【摘要】 兒茶酚胺敏感性室性心動(dòng)過速是一種潛在的致死性心臟通道病,其特點(diǎn)是在運(yùn)動(dòng)或緊張的情況下持續(xù)室性心動(dòng)過速,多發(fā)病于青少年時(shí)期,臨床表現(xiàn)可為頭暈、心悸甚至猝死。兒茶酚胺敏感性室性心動(dòng)過速屬于常染色體遺傳,發(fā)病罕見,與編碼鈣通道的基因突變有關(guān),該突變可導(dǎo)致舒張期心肌細(xì)胞肌質(zhì)網(wǎng)的鈣泄露,導(dǎo)致去極化后延遲并觸發(fā)活性,從而誘發(fā)心律失常。目前兒茶酚胺敏感性室性心動(dòng)過速的治療方法主要包括生活方式的改變、藥物、植入式心臟復(fù)律除顫器、左側(cè)心交感神經(jīng)切除術(shù)手術(shù)以及基因治療,其中β受體阻滯劑是目前治療的基石。
【關(guān)鍵詞】 心動(dòng)過速,室性;兒茶酚胺類;基因;治療;綜述
【中圖分類號(hào)】 R 541.7 【文獻(xiàn)標(biāo)識(shí)碼】 A
Research Progress of Catecholaminergic Polymorphic Ventricular Tachycardia MAI Fei1,ZHOU Rong2
1.Shanxi Medical University Graduate School,Taiyuan 030000,China
2.Department of Cardiology,the Second Hospital of Shanxi Medical University,Taiyuan 030000,China
【Abstract】 Catecholaminergic polymorphic ventricular tachycardia is a potentially fatal cardiac channel disease. It is characterized by sustained ventricular tachycardia during exercise or stress. It occurs frequently in adolescence. The clinical manifestations may be dizziness,palpitation or even sudden death. It belongs to autosomal inheritance and is rare. It is related to a mutation in the gene encoding calcium channel,which can lead to calcium leakage in the sarcoplasmic reticulum of diastolic cardiomyocytes,delay depolarization and trigger activity,thus inducing arrhythmia. At present,the treatment methods of CPVT include lifestyle changes,drugs,implantable cardioverter defibrillator,Left cardiac sympathetic denervation and gene therapy,of which beta blockers are the cornerstone.
【Key words】 Tachycardia,ventricular;Catecholamines;Gene;Treatment;Review
兒茶酚胺敏感性室性心動(dòng)過速(catecholaminergic polymorphic ventricular tachycardia,CPVT)是以存在由運(yùn)動(dòng)或急性情緒反復(fù)觸發(fā)的雙向或多形性心動(dòng)過速為特征,尚未發(fā)現(xiàn)其心臟結(jié)構(gòu)異常的離子通道病。最早在1975年的病例報(bào)告中這樣描述,CPVT是一種高度惡性的遺傳性致心律失常疾病。CPVT患病率尚不完全明確,臨床表現(xiàn)癥狀從心悸、暈厥到猝死不等,男女患病率無明顯差異,但男性發(fā)生心臟事件的概率更高[1]。CPVT患者首發(fā)癥狀多在11~21歲,若有癥狀不予治療,40歲時(shí)的死亡率為30%~50%。常用有效藥物為β-受體阻滯劑。越來越多的證據(jù)表明左側(cè)心交感神經(jīng)切除術(shù)、植入式心臟復(fù)律除顫器以及基因治療在藥物難治性CPVT中是有益的。
