制[38]。而骨髓脂肪組織是白血病細(xì)胞生存的促進(jìn)因素[42],提示骨髓脂肪生成增強(qiáng)可能會(huì)損害HSC功能。至于內(nèi)皮細(xì)胞ECs,它可分泌維持和保留HSCs的因子如CXC基序配體12 (CXC Motif chemokine 12, CXCL12),后者在NO調(diào)節(jié)下介導(dǎo)HSCs動(dòng)員[38,43]。衰老時(shí)ECs損傷相關(guān)的一氧化氮(nitrogen monoxide, NO)減少與ROS增加可能導(dǎo)致衰老BM中HSC維持和保留的異常及炎癥狀態(tài)增加[38]。此外,近期研究發(fā)現(xiàn),年老p62–/–小鼠的骨髓表現(xiàn)出MSCs耗竭和CXCL12降低[44],而p62是一種抗炎分子,表明p62缺乏可能通過促進(jìn)炎性衰老而導(dǎo)致骨髓微環(huán)境破壞及骨髓細(xì)胞功能損害,間接影響造血功能。
衰老與促炎狀態(tài)升高共存的“炎性衰老”過程可以直接損害HSCs功能或影響骨髓微環(huán)境間接作用于HSCs (圖1),這可能是導(dǎo)致造血功能障礙、免疫衰老以及血液系統(tǒng)疾病發(fā)生發(fā)展的重要原因。而國內(nèi)外相關(guān)證據(jù)表明,炎性衰老在老年性貧血、骨髓增生異常綜合征(myelodysplastic syndrome, MDS)、急性髓系白血病(Acute myeloid leukemia, AML)等血液系統(tǒng)疾病的發(fā)生中發(fā)揮重要作用(表2)。了解炎性衰老與血液系統(tǒng)疾病之間的關(guān)系,可能為血液系統(tǒng)疾病的防治提供新的見解。
圖1 炎性衰老直接或間接損害HSCs功能導(dǎo)致造血功能障礙
表2 炎性衰老與血液系統(tǒng)疾病的關(guān)系
老年性貧血病因復(fù)雜,通常與營養(yǎng)缺乏、慢性炎癥和造血系統(tǒng)老化等多種原因的共同作用有關(guān)[45]。機(jī)制上,部分研究已將炎性衰老與老年性貧血相關(guān)聯(lián)。肝素抗菌肽(hepcidin antimicrobial peptide, HAMP)是一種鐵調(diào)節(jié)激素,其在炎癥和貧血患者的血清中升高,被認(rèn)為是炎癥狀態(tài)下貧血的關(guān)鍵驅(qū)動(dòng)因素[46]。Mccranor等[46]通過比較/老年小鼠和靶向缺失或的老年小鼠體內(nèi)鐵代謝、炎癥和紅細(xì)胞生成指數(shù)的變化,發(fā)現(xiàn)三種處理方式下的小鼠在24個(gè)月時(shí)均出現(xiàn)血紅蛋白濃度和紅細(xì)胞數(shù)下降,表明存在紅細(xì)胞生成受損。然而,或基因敲除可改善老年小鼠的紅細(xì)胞生成受損情況,表明促炎細(xì)胞因子IL-6和HAMP參與老年性貧血的發(fā)生。此外,促炎細(xì)胞因子如TNF-α、IL-1和TGF-β,對(duì)紅系祖細(xì)胞的增殖分化具有直接負(fù)面影響,部分可能歸因于紅系祖細(xì)胞內(nèi)促紅細(xì)胞生成素(erythro-poietin, EPO)受體的表達(dá)下調(diào)[45]。隨著年齡增長,除促炎狀態(tài)升高以外,含白血病相關(guān)基因突變的克隆造血(clonal hematopoiesis, CH)發(fā)生率會(huì)增加并更易于檢出[45,47]。CH累積多次突變可發(fā)展為髓系惡性克隆,而炎癥信號(hào)可能會(huì)增加CH向血液惡性腫瘤轉(zhuǎn)變的發(fā)生風(fēng)險(xiǎn)[48,49]。綜上所述,炎癥信號(hào)在老年性貧血的發(fā)生和進(jìn)展惡化過程中都發(fā)揮著重要作用。
