劉 龍, 張樹明,2*, 王利玲,3, 張 鑫,2, 歐陽軍勇, 夏寅初, 吳志春,2
相山鈾礦田北部花崗斑巖黑云母及綠泥石礦物化學特征與地質(zhì)意義
劉 龍1, 張樹明1,2*, 王利玲1,3, 張 鑫1,2, 歐陽軍勇1, 夏寅初1, 吳志春1,2
(1. 東華理工大學核資源與環(huán)境國家重點實驗室, 江西南昌?330013; 2. 東華理工大學放射性地質(zhì)與勘探技術國防重點學科實驗室, 江西南昌?330013; 3. 汕尾市技工學校, 廣東汕尾?516600)
相山鈾礦田為中國最大的火山巖型鈾礦田, 其中北部花崗斑巖型鈾礦床資源儲量占總儲量的36.65%。雖然前人對相山礦田北部花崗斑巖進行了系統(tǒng)研究, 但是關于花崗斑巖中礦物化學研究較為薄弱。本次研究運用電子探針技術對相山北部花崗斑巖中黑云母及綠泥石進行了礦物化學分析, 并探討了成巖成礦意義。結果表明: (1)相山北部產(chǎn)鈾花崗斑巖黑云母為鐵質(zhì)黑云母?;◢彴邘r巖漿結晶溫度為721~753 ℃, 平均737 ℃, 氧逸度lg(O2)為?14.8 ~ ?15.7, 形成壓力為112~147 MPa, 侵位結晶深度為4.1~5.4 km。巖石成因類型為A型花崗巖, 形成于板內(nèi)拉張構造環(huán)境, 物質(zhì)來源于上地殼部分熔融; (2)相山北部綠泥石為蠕綠泥石, 屬于富鐵綠泥石, 形成于還原環(huán)境。綠泥石形成溫度為230~271 ℃, 平均值為258 ℃, 屬于中溫熱液作用范圍; (3)花崗斑巖中鈾的載體主要為黑云母包體中含鈾副礦物。礦前期, 熱液流體交代黑云母形成綠泥石, 使得黑云母內(nèi)含鈾副礦物中的鈾活化轉移為分散吸附狀態(tài)的鈾, 被綠泥石等礦物吸附于礦物晶格表面或礦物裂隙, 為成礦期熱液提供了鈾源。
黑云母; 綠泥石; 花崗斑巖; 礦物化學特征; 成巖成礦; 相山北部
黑云母是花崗質(zhì)巖石中常見的鐵鎂質(zhì)礦物, 其既可以形成于侵入體結晶過程, 也可以形成于巖漿熱液蝕變過程[1–2]。黑云母的結構和化學成分對巖漿和熱液活動的溫度、壓力、酸堿度、氧逸度、鹵素含量和氧化還原狀態(tài)等物理化學性質(zhì)非常敏感, 因此, 黑云母的化學成分可以很好地記錄寄主巖漿固結成巖不同的地質(zhì)環(huán)境和物理化學條件[3–7]。黑云母由于其化學成分特征能夠反演巖漿起源、巖石成因、構造環(huán)境、成巖物理化學條件、后期熱液作用及成礦物質(zhì)的信息, 已廣泛應用于巖漿性質(zhì)、成礦過程等方面的研究[8–11]。綠泥石化為鈾的還原富集提供了有利的地球化學環(huán)境, 因此常被用于鈾礦化找礦標志。研究表明, 綠泥石的形成條件與鈾礦床關系密切[12–16], 研究綠泥石礦物化學特征有助于指導鈾礦的勘查工作。
相山鈾礦田為我國最大的火山巖型鈾礦田, 已發(fā)現(xiàn)的鈾礦床不均衡地分布于西部火山熔巖型成礦帶和北部花崗斑巖成礦帶。前人對北部花崗斑巖開展了年代學、地球化學、成因機制及其與成礦作用關系等方面的研究, 并取得了一系列科研成果[17–20], 但關于花崗斑巖中黑云母及綠泥石礦物化學方面研究較為薄弱, 尤其是對黑云母及綠泥石(黑云母假象型綠泥石, 下同)的礦物化學成分及其與鈾礦的關系缺乏關聯(lián)性研究。因此, 本次研究擬選擇相山鈾礦田北部產(chǎn)鈾花崗斑巖, 利用電子探針對黑云母及綠泥石進行系統(tǒng)的礦物化學成分研究, 探討黑云母及綠泥石的地質(zhì)意義。