1 CPVT的基因分型和基礎(chǔ)研究現(xiàn)況
1.1 CPVT1 CPVT1即由RyR2基因突變引起,為常染色體顯性遺傳,約占CPVT基因突變的55%[2]。RyR2基因編碼心肌鈣釋放通道,通過控制肌漿網(wǎng)鈣(Ca2+)的釋放,對(duì)心肌細(xì)胞的生理興奮-收縮耦合至關(guān)重要。PRIORI等[3]在2001年確定了人類第一個(gè)RyR2基因突變。研究至今,報(bào)道有超過160種的RyR2基因突變導(dǎo)致CPVT。在體內(nèi)RyR2-亞型由主要發(fā)生在4個(gè)熱點(diǎn)的錯(cuò)義突變引起:N-末端(CPVT1-Ⅰ,RyR2殘基:62-466)、中間段(CPVT1-Ⅱ,RyR2殘基:2246-2534)、C端(現(xiàn)為CPVT1-Ⅳ,RyR2殘基:4497-4959)以及hotspot-3(CPVT1-Ⅲ,RyR2殘基:3778-4201)。目前認(rèn)為突變導(dǎo)致舒張期肌漿網(wǎng)鈣釋放增加,腎上腺素刺激鈣進(jìn)一步釋放,導(dǎo)致去極化后延遲并觸發(fā)活性。隨著研究的深入,不斷有新的基因被發(fā)現(xiàn),最近KOHLI等[4]通過基因分析揭示了一個(gè)罕見的變異:RyR2第三個(gè)外顯子變異——p. Thr85Ile;STEPIEN-WOJNO等[5]研究顯示在17歲出現(xiàn)癥狀、20歲時(shí)經(jīng)歷心臟猝死的患者中發(fā)現(xiàn)了p. Arg420Gln變異。值得注意的是,RYR2基因突變并非CPVT所獨(dú)有,也可見于長(zhǎng)QT綜合征(long QT syndrome,LQTS),并且二者基因位置無明顯差異[6]。
1.2 CPVT2 CPVT2是由集鈣蛋白(Calsequestrin,CASQ2)基因突變引起,占2%~5%。2001年LAHAT等[7]報(bào)道聲明中7個(gè)相關(guān)的家庭中有一種常染色體隱性遺傳形式,該病位點(diǎn)被定位到第1p13-21染色體中。隨后不久在編碼心臟鈣序列蛋白的基因中發(fā)現(xiàn)了一個(gè)錯(cuò)義突變(CASQ2)。2016年在一個(gè)常染色體顯性遺傳的家庭中報(bào)道了新的CASQ2變異體(K180R)。對(duì)于常染色體顯性CPVT2,目前的假設(shè)是鈣序蛋白突變影響聚合發(fā)生的能力[8]。
1.3 CPVT3 CPVT3是由反式2,3烯酰輔酶A還原酶樣蛋白(trans 2,3 enoyl CoA reductase like protein,TECRL)基因突變引起的,人類TECRL含有12個(gè)外顯子,與TECRL基因純合突變相關(guān)。TECRL蛋白主要表達(dá)于心肌細(xì)胞內(nèi)質(zhì)網(wǎng),在細(xì)胞內(nèi)鈣平衡中起著重要作用。BHUIYAN等[9]在一項(xiàng)報(bào)道中將作為常染色體隱性性狀遺傳的第三種CPVT定位于染色體4q13.1。隨后,DEVALLA等[10]的一項(xiàng)研究,使用整個(gè)外顯子測(cè)序,在3個(gè)有臨床心律失常的患者中發(fā)現(xiàn)了TECRL基因的兩種不同變異,其機(jī)制尚未明確,有待進(jìn)一步研究。
1.4 CPVT4 CPVT4指CALM1基因的顯性突變。CALM1的突變首次在一個(gè)瑞典家庭中被發(fā)現(xiàn),該家庭有運(yùn)動(dòng)引起的室性心律失常、暈厥和猝死的病史[11]。3種不同的基因——CALM1、CALM2、CALM3-編碼相同的鈣調(diào)蛋白,分別定位在染色體14q32、2p21和19q13上。3個(gè)CALM基因的突變具有廣泛的影響,其基因編碼的鈣調(diào)蛋白與RyR2的結(jié)合抑制了肌質(zhì)網(wǎng)在舒張期的鈣釋放,而與L型Ca通道(L-type calcium channels,LTCC)的結(jié)合使通道失活。3種鈣調(diào)基因的突變還與特發(fā)性心室顫動(dòng)[12](idiopathic ventricular fibrillation,IVF)、LQTS[13]有關(guān)。
1.5 CPVT5 CPVT5主要與TRDN基因突變有關(guān),其編碼的Triadin是一種反式SR膜蛋白,與RyR2、鈣通道蛋白和Junctin形成復(fù)合物,以創(chuàng)建SR鈣釋放單元。2012年發(fā)現(xiàn)了與CPVT有關(guān)的第一個(gè)TRDN突變[14]。TRDN突變可通過受損的FKBP12.6-RyR2相互作用或減少CASQ2而引起CPVT[15]。