MDS是一組起源于造血干細(xì)胞的異質(zhì)性惡性克隆性疾病,以骨髓無效造血為特征,有較高向急性髓系白血病轉(zhuǎn)變的風(fēng)險(xiǎn)。年齡相關(guān)炎性骨髓微環(huán)境可誘導(dǎo)del(5q) MDS (即5號(hào)染色體長臂(5q)上編碼的/雙基因缺陷)小鼠貧血和無效紅細(xì)胞生成[50]。Mei等[50]發(fā)現(xiàn),衰老骨髓微環(huán)境中DAMPs升高可上調(diào)小鼠MDSCs中的TNF-α和IL-6,通過ROS誘導(dǎo)的caspase-3活化和凋亡抑制紅系集落和終末紅細(xì)胞生成。全反式維甲酸治療/雙基因敲除小鼠,促進(jìn)MDSCs分化,可顯著改善炎癥性骨髓微環(huán)境并挽救del(5q) MDS表型。如前所述[40],MSC是骨髓微環(huán)境的重要組成細(xì)胞。細(xì)胞周期蛋白依賴性激酶抑制劑2B(CDKN2B)在MDS患者的MSC (簡稱MSC-MDS)中顯著上調(diào),而CDKN2B過表達(dá)會(huì)導(dǎo)致細(xì)胞周期停滯,表明MSC-MDS發(fā)生了衰老并出現(xiàn)增殖潛能受損[51]。此外,炎癥對(duì)MSC-MDS的修飾作用可導(dǎo)致HSC突變和疾病惡化。MSC-MDS分泌的DAMPs如S100A8和S100A9可驅(qū)動(dòng)HSC中的線粒體功能障礙、氧化應(yīng)激和DNA損傷,建立慢性促炎骨髓微環(huán)境,增加MDS向白血病發(fā)展的傾向[48]。
AML是成人最常見的急性白血病。僅有少量文獻(xiàn)報(bào)道了炎性衰老與AML的聯(lián)系。He等[52]發(fā)現(xiàn),具有促炎作用的腫瘤壞死因子α (tumor necrosis factor α, TNF-α)可通過ERK-ETS1-IL27Ra信號(hào)通路導(dǎo)致HSCs衰老,后者可能進(jìn)一步引起AML,揭示炎性衰老在白血病發(fā)生中的潛在機(jī)制和重要作用。隨后有研究表明,表達(dá)對(duì)AML預(yù)后有影響,且這種影響與其調(diào)節(jié)慢性炎癥的作用有關(guān)[53]。在原始HSC室中,可保持HSCs“干性”并抑制炎性細(xì)胞因子如IL-6、TNF-α的表達(dá);缺乏小鼠的HSCs存在細(xì)胞分裂的“程序性”差異,繼而耗盡原始HSCs,引起HSCs功能失調(diào)并導(dǎo)致髓系祖細(xì)胞包括白血病干細(xì)胞的增加[53]。因此,缺乏常導(dǎo)致AML預(yù)后不良,是AML患者中與衰老相關(guān)的炎癥的驅(qū)動(dòng)因素。此外,Grants等[54]發(fā)現(xiàn),NF-κB、IL-6和TNF可能導(dǎo)致HSCs功能障礙,調(diào)控IL-6和TNF水平來減輕炎癥可恢復(fù)miR-146a–/–HSC的正常功能。
隨著全球人口老齡化不斷進(jìn)展,老年性疾病發(fā)病率逐年上升。衰老過程及其發(fā)病機(jī)制也引起了國內(nèi)外學(xué)者的廣泛關(guān)注。炎性衰老將“炎癥”與“衰老”兩個(gè)過程相關(guān)聯(lián),認(rèn)為衰老的特征包括應(yīng)對(duì)應(yīng)激源能力的下降和促炎狀態(tài)的進(jìn)行性升高。目前,已發(fā)現(xiàn)炎性衰老參與糖尿病、高血壓、骨質(zhì)疏松、阿爾茨海默病等多種老年性疾病的發(fā)生發(fā)展。然而,與其他疾病類型不同,血液系統(tǒng)疾病具有全身性、非特異性、多樣性以及難治性的特點(diǎn)。作為一個(gè)全身性過程,炎性衰老如何干預(yù)造血功能以及其在血液系統(tǒng)疾病中的作用機(jī)制尚不清楚。盡管白血病常常在青少年和兒童群體中發(fā)病,衰老過程中積累的體細(xì)胞突變可以通過引起克隆造血進(jìn)而參與血液惡性腫瘤的發(fā)生[55],這提示衰老與血液病之間有著重要的聯(lián)系。但是目前僅有少量研究報(bào)道了炎性衰老與造血異常以及血液系統(tǒng)疾病的聯(lián)系,更深層次的發(fā)病機(jī)制仍值得關(guān)注和研究。