相山火山盆地大地構造上位于贛杭構造帶中段, 接近于揚子板塊與華夏板塊的拼接帶。盆內(nèi)主要出露早白堊世酸性火山侵入雜巖, 其次為青白口系神山組、庫里組和上施組-淺變質(zhì)巖。其中, 青白口系構成本區(qū)變質(zhì)基底, 中、新生界構成盆地蓋層[21](圖1)。相山火山活動具有明顯的旋回性和多階段的特征。根據(jù)巖性亞相在時空上的分布規(guī)律, 相山早白堊世火山活動分為兩個亞旋回。第一個亞旋回由打鼓頂組構成, 總體處于相山火山盆地初期階段。第一火山旋回之后, 火山活動進入短暫休眠。隨后, 開始第二亞旋回火山活動, 形成了鵝湖嶺組火山巖。火山活動晚期, 巖漿沿火山環(huán)帶、放射性斷裂破碎帶上侵形成了花崗斑巖[21]。相山北部花崗斑巖鋯石U-Pb年齡平均為136~132 Ma[22–25], 為火山第二旋回晚期產(chǎn)物, 出露于沙洲、游坊、巴泉、橫澗和云際等地, 大致自內(nèi)向外可分為3層環(huán)狀巖墻, 即游坊花崗斑巖巖墻、云際-巴泉-橫澗花崗斑巖巖墻和沙洲花崗斑巖巖墻(圖1)。
樣品分別采自相山北部橫澗、游坊、沙洲和云際花崗斑巖體, 遠離礦體中心, 具體采樣位置見圖1。相山礦田北部花崗斑巖顏色為肉紅色或灰白色, 斑狀結構, 塊狀構造(圖2a, 圖2b)。斑晶主要組成礦物為鉀長石(25%~30%)、斜長石(10%~20%)、石英(15%)和黑云母(5%)。斜長石斑晶自形半自形, 偶見斜長石較強蝕變, 發(fā)生絹云母化。局部見方解石, 發(fā)育聚片雙晶, 高級白干涉色(圖2c)。黑云母斑晶呈自形-半自形鱗片狀, 部分黑云母發(fā)育綠泥石化(圖2d), 常包裹鋯石、磷灰石和磁鐵礦等礦物, 在鋯石邊部發(fā)育放射性暈圈(圖2e), 系由放射性元素釋放的α粒子造成黑云母晶格破壞所致, 自形柱狀磷灰石展布于黑云母邊部(圖2f)。綠泥石由黑云母蝕變而成(圖2d), 正交偏光鏡下為墨水藍的干涉色。巖石基質(zhì)多為隱晶質(zhì), 礦物成分與斑晶相同。
前人研究表明, 相山鈾礦田存在兩種綠泥石: 一種為黑云母或長石蝕變交代的面型分布綠泥石, 分布于蝕變圍巖中, 形成溫度為中溫; 另一種為充填長石、石英等顆粒及基質(zhì)裂隙的填隙型綠泥石, 分布于近礦中心部位, 與鈾礦物緊密共生, 形成溫度為中低溫[26]。本次研究的綠泥石呈面式展布, 為黑云母蝕變交代形成, 為礦前期的蝕變產(chǎn)物。
黑云母及綠泥石化學成分分析在東華理工大學核資源與環(huán)境國家重點實驗室中完成。儀器型號為JEOXJXA-8100M, 工作條件是: 加速電壓15 kV, 加速電流20 nA, 束斑大小為1~2 μm, 采用ZAF方法(原子序數(shù)校正因子、X射線吸收校正因子和X射線熒光校正因子)進行數(shù)據(jù)修正。測試過程按照硅酸鹽電子探針定量分析國家標準(GB/T 1567—2002)進行。采用林文蔚等[27]的待定陽離子數(shù)計算方法計算黑云母的Fe2+和Fe3+, 在此基礎上, 以22個氧原子數(shù)計算黑云母的陽離子數(shù)及部分參數(shù)。所有綠泥石結構式采用28個氧原子標準計算。盡管電子探針無法檢測礦物中Fe3+的含量, 但是綠泥石礦物中Fe3+含量一般小于總鐵含量的5%[28], 因此, 在綠泥石的離子計算當中, 近似把全鐵代表Fe2+含量。分析結果見表1和表2。