此外,CPVT還可能與KCNJ2基因的突變、Ank2基因突變有關(guān)[16]。
2 CPVT的臨床表現(xiàn)及診斷
CPVT最常見的首發(fā)癥狀為暈厥,可伴二便失禁、抽搐。典型的表現(xiàn)是4~12歲的兒童表現(xiàn)為與運(yùn)動(dòng)有關(guān)的突然暈厥或心臟驟停,通常與游泳有關(guān),男性的情況往往更危急。在部分患者中猝死可為首發(fā)癥狀,發(fā)病年齡越早預(yù)后越差。40歲未治療者的死亡率在30%~50%。
依據(jù)HRS/EHRA/APHPS 2013專家共識(shí)[17]建議,符合以下任意1條即可診斷為CPVT:(1)發(fā)病年齡lt;40歲,心臟結(jié)構(gòu)無異常,靜息心電圖無明顯異常,排除其他基礎(chǔ)疾病,由運(yùn)動(dòng)或情緒激動(dòng)誘發(fā)的雙向性室性心動(dòng)過速、多形性室性早搏或多形性室性心動(dòng)過速;(2)患者攜帶CPVT相關(guān)突變基因;(3)家屬無結(jié)構(gòu)性心臟病,同時(shí)表現(xiàn)為精神壓力或運(yùn)動(dòng)誘發(fā)的室性心動(dòng)過速;(4)年齡gt;40歲,冠狀動(dòng)脈正常、心臟結(jié)構(gòu)正常、心電圖正常,排除其他基礎(chǔ)疾病,由運(yùn)動(dòng)或情緒激動(dòng)誘發(fā)的雙向性室性心動(dòng)過速、多形性室性早搏或多形性室性心動(dòng)過速。
3 CPVT的治療
3.1 生活方式的改變 在HRS/EHRA/APHRS 2013專家共識(shí)推薦限制或避免緊張環(huán)境及競(jìng)技/激烈運(yùn)動(dòng)(Ⅰ類)[17]。有學(xué)者提出:常規(guī)運(yùn)動(dòng)可以通過降低鈣調(diào)蛋白依賴的蛋白激酶Ⅱ(Ca2+ calmodulin-dependent protein kinase Ⅱ,CaMK Ⅱ)的激活和藥物抑制來對(duì)抗糖尿病動(dòng)物模型中的RyR2功能障礙,這種激酶降低了CPVT1小鼠模型室性心律失常(ventricular arrhythmias,VA)的傾向[18]。在隨后的實(shí)驗(yàn)中也證明了常規(guī)運(yùn)動(dòng)訓(xùn)練(exercise training=ET)可以降低CPVT2小鼠模型中VA的傾向[19]。研究表明,如果患者是在一個(gè)全面的治療方案以及無癥狀的情況下,鍛煉可能減少心臟事件的發(fā)生[20]。總之,CPVT患者可以進(jìn)行適當(dāng)鍛煉,可能減少肥胖、糖尿病甚至抑郁的發(fā)生。
3.2 藥物治療 β受體阻滯劑在HRS/EHRA/APHPS 2013專家共識(shí)[17]、AHA/ACC/HRS 2017指南[21]中被作為藥物治療CPVT的Ⅰ類推薦。在CPVT中,β-受體阻滯劑的作用機(jī)制可能通過抑制SOICR和間接衰減Na+/Ca2+信號(hào)與RyR2直接相關(guān)。β-受體阻滯劑是CPVT患者治療的基礎(chǔ),不僅適用于出現(xiàn)癥狀者,對(duì)于無癥狀者、妊娠期、產(chǎn)后也應(yīng)考慮使用[22]。但β-受體阻滯劑并不能對(duì)所有患者有效,如在β-受體阻滯劑治療8年的隨訪中,近40%的患者經(jīng)歷了心臟事件[23]。β-受體阻滯劑引起心臟事件的主要原因是藥物依從性差,劑量不正確或不足。盡管沒有對(duì)不同類型的β-受體阻滯劑的療效進(jìn)行比較,有數(shù)據(jù)表明非選擇性β-受體阻滯劑納多洛爾可能優(yōu)于其他類型的β-受體阻滯劑[24]。
鈣通道阻滯劑(CCB)主要是指維拉帕米,有研究表明,維拉帕米對(duì)一些CPVT患者產(chǎn)生了有益的影響[25]。一項(xiàng)以CASQ2基因突變小鼠為研究對(duì)象的實(shí)驗(yàn)結(jié)果表明,CCB可減少兒茶酚胺誘發(fā)的室性心律失常[26]。然而,維拉帕米的長(zhǎng)期療效仍有爭(zhēng)議[27]。