近年來逐步發(fā)現(xiàn),表觀遺傳學(xué)改變?cè)诩膊〉陌l(fā)生發(fā)展中發(fā)揮重要作用。而表觀遺傳也與衰老密切相關(guān)[56]。在衰老過程中發(fā)現(xiàn)不同物種的多個(gè)表觀遺傳事件發(fā)生了改變[57],包括組蛋白變體積累、染色質(zhì)可及性變化、組蛋白丟失、異常組蛋白修飾等,可以直接導(dǎo)致衰老和衰老相關(guān)疾病的發(fā)生。例如:外部刺激引起的表觀遺傳標(biāo)記變化可能是牙齒老化的分子機(jī)制,而人類微生物群可以成為牙齒組織抗衰老干預(yù)的目標(biāo)[58]。此外,有研究表明干細(xì)胞表面表觀遺傳標(biāo)記極性的變化可能導(dǎo)致了造血干細(xì)胞衰老[59]。而衰老中伴行的炎癥狀態(tài)也不容忽視。因此,推測(cè)可能表觀遺傳機(jī)制在炎性衰老中也有一定作用。后續(xù)還需要進(jìn)一步進(jìn)行深入研究和探討,從而為血液系統(tǒng)疾病的防治提供新思路和見解。
[1] Sander M, Oxlund B, Jespersen A, Krasnik A, Mortensen EL, Westendorp RG, Rasmussen LJ. The challenges of human population ageing., 2015, 44(2): 185–187.
[2] da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T. A synopsis on aging-theories, mechanisms and future prospects.,2016, 29: 90–112.
[3] Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and age-related diseases: role of inflammation triggers and cytokines., 2018, 9: 586.
[4] Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases., 2018, 14(10): 576–590.
[5] Song BY. Research on pathogenesis of inflamm-aging., 2019, 22(5): 85–87.宋博雅. 炎性衰老的發(fā)生機(jī)理研究. 西安文理學(xué)院學(xué)報(bào)(自然科學(xué)版), 2019, 22(5): 85–87.
[6] Fougère B, Boulanger E, Nourhashémi F, Guyonnet S, Cesari M. Chronic inflammation: accelerator of biological aging.,2017, 72(9): 1218–1225.
[7] Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW, Fasano A, Miller GW, Miller AH, Mantovani A, Weyand CM, Barzilai N, Goronzy JJ, Rando TA, Effros RB, Lucia A, Kleinstreuer N, Slavich GM. Chronic inflammation in the etiology of disease across the life span., 2019, 25(12): 1822–1832.