相山礦田北部花崗斑巖中的黑云母SiO2含量變化于33.12%~35.20%之間, TiO2含量變化于4.90%~5.71%之間, Al2O3含量變化于12.91~13.92%之間, FeOT含量變化于26.19%~28.63%之間, MnO含量變化于0.31%~0.48%之間, MgO含量變化于6.16%~7.41%之間, CaO含量變化于0.00%~0.13%之間, Na2O含量變化于0.20%~0.41%之間, K2O含量變化于8.84%~ 9.47%之間。黑云母在微觀尺度上往往不均勻, 且顆粒通常較小, 使得黑云母很難像人工材料那樣進行氟的化學分析。鑒于氟的地質(zhì)意義, 故本次研究采用其他學者黑云母的氟含量進行分析(0.49~0.93%)[29]。Fe2+/(Fe2++Mg)比值均勻一致是氧化態(tài)巖漿的重要標志。從表1可知, 相山北部花崗斑巖的Fe2+/(Fe2++Mg)比值變化范圍小(0.65~0.72), 較均勻一致, 表明其未受后期流體改造作用影響[30]。
圖1 相山地區(qū)花崗斑巖分布簡圖(據(jù)文獻[21]修改)
1–第四系黏土; 2–上白堊統(tǒng)砂巖、砂礫巖; 3–鵝湖嶺組碎斑熔巖; 4–鵝湖嶺組晶屑凝灰?guī)r、砂礫巖; 5–打鼓頂組流紋英安巖; 6–打鼓頂組砂巖、熔結凝灰?guī)r; 7–上三疊統(tǒng)石英砂巖、頁巖; 8–中元古界片巖、千枚巖; 9–加里東期花崗巖; 10–花崗斑巖; 11–斷裂; 12–取樣位置。
1–Quarternary clay; 2–Upper-Cretaceous sandstone and conglomerate; 3–cataclastlava from Ehuling Formation; 4–crystal tuff from Ehuling Formation; 5–rhyodacite from Daguding Formation; 6–ignimbrite and sandstone from Daguding Formation; 7–Triassic sandstone; 8–mesoproterozoic metamorphic rock; 9–Caledonian granite; 10–Xiangshan granite-porphyry; 11–main fractures; 12–sampling locations.
圖2 花崗斑巖手標本(a, b)黑云母及綠泥石顯微照片(c, d, e, f)
Pl–斜長石; Q–石英; Bt–黑云母; Chl–綠泥石; Cb–碳酸鹽礦物; Kfs–鉀長石; Cal–方解石; Ser–絹云母。
表1 花崗斑巖中黑云母的電子探針測試結果(%)
(續(xù)表1)
表2 花崗斑巖中綠泥石的電子探針分析結果(%)和計算參數(shù)
注:001為綠泥石面網(wǎng)間距。
按照成因分類, 黑云母分為巖漿黑云母和熱液黑云母。礦物化學性質(zhì)方面能夠有效區(qū)分巖漿黑云母和熱液黑云母。傅金寶[31]通過整理中國斑巖銅礦中黑云母的數(shù)據(jù), 得出巖漿黑云母具有高Ti低Al的特點,(TiO2)>3%,(Al2O3)<15%; 熱液新生黑云母則低Ti高Al,(TiO2)<3%,(Al2O3)>15%。相山礦田北部花崗斑巖中黑云母TiO2含量為4.90%~5.71% (>3%), Al2O3含量變化于12.91~13.92%(<15%)之間, 符合巖漿黑云母特征, 因而其化學成分可以用來探討相山北部花崗斑巖形成的物理化學條件及成巖過程。依據(jù)Mg、Fe3++Ti和Fe2++Mn可以進行黑云母分類[32], 相山北部花崗斑巖中的黑云母樣品落在鐵質(zhì)黑云母區(qū)域, 屬于鐵質(zhì)黑云母(圖3a)。