氟卡尼:HRS/EHRA/APHPS 2013專家共識(shí)推薦在β-受體阻滯劑使用后仍有暈厥或多態(tài)/雙向室性心動(dòng)過速的情況下使用(Ⅱa)[17]。氟卡尼的作用除了已知的鈉通道(NaV1.5)阻斷效應(yīng)外,RyR2有額外的直接阻斷效應(yīng),然而具體機(jī)制尚不明確。如果運(yùn)動(dòng)應(yīng)激試驗(yàn)中的心律失??刂撇煌耆瑒t除β-受體阻滯劑外還應(yīng)考慮氟卡尼[28]。WANGüEMERT PéREZ等[29]從來自7個(gè)家庭174例基因型陽(yáng)性CPVT患者的隊(duì)列研究中得出結(jié)論,氟卡尼減少臨床事件、運(yùn)動(dòng)產(chǎn)生的室性心動(dòng)過速以及植入式心臟復(fù)律除顫器(implantable cardioverter defibrillator,ICD)電擊的發(fā)生,并且耐受性好。總之,氟卡尼與β-受體阻滯劑的聯(lián)合治療比最大耐受的β-受體阻滯劑治療更有效地抑制CPVT患者的心臟事件。氟卡尼單藥治療的數(shù)據(jù)較少,目前常與β-受體阻滯劑聯(lián)合應(yīng)用,減少心律失常的發(fā)生。
3.3 ICD HRS/EHRA/APHPS 2013專家共識(shí)[17]、AHA/ACC/HRS 2017指南[21]中將ICD作為Ⅰ類推薦,對(duì)于心臟驟停、復(fù)發(fā)性暈厥患者,建議植入ICD。盡管ICD的使用頻率較高,但I(xiàn)CD的治療效果有限。在一項(xiàng)綜合53項(xiàng)研究、1 429例患者的綜合回顧中,35.2%的患者使用了ICD,只有大約一半的患者接受了適當(dāng)電擊,能夠有效地終止心律失常,20.8%的患者經(jīng)歷了至少1次不適當(dāng)?shù)碾姄簦?9.6%的患者經(jīng)歷了心律失常風(fēng)暴,其中1.4%的患者死亡[30]。ICD植入可能有更高的風(fēng)險(xiǎn),不僅因?yàn)椴l(fā)癥,如不適當(dāng)?shù)臎_擊、設(shè)備感染,并且電風(fēng)暴事件也較高(20%),最終可能有致命危險(xiǎn)。此外,提高患者藥物依從性如β-受體阻滯劑、氟卡因以及左側(cè)心交感神經(jīng)切除術(shù)(left cardiac sympathetic denervation,LCSD)可減少ICD沖擊。故此種方案應(yīng)權(quán)衡利弊,充分與患者及其家屬溝通后共同商議決定是否置入ICD。
3.4 左側(cè)心交感神經(jīng)切除術(shù)(left cardiac sympathetic denervation,LCSD)HRS/EHRA/APHPS 2013專家共識(shí)[17]、AHA/ACC/HRS 2017指南[21]中將LCSD作為Ⅰ類推薦。2019年發(fā)表了第一項(xiàng)研究旨在調(diào)查L(zhǎng)CSD在CPVT患者中的有效性研究:SGRò等[31]通過對(duì)647例患者進(jìn)行分析得出,LCSD后大多數(shù)CPVT患者未經(jīng)歷心臟事件。目前越來越多的證據(jù)也表明LCSD可減少CPVT患者心臟事件的發(fā)生率,其對(duì)藥物難治性以及ICD多次不適當(dāng)放電者是有益的。
3.5 基因治療 基因檢測(cè)是診斷CPVT患者及其家庭成員疑似CPVT的有效工具,從而促進(jìn)癥狀前診斷,適當(dāng)咨詢和啟動(dòng)預(yù)防性阻滯療法的發(fā)展。在CPVT CASQ2基因敲除小鼠模型中首次觀察到氟卡尼的療效,這一發(fā)現(xiàn)成功地治療了2名受嚴(yán)重影響的患者[32]。這些均為基因治療提供了有效的基礎(chǔ)。
3.6 導(dǎo)管射頻消融術(shù) 室上性快速心律失常的發(fā)生在CPVT患者中并不罕見。KAWADA等[33]報(bào)道了1例43歲女性CPVT患者,伴有藥物難治性心房快速心律失常,給予導(dǎo)管射頻消融術(shù)后隨訪1年,未出現(xiàn)房性心動(dòng)過速、房顫及室性心動(dòng)過速,可能成為藥物難治性患者的輔助治療。
綜上所述,CPVT由于發(fā)病率低、表現(xiàn)隱匿、診斷困難,猝死率極高,對(duì)社會(huì)及家庭帶來很大的損害。CPVT自1975年首次提出至今,其發(fā)病機(jī)制經(jīng)過不斷研究,使臨床有了基礎(chǔ)認(rèn)識(shí),且不斷發(fā)現(xiàn)了新的致病基因,治療方法也在不斷研究、完善,而基因治療也成為研究的熱點(diǎn)。但對(duì)于CPVT的具體發(fā)病機(jī)制研究仍不充分,致病基因尚未完全發(fā)現(xiàn),治療方案并不能對(duì)所有患者達(dá)到理想效果,故需要進(jìn)一步的研究和完善。
參考文獻(xiàn)
KIM C,ARONOW W,DUTTA T,et al. Catecholaminergic Polymorphic Ventricular Tachycardia[J]. Cardiology in Review,2020,28(6):325-331.