[8] Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Zhou XJ, Xu B. Mitochondria: central organelles for melatonin's antioxidant and anti-aging actions.,2018, 23(2): 509.
[9] Bernatoniene J, Kopustinskiene DM. The role of catechins in cellular responses to oxidative stress.,2018, 23(4): 965.
[10] Papaconstantinou J. The role of signaling pathways of inflammation and oxidative stress in development of senescence and aging phenotypes in cardiovascular disease., 2019, 8(11): 1383.
[11] Ma CY, Liu ZD, Zhang YL. Immunomodulatory effects of Lectin and TLRs signaling pathway., 2019, 40(24): 355–360.馬成瑤, 劉振東, 張彥龍. 凝集素與TLRs信號(hào)通路的免疫調(diào)節(jié)作用. 食品工業(yè)科技, 2019, 40(24): 355–360.
[12] Song C, He LJ, Zhang J, Ma H, Yuan XN, Hu GY, Tao LJ, Zhang J, Meng J. Fluorofenidone attenuates pulmonary inflammation and fibrosis via inhibiting the activation of NALP3 inflammasome and IL-1β/IL-1R1/MyD88/NF-κB pathway.,2016, 20(11): 2064–2077.
[13] Caristia S, Vito MD, Sarro A, Leone A, Pecere A, Zibetti A, Filigheddu N, Zeppegno P, Prodam F, Faggiano F, Marzullo P. Is caloric restriction associated with better healthy aging outcomes? A systematic review and meta-analysis of Randomized Controlled Trials., 2020, 12(8): 2290.
[14] Hirokawa K, Utsuyama M, Hayashi Y, Kitagawa M, Makinodan T, Fulop T. Slower immune system aging in women versus men in the Japanese population., 2013, 10(1): 19.
[15] Rea IM, Maxwell LD, McNerlan SE, Alexander HD, Curran MD, Middleton D, Ross OA. Killer Immunoglobulin- like Receptors (KIR) haplogroups A and B track with natural killer cells and cytokine profile in aged subjects: observations from Octo/Nonagenarians in the Belfast Elderly Longitudinal Free-living Aging STudy (BELFAST).,2013, 10(1): 35.
[16] Xie XC, Zhang Y, Wang Z, Wang SS, Jiang XY, Cui HY, Zhou TT, He Z, Feng H, Guo QQ, Song XY, Cao L. ATM at the crossroads of reactive oxygen species and autophagy.,2021, 17(12): 3080–3090.
[17] Yang J, Liu MM, Hong DC, Zeng MS, Zhang X. The paradoxical role of cellular senescence in cancer., 2021, 9: 722205.
[18] Omer A, Barrera MC, Moran JL, Lian XJ, Di Marco S, Beausejour C, Gallouzi IE. G3BP1 controls the senescence-associated secretome and its impact on cancer progression.,2020, 11(1): 4979.
[19] Picca A, Guerra F, Calvani R, Coelho-Junior HJ, Bossola M, Landi F, Bernabei R, Bucci C, Marzetti E. Generation and release of mitochondrial-derived vesicles in health, aging and disease.,2020, 9(5): 1440.
[20] Picca A, Lezza AMS, Leeuwenburgh C, Pesce V, Calvani R, Landi F, Bernabei R, Marzetti E. Fueling Inflamm- aging through mitochondrial dysfunction: mechanisms and molecular targets.,2017, 18(5): 993.
[21] Iske J, Seyda M, Heinbokel T, Maenosono R, Minami K, Nian YQ, Quante M, Falk CS, Azuma H, Martin F, Passos JF, Niemann CU, Tchkonia T, Kirkland JL, Elkhal A, Tullius SG. Senolytics prevent mt-DNA-induced inflam-mation and promote the survival of aged organs following transplantation.,2020, 11(1): 4289.
[22] Zapata HJ, Quagliarello VJ. The microbiota and microbiome in aging: potential implications in health and age-related diseases., 2015, 63(4): 776–781.