綠泥石SiO2含量變化于23.61%~28.56%之間, TiO2含量變化于0.02%~1.98%之間, Al2O3含量變化于18.32~23.55%之間, FeOT含量變化于33.3%~46.22%之間, MnO含量變化于0.45%~1.60%之間, MgO含量變化于5.42%~9.96%之間, CaO含量變化于0%~ 0.42%之間, Na2O和K2O含量分別為0%~0.07%和0%~1.54% (表2)。為了判斷綠泥石成分是否存在混染, 以(Na2O+K2O+CaO)質(zhì)量分數(shù)小于0.5%作為是否存在混染的判別標準進行數(shù)據(jù)剔除[33], 剔除XS15-5-2-1(1.68)、XS15-5-3-1(0.63)、XS15-5-4-1(1.34)、XS15-7-1-1(1.62)和XS15-9-1-1(0.57)。從Si-(Fe2++Fe3+)圖解(圖3b)可知, 樣品集中投影點均分布于蠕綠泥石, 屬于相對富鐵綠泥石。
黑云母中Ti含量對溫度極其敏感, 因此, Ti含量能夠有效估算火成巖和變質(zhì)巖中黑云母的形成溫度[34]。Henry[7]得出變泥質(zhì)巖中黑云母Ti含量與溫度、Mg的經(jīng)驗公式, 其溫度計算公式如下。
式中,=4.6482×10?9; 基于22個氧原子,Mg=0.275~ 1.000; Ti=0.04~0.70。近年來, 這一經(jīng)驗公式也擴展到斑巖系統(tǒng)和花崗巖體有關的巖漿黑云母中, 并取得了良好的應用效果[8–11,35–36]。研究區(qū)黑云母Mg= 0.28~0.35, Ti=0.52~0.58, 滿足公式要求, 本次研究利用式(1)計算相山北部花崗斑巖黑云母形成溫度為721~753 ℃, 平均737 ℃, 該結果與Ti-Mg/(Fe+Mg)圖解(圖4)結果大致相當。
圖3 黑云母分類圖解(a, 據(jù)文獻[32])和綠泥石(b, 據(jù)文獻[28])分類圖解
Fig.3 Classified diagrams of biotite from the granite porphyries(a) and chlorites(b) from the granite porphyries
圖4 黑云母Ti-Mg/(Mg+Fe) (據(jù)文獻[7]修改)
黑云母的全鋁含量與花崗巖的固結壓力具有很好的正相關性, 可以用全鋁含量估算固結壓力, 從而進一步估算侵位深度, 其計算公式見文獻[37], 本次研究計算的相山北部花崗斑巖形成壓力為112~147 MPa, 侵位深度為4.1~5.4 km。
用與磁鐵礦、鉀長石共生的黑云母的Fe3+、Fe2+和Mg2+原子數(shù)分數(shù)能夠估算黑云母結晶時的氧逸度, 同時聯(lián)合基于黑云母穩(wěn)定度的log(O2)-圖解定向估算巖漿氧逸度[3], 得到了廣泛應用。研究區(qū)黑云母與磁鐵礦、鉀長石、石英共生現(xiàn)象較為常見, 符合計算要求。在黑云母Fe3+-Fe2+-Mg2+三角圖解(圖5a)和lg(O2)-圖解(圖5b)中, 相山礦田北部花崗斑巖位于Ni-NiO緩沖劑與Fe2SiO2-SiO2-Fe3O4緩沖線之間。根據(jù)(H2O)=207.0 MPa條件下花崗巖中黑云母的lg(O2)-t圖解, 結合黑云母穩(wěn)定度(100×Fe2+/(F2++Mg))、Fe3+-F2+-Mg圖解和Ti-Mg/(Mg+Fe)圖解, 估算得出花崗斑巖巖漿體系氧逸度lg(O2)大致為?14.8 ~?15.7。
本次分析的綠泥石均由黑云母蝕變而來, 黑云母蝕變成的綠泥石化學成分既有黑云母的特征, 又有很大的變化。由表1和表2可知: (1) 氟在黑云母中含量為0.43%~0.93%, 綠泥石中低于檢測值, 表明氟在蝕變流體交代黑云母形成綠泥石過程中被帶出; (2) SiO2含量明顯減少, 說明Si受不同礦物晶體基本性質(zhì)的制約; (3) TiO2含量降低, 與綠泥石化過程中AlIV替換Ti、金紅石和鈦鐵氧化物析出有關; (4) Al2O3與MgO含量變化小, 可能繼承于黑云母; (5) FeO含量明顯增加, 反映綠泥石的Fe除了繼承黑云母中的Fe以外, 還有一部分來自外部富Fe蝕變流體, 說明綠泥石可能是在酸性和還原性的流體環(huán)境下形成[38]; (6) K2O幾乎丟失, 從而造成蝕變交代流體中鉀含量升高。