PéREZ-RIERA A,BARBOSA-BARROS R,DE REZENDE BARBOSA M,et al. Catecholaminergic polymorphic ventricular tachycardia,an update[J]. Annals of Noninvasive Electrocardiology,2018,23(4):e12512.
PRIORI S,NAPOLITANO C,TISO N,et al. Mutations in the cardiac ryanodine receptor gene(hRyR2)underlie catecholaminergic polymorphic ventricular tachycardia[J]. Circulation,2001,103(2):196-200.
KOHLI U,HASSAN R,LAWRENCE D. Rare RYR2 p. Thr85Ile variant is associated with catecholaminergic polymorphic ventricular tachycardia[J]. Journal of Electrocardiology,2020,62:134-137.
STEPIEN-WOJNO M,PONI?SKA J,BIERNACKA E,et al. RYR2A Recurrent Exertional Syncope and Sudden Cardiac Arrest in a Young Athlete with Known Pathogenic p. Arg420Gln Variant in the Gene[J]. Diagnostics(Basel,Switzerland),2020,10(7).
MIYATA K,OHNO S,ITOH H,et al. Bradycardia is a Specific Phenotype of Catecholaminergic Polymorphic Ventricular Tachycardia Induced by RYR2 Mutations[J]. Internal Medicine,2018,57(13):1813-1817.
LAHAT H,PRAS E,OLENDER T,et al. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel[J]. American Journal of Human Genetics,2001,69(6):1378-1384.
WLEKLINSKI M,KANNANKERIL P,KNOLLMANN B. Molecular and tissue mechanisms of catecholaminergic polymorphic ventricular tachycardia[J]. J Physiolo,2020,598(14):2817-2834.
BHUIYAN Z,HAMDAN M,SHAMSI E,et al. A novel early onset lethal form of catecholaminergic polymorphic ventricular tachycardia maps to chromosome 7p14-p22[J]. Journal of Cardiovascular Electrophysiology,2007,18(10):1060-1066.
DEVALLA H,GéLINAS R,ABURAWI E,et al. TECRL,a new life-threatening inherited arrhythmia gene associated with overlapping clinical features of both LQTS and CPVT[J]. EMBO,2016,8(12):1390-1408.
NYEGAARD M,OVERGAARD M,S?NDERGAARD M,et al. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death[J]. American Journal of Human Genetics,2012,91(4):703-712.
MARSMAN R,BARC J,BEEKMAN L,et al. A mutation in CALM1 encoding calmodulin in familial idiopathic ventricular fibrillation in childhood and adolescence[J]. Journal of the American College of Cardiology,2014,63(3):259-266.
JIMéNEZ-JáIMEZ J,PALOMINO DOZA J,ORTEGA á,et al. Calmodulin 2 Mutation N98S is associated with unexplained cardiac arrest in infants due to low clinical penetrance electrical disorders[J]. PloS One,2016,11(4):e0153851.
ROUX-BUISSON N,CACHEUX M,F(xiàn)OUREST-LIEUVIN A,et al. Absence of triadin,a protein of the calcium release complex,is responsible for cardiac arrhythmia with sudden death in human[J]. Human Molecular Genetics,2012,21(12):2759-2767.
ROORYCK C,KYNDT F,BOZON D,et al. New Family With Catecholaminergic Polymorphic Ventricular Tachycardia Linked to the Triadin Gene[J]. Journal of Cardiovascular Electrophysiology,2015,26(10):1146-1150.