[23] Schütte K, Schulz C, Vilchez-Vargas R, Vasapolli R, Palm F, Simon B, Schomburg D, Lux A, Geffers R, Pieper DH, Link A, Malfertheiner P. Impact of healthy aging on active bacterial assemblages throughout the gastrointestinal tract., 2021, 13(1): 1966261.
[24] Kim KA, Jeong JJ, Yoo SY, Kim DH. Gut microbiota lipopolysaccharide accelerates inflamm-aging in mice., 2016, 16: 9.
[25] Sanders DJ, Inniss S, Sebepos-Rogers G, Rahman FZ, Smith AM. The role of the microbiome in gastrointestinal inflammation.,2021, 41(6): BSR20203850.
[26] DeJong EN, Surette MG, Bowdish DME. The gut microbiota and unhealthy aging: disentangling cause from consequence.,2020, 28(2): 180–189.
[27] Thevaranjan N, Puchta A, Schulz C, Naidoo A, Szamosi JC, Verschoor CP, Loukov D, Schenck LP, Jury J, Foley KP, Schertzer JD, Larché MJ, Davidson DJ, Verdú EF, Surette MG, Bowdish DME. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction., 2017, 21(4): 455–466.e4.
[28] Ghosh TS, Rampelli S, Jeffery IB, Santoro A, Neto M, Capri M, Giampieri E, Jennings A, Candela M, Turroni S, Zoetendal EG, Hermes GDA, Elodie C, Meunier N, Brugere CM, Pujos-Guillot E, Berendsen AM, De Groot L, Feskins EJM, Kaluza J, Pietruszka B, Bielak MJ, Comte B, Maijo-Ferre M, Nicoletti C, De Vos WM, Fairweather-Tait S, Cassidy A, Brigidi P, Franceschi C, O'Toole PW. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries., 2020, 69(7): 1218–1228.
[29] Guglielmetti S, Bernardi S, Del Bo’ C, Cherubini A, Porrini M, Gargari G, Hidalgo-Liberona N, Gonzalez- Dominguez R, Peron G, Zamora-Ros R, Winterbone MS, Kirkup B, Kroon PA, Andres-Lacueva C, Riso P. Effect of a polyphenol-rich dietary pattern on intestinal permeability and gut and blood microbiomics in older subjects: study protocol of the MaPLE randomised controlled trial., 2020, 20(1): 77.
[30] Mrityunjaya M, Pavithra V, Neelam R, Janhavi P, Halami PM, Ravindra PV. Immune-boosting, antioxidant and anti-inflammatory food supplements targeting pathogenesis of COVID-19.,2020, 11: 570122.
[31] Garrido A, Cruces J, Ceprián N, Vara E, de la Fuente M. Oxidative-inflammatory stress in immune cells from adult mice with premature aging., 2019, 20(3): 769.
[32] Saleh J, Peyssonnaux C, Singh KK, Edeas M. Mito-chondria and microbiota dysfunction in COVID-19 pathogenesis., 2020, 54: 1–7.
[33] Jauhari A, Baranov SV, Suofu Y, Kim J, Singh T, Yablonska S, Li F, Wang XM, Oberly P, Minnigh MB, Poloyac SM, Carlisle DL, Friedlander RM. Melatonin inhibits cytosolic mitochondrial DNA-induced neuroinfla-mmatory signaling in accelerated aging and neurodege-neration.,2020, 130(6): 3124–3136.
[34] Han B, Lin C-CJ, Hu G, Wang MC. ?Inside Out?– a dialogue between mitochondria and bacteria.,2019, 286(4): 630–641.
[35] Yang DZ, de Haan G. Inflammation and aging of hemato-poietic stem cells in their niche., 2021, 10(8): 1849.