在只有電子探針數(shù)據(jù)的情況下, 根據(jù)Rausell- Colom.[39]提出, 后經(jīng)Nieto[40]修正的方法, 可將探針數(shù)據(jù)計算綠泥石面網(wǎng)間距001, 計算公式如下。
式中, d001是綠泥石面網(wǎng)間距, N(AlIV)是28個氧原子計算的綠泥石Al四價陽離子數(shù), N(Fe2+)是28個氧原子計算的綠泥石Fe二價陽離子數(shù)。根據(jù)Battaglia[41]提出的式(3)進行綠泥石溫度的計算。
HM–赤鐵礦-磁鐵礦緩沖劑; NNO–Ni-NiO緩沖劑; QFM–鐵橄欖石-磁鐵礦緩沖劑。
HM–hematite-magnetite buffer; NNO–Ni-NiO buffer; QFM–fayalite-magnetite buffer.
根據(jù)式(2)和式(3)計算, 相山礦田北部綠泥石的形成溫度為259.0~278.3 ℃, 平均值為264.7 ℃, 屬于中低溫熱液蝕變范圍, 與相山北部云際鈾礦床成礦前期黑云母假象型綠泥石形成溫度241 ℃基本一致[42]。
綠泥石的形成過程受多種因素制約, 如溫度、壓力、流體和巖石化學成分等。研究表明, 綠泥石Fe/(Fe+Mg)比值變化與氧逸度有關, 越還原, Fe/(Fe+Mg)比值越大[43–44]。由表2可知, 相山北部綠泥石Fe/(Fe+Mg)比值為0.69~0.81, 均值為0.73, 表明其形成時熱液流體具有還原性質(zhì)。Inous[45]認為, 在脈狀礦床的熱液蝕變中, 低PH、低氧逸度環(huán)境有利于鎂質(zhì)綠泥石形成; 而相對還原環(huán)境有利于富鐵綠泥石形成。研究區(qū)綠泥石為鮞綠泥石, 屬于富鐵綠泥石, 表明其形成于還原環(huán)境。綜上所述, 相山北部綠泥石形成于中溫、酸性和還原的環(huán)境。
黑云母的化學成分與寄主巖石的地球化學組成和巖石成因關系密切, 因此可根據(jù)黑云母的礦物化學特點討論寄主巖石成因類型和形成環(huán)境。Abdel- Rahman[46]對造山和非造山巖系黑云母進行研究, 提出利用黑云母成分判別構造環(huán)境的圖解, 指出非造山堿性巖系(A型花崗巖, A區(qū))中黑云母相對富Fe, 近鐵云母; 造山鈣堿性巖系(I型花崗巖, C區(qū))中黑云母相對富Mg; 過鋁巖系(S型花崗巖, P區(qū))中黑云母富Al, 為鐵葉云母質(zhì)的花崗巖。MgO-FeOT-Al2O3圖解(圖6)中, 樣品全部落在非造山堿性雜巖內(nèi)(即A型花崗巖), 具有A型花崗巖的地球化學特征。這與寄主巖石地球化學判定相山侵入雜巖體為A-型花崗巖一致[47–49]。
在FeOT/(FeOT+MgO)-MgO圖解(圖7)中, 樣品落入殼源區(qū)域, 指示花崗斑巖具有殼源型花崗巖的特征。楊文金等[50]通過華南兩個不同成因系列花崗巖的云母成分標型特征發(fā)現(xiàn), 南嶺淺源系列的黑云母鎂質(zhì)率小于0.45, 主要物質(zhì)來源是上地殼硅鋁層; 長江深源系列黑云母鎂質(zhì)率大于0.45, 含有深源物質(zhì)。相山北部花崗斑巖黑云母鎂質(zhì)率為0.28~0.35, 表明其為南嶺淺源系列花崗巖, 主要物質(zhì)來源是上地殼硅鋁層, 這與全巖同位素判別結果一致[19–20]。