VAN ERT H,MCCUNE E,ORLAND K,et al. KCNJ2Flecainide treats a novel mutation associated with Andersen-Tawil syndrome[J]. Heart Rhythm,2017,3(2):151-154.
PRIORI S,WILDE A,HORIE M,et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes:document endorsed by HRS,EHRA,and APHRS in May 2013 and by ACCF,AHA,PACES,and AEPC in June 2013[J]. Heart Rhythm,2013,10(12):1932-1963.
LIU N,RUAN Y,DENEGRI M,et al. Calmodulin kinase Ⅱ inhibition prevents arrhythmias in RyR2(R4496C+/-)mice with catecholaminergic polymorphic ventricular tachycardia[J]. Journal of Molecular and Cellular Cardiology,2011,50(1):214-222.
KURTZWALD-JOSEFSON E,HOCHHAUSER E,KATZ G,et al. Exercise training improves cardiac function and attenuates arrhythmia in CPVT mice[J]. Journal of Applied Physiology,2012,113(11):1677-1683.
OSTBY S,BOS J,OWEN H,et al. Competitive sports participation in patients with catecholaminergic polymorphic ventricular tachycardia:a single center's early experience[J]. JACC,2016,2(3):253-262.
AL-KHATIB S,STEVENSON W,ACKERMAN M,et al. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death:Executive Summary:a Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society[J]. Journal of the American College of Cardiology,2018,72(14):1677-1749.
CHEUNG C,LIEVE K,ROSTON T,et al. Pregnancy in Catecholaminergic Polymorphic Ventricular Tachycardia[J]. JACC,2019,5(3):387-394.
VAN DER WERF C,ZWINDERMAN A,WILDE A. Therapeutic approach for patients with catecholaminergic polymorphic ventricular tachycardia:state of the art and future developments[J]. Europace,2012,14(2):175-183.
LEREN I,SABERNIAK J,MAJID E,et al. Nadolol decreases the incidence and severity of ventricular arrhythmias during exercise stress testing compared with β1-selective β-blockers in patients with catecholaminergic polymorphic ventricular tachycardia[J]. Heart Rhythm,2016,13(2):433-440.
ROSSO R,KALMAN J,ROGOWSKI O,et al. Calcium channel blockers and beta-blockers versus beta-blockers alone for preventing exercise-induced arrhythmias in catecholaminergic polymorphic ventricular tachycardia[J]. Heart Rhythm,2007,4(9):1149-1154.
KATZ G,KHOURY A,KURTZWALD E,et al. Optimizing catecholaminergic polymorphic ventricular tachycardia therapy in calsequestrin-mutant mice[J]. Heart Rhythm,2010,7(11):1676-1682.
ALCALAI R,WAKIMOTO H,ARAD M,et al. Prevention of ventricular arrhythmia and calcium dysregulation in a catecholaminergic polymorphic ventricular tachycardia mouse model carrying calsequestrin-2 mutation[J]. Journal of Cardiovascular Electrophysiology,2011,22(3):316-324.
PRIORI S,BLOMSTR?M-LUNDQVIST C,MAZZANTI A,et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death:the Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology(ESC). Endorsed by:Association for European Paediatric and Congenital Cardiology(AEPC)[J]. European Heart Journal,2015,36(41):2793-2867.
WANGüEMERT PéREZ F,HERNáNDEZ AFONSO J,GROBA MARCO M,et al. Flecainide Reduces Ventricular Arrhythmias in Patients with Genotype RyR2-positive Catecholaminergic Polymorphic Ventricular Tachycardia[J]. Revista Espanola De Cardiologia,2018,71(3):185-191.
ROSTON T,JONES K,HAWKINS N,et al. Implantable cardioverter-defibrillator use in catecholaminergic polymorphic ventricular tachycardia:a systematic review[J]. Heart Rhythm,2018,15(12):1791-1799.
SGRò A,DRAKE T,LOPEZ-AYALA P,et al. Left cardiac sympathetic denervation in the management of long QT syndrome and catecholaminergic polymorphic ventricular tachycardia:a meta-regression[J]. Congenital Heart Disease,2019,14(6):1102-1112.
WATANABE H,CHOPRA N,LAVER D,et al. Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans[J]. Nature Medicine,2009,15(4):380-383.
KAWADA S,MORITA H,WATANABE A,et al. Radiofrequency catheter ablation for drug-refractory atrial tachyarrhythmias in a patient with catecholaminergic polymorphic ventricular tachycardia:a case report[J]. Journal of Cardiology Cases,2019,19(1):36-39.
(本文編輯:毛亞敏)