[36] Walter D, Lier A, Geiselhart A, Thalheimer FB, Huntscha S, Sbotta MC, Moehrle B, Brocks D, Bayindir I, Kaschutnig P, Muedder K, Klein C, Jauch A, Schroeder T, Geiger H, Dick TP, Holland-Letz T, Schmezer P, Lane SW, Rieger MA, Essers MA, Williams DA, Trumpp A, Milsom MD. Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells., 2015, 520(7548): 549–552.
[37] Trowbridge JJ, Starczynowski DT. Innate immune pathways and inflammation in hematopoietic aging, clonal hematopoiesis, and MDS., 2021, 218(7): e20201544.
[38] Kovtonyuk LV, Fritsch K, Feng XM, Manz MG, Takizawa H. Inflamm-aging of hematopoiesis, hematopoietic stem cells, and the bone marrow microenvironment., 2016, 7: 502.
[39] Salminen A, Kaarniranta K, Kauppinen A. The role of myeloid-derived suppressor cells (MDSC) in the inflam-maging process., 2018, 48: 1–10.
[40] Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells.,2014, 505(7483): 327–334.
[41] Singh L, Brennan TA, Russell E, Kim JH, Chen QJ, Brad Johnson F, Pignolo RJ. Aging alters bone-fat reciprocity by shifting in vivo mesenchymal precursor cell fate towards an adipogenic lineage.,2016, 85: 29–36.
[42] Shafat MS, Oellerich T, Mohr S, Robinson SD, Edwards DR, Marlein CR, Piddock RE, Fenech M, Zaitseva L, Abdul-Aziz A, Turner J, Watkins JA, Lawes M, Bowles KM, Rushworth SA. Leukemic blasts program bone marrow adipocytes to generate a protumoral microe-nvironment.,2017, 129(10): 1320–1332.
[43] Gur-Cohen S, Itkin T, Chakrabarty S, Graf C, Kollet O, Ludin A, Golan K, Kalinkovich A, Ledergor G, Wong E, Niemeyer E, Porat Z, Erez A, Sagi I, Esmon CT, Ruf W, Lapidot T. Corrigendum: PAR1 signaling regulates the retention and recruitment of EPCR-expressing bone marrow hematopoietic stem cells.,2016, 22(4): 446.
[44] Lacava G, Laus F, Amaroli A, Marchegiani A, Censi R, Di Martino P, Yanagawa T, Sabbieti MG, Agas D. P62 deficiency shifts mesenchymal/stromal stem cell commit-ment toward adipogenesis and disrupts bone marrow homeostasis in aged mice., 2019, 234(9): 16338–16347.
[45] Stauder R, Valent P, Theurl I. Anemia at older age: etiologies, clinical implications, and management.,2018, 131(5): 505–514.
[46] Yacoub MF, Ferwiz HF, Said F. Effect of interleukin and hepcidin in anemia of chronic Diseases.,2020, 2020: 3041738.
[47] van Zeventer IA, de Graaf AO, Wouters HJCM, van der Reijden BA, van der Klauw MM, de Witte T, Jonker MA, Malcovati L, Jansen JH, Huls G. Mutational spectrum and dynamics of clonal hematopoiesis in anemia of older individuals., 2020, 135(14): 1161–1170.
[48] Mattiucci D, Maurizi G, Leoni P, Poloni A. Aging- and senescence-associated changes of mesenchymal stromal cells in myelodysplastic syndromes.2018, 27(5): 754–764.
[49] Warren JT, Link DC. Clonal hematopoiesis and risk for hematologic malignancy.,2020, 136(14): 1599– 1605.
[50] Mei Y, Zhao B, Basiorka AA, Yang J, Cao L, Zhang J, List A, Ji P. Age-related inflammatory bone marrow microe-nvironment induces ineffective erythropoiesis mimicking del(5q) MDS.,2018, 32(4): 1023–1033.