據(jù)Perffert.[51]對富氟熔體體系研究表明, 鈾不僅傾向于富集在富氟的熔體中, 而且隨著氧逸度的增加, 熔體中鈾富集程度也相應降低。在花崗質(zhì)熔體中, 黑云母是氟的主要載體(70%~90%)。因此, 黑云母中氟含量能大致反映花崗巖中氟的含量。相山北部花崗斑巖氟含量為0.49%~0.93%, 平均為0.7%, 暗示寄主巖石鈾含量較高, 這也得到了全巖鈾含量較高(最高達10.30×10?6)的佐證[52]。
圖6 黑云母FeOT-Al2O3-MgO圖解(據(jù)文獻[46])
A–非造山帶堿性雜巖; C–造山帶鈣堿性雜巖; P–過鋁質(zhì)巖套。
A–Non-orogenic zones alkali complex; B–orogenic belt calcium alkaline complex; C–peraluminous suite.
圖7 黑云母物質(zhì)來源判別圖(據(jù)文獻[49]修改)
在巖漿熔體中, 鈾主要以四價態(tài)存在, 除形成晶質(zhì)鈾礦外, 多與親石元素結合形成鋯石、磷釔礦和獨居石等副礦物。研究表明, 黑云母是花崗質(zhì)熔巖中Rb、Ba、Nb、Ta及Sc、V、Co、Ni、Cr元素的主要載體, 副礦物(獨居石、鋯石和磷釔礦等)可能是Th、U、Sr、Hf、Zr和Y的主要載體[53–54]。因此研究區(qū)黑云母包裹的鋯石、磷釔礦等副礦物可能是鈾的主要載體。
鈾通常在溶液中以六價鈾酰離子進行遷移, 而不是四價鈾[55]。低溫、中性至堿性以及中等至高氧逸度條件下, 鈾主要以碳酸鹽絡合物的形式遷移; 酸性至弱堿性條件下, 鈾主要以氟絡合物的形式遷移[55]。研究區(qū)綠泥石形成于中溫酸性環(huán)境, 表明成礦前期鈾主要以氟絡合物形式遷移。王勇劍等[42]對相山鈾礦田云際綠泥石的研究表明, 成礦期的綠泥石與成礦作用關系密切, 相對于成礦前期綠泥石, 具有較低的溫度(187.92~231.77 ℃), 平均為206.04 ℃,且從礦前期到成礦期, 熱液流體存在向堿性方向的演化趨勢。因此, 成礦期鈾可能主要以碳酸鹽絡合物的形式遷移。相山鈾礦床以碳酸鹽離子形成絡合物進行遷移, 存在幔源流組分的加入[56]。
礦前期熱液交代黑云母, 使黑云母的氟轉移到熱液流體中有利于鈾的遷移。在富鈾熱液流體作用下, 花崗斑巖中黑云母與熱液發(fā)生水-巖發(fā)應形成面狀綠泥石, 使黑云母包裹的含鈾副礦物中的鈾活化, 轉移為分散吸附狀態(tài), 被綠泥石等礦物吸附于礦物晶格表面或礦物裂縫, 因此綠泥石化為成礦熱液提供了部分鈾源[57]。成礦期侵入的中基性巖脈, 富含礦化劑, 滲透流經(jīng)蝕變圍巖, 以六價鈾形式存在的活性鈾很容易形成穩(wěn)定性強, 溶解度高的鈾酰絡合離子, 并被帶入成礦熱液中。隨著流體降溫、濃縮及混合等成礦機制耦合作用, 成礦流體中鈾酰離子解體, 在花崗斑巖體內(nèi)外接觸帶、成礦流體運移的斷裂構造及其旁側裂隙密集帶發(fā)生沉淀、成礦[58]。
(1) 相山北部產(chǎn)鈾花崗斑巖黑云母為鐵質(zhì)黑云母?;◢彴邘r巖漿的溫度為721~753℃, 平均為737 ℃,氧逸度lg(O2)為?14.8 ~ ?15.7, 形成壓力為112~ 147 MPa, 侵位結晶深度為4.1~5.4 km。巖石成因類型為A型花崗巖, 形成于板內(nèi)拉張構造環(huán)境, 物質(zhì)來源于上地殼。
(2) 相山北部黑云母假象型綠泥石為蠕綠泥石和鐵鎂綠泥石, 屬于富鐵綠泥石, 形成于還原環(huán)境。綠泥石形成溫度為230~271 ℃, 平均值為258 ℃, 屬于中溫熱液作用范圍。
(3)花崗斑巖中鈾的載體主要為黑云母包體中含鈾副礦物。礦前期, 熱液流體交代黑云母形成綠泥石, 使得黑云母內(nèi)含鈾副礦物中的鈾活化轉移為分散吸附狀態(tài)的鈾, 被綠泥石等礦物吸附于礦物晶格表面或礦物裂隙, 為成礦熱液提供了部分鈾源。
兩位審稿專家對本文提出了寶貴的修改意見和建議, 在此表示衷心感謝。
[1] Jacobs D C, Parry W T. A comparison of the geochemistry of biotite from some Basin and Range stocks[J]. Econ Geol, 1976, 71(6): 1029–1035.
[2] Jacobs D C, Parry W T. Geochemistry of biotite in the Santa Rita porphyry copper deposit, New Mexico[J]. Econ Geol, 1979, 74(4): 860–887.
[3] Wones D R, Eugster H P. Stability of biotite-experiment theory and application[J]. Am Mineral, 1965, 50(9): 1228–1272.
[4] Czamanske G K, Wones D R. Oxidation during magmatic differentiation, Finnmarka Complex, Oslo Area, Norway: Part 2, The mafic silicates1[J]. J Petrol, 1973, 14(3): 349–380.
[5] Speer J A. Evolution of magmatic AFM mineral assemblages in granitoid rocks: The hornblende + melt = biotite reaction in the Liberty Hill pluton, South Carolina[J]. Am Mineral, 1987, 72(9/10): 863–878.
[6] Zhu C, Sverjensky D A. F-Cl-OH partitioning between biotite and apatite[J]. Geochim Cosmochim Acta, 1992, 56(9): 3435– 3467.
[7] Henry D J. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms[J]. Am Mineral, 2005, 90(2/3): 316–328.
[8] 秦克章, 張連昌, 丁奎首, 許英霞, 唐冬梅, 徐興旺, 馬天林, 李光明. 東天山三岔口銅礦床類型、賦礦巖石成因與礦床礦物學特征[J]. 巖石學報, 2009, 25(4): 845–861.
Qin Ke-zhang, Zhang Lian-chang, Ding Kui-shou, Xu Ying-xia, Tang Dong-mei, Xu Xing-wang, Ma Tian-lin, Li Guang-ming. Mineralization type, petrogenesis of ore-bearing intrusions and mineralogical characteristics of Sanchakou copper depositsin eastern Tianshan[J]. Acta Petrol Sinica, 2009, 25(4): 845–861 (in Chinese with English abstract).
[9] 劉彬, 馬昌前, 劉園園, 熊富浩. 