[51] Poloni A, Maurizi G, Mattiucci D, Amatori S, Fogliardi B, Costantini B, Mariani M, Mancini S, Olivieri A, Fanelli M, Leoni P. Overexpression of CDKN2B (p15INK4B) and altered global DNA methylation status in mesenchymal stem cells of high-risk myelodysplastic syndromes.,2014, 28(11): 2241–2244.
[52] He HQ, Xu PL, Zhang XF, Liao M, Dong QY, Cong TT, Tang BX, Yang XX, Ye MQ, Chang YJ, Liu WH, Wang XW, Ju ZY, Wang JW. Aging-induced IL27Ra signaling impairs hematopoietic stem cells., 2020, 136(2): 183–198.
[53] O'Connell RM, Rao DS. Microsized inflammaging protects stem cells., 2020, 135(25): 2204–2205.
[54] Grants JM, Wegrzyn J, Hui T, O'Neill K, Shadbolt M, Knapp DJHF, Parker J, Deng Y, Gopal A, Docking TR, Fuller M, Li J, Boldin M, Eaves CJ, Hirst M, Karsan A. Altered microRNA expression links IL6 and TNF-induced inflammaging with myeloid malignancy in humans and mice.,2020, 135(25): 2235–2251.
[55] Jaiswal S, Ebert BL. Clonal hematopoiesis in human aging and disease.,2019, 366(6465): eaan4673.
[56] Hu YC, Hu HC, Lin SY, Chen XM. The role of DNA hydroxymethylation in the regulation of atherosclerosis.,2020, 42(7): 632–640.胡穎楚, 胡豪暢, 林少沂, 陳曉敏. DNA羥甲基化調(diào)控動(dòng)脈粥樣硬化的研究進(jìn)展. 遺傳, 2020, 42(7): 632–640.
[57] Saul D, Kosinsky RL. Epigenetics of aging and aging- associated diseases.,2021, 22(1): 401.
[58] Hodjat M, Khan F, Saadat KASM. Epigenetic alterations in aging tooth and the reprogramming potential., 2020, 63: 101140.
[59] Mejia-Ramirez E, Geiger H, Florian MC. Loss of epigenetic polarity is a hallmark of hematopoietic stem cell aging., 2020, 29(R2): R248–R254.
Progress on inflamm-aging in hematologic diseases
Ziyan Liu, Ai Gao
With the increasing human life expectancy, the aging of the global population is intensifying, and the incidence of senile diseases is rising accordingly. Inflamm-aging refers to the phenomenon that the body's pro-inflammatory state increases with age. Studies have shown that inflamm-aging is related to cardiovascular and cerebrovascular diseases, neurodegenerative diseases, and osteoarthropathy, but its mechanism is still unclear, especially in blood system diseases. How systemic inflammation causes hematopoietic disorders through aging and then participates in the occurrence of hematological system diseases remains unclarified. This article reviews the pathogenesis of inflamm-aging, and the relationship between inflamm-aging and hematological diseases. It aims to reveal the possible mechanism of inflamm-aging in hematological diseases and provides a reference for the prevention and treatment of hematological diseases.
Inflamm-aging; hematopoietic dysfunction; hematological system diseases
2021-10-05;
2021-11-10
國家自然科學(xué)基金項(xiàng)目(編號(hào):81773397,82073520)資助[Supported by the National Natural Science Foundation of China (Nos. 81773397, 82073520)]
劉紫妍,本科在讀, 2016 級(jí)5年制預(yù)防醫(yī)學(xué)。E-mail: 18801197471@163.com
高艾,博士,教授,博士生導(dǎo)師,研究方向:環(huán)境因素致造血系統(tǒng)損傷的表觀遺傳機(jī)制。E-mail: gaoai428@ccmu.edu.cn
10.16288/j.yczz.21-261
2021/11/19 20:02:52
URI: https://kns.cnki.net/kcms/detail/11.1913.R.20211118.1142.002.html
(責(zé)任編委: 劉峰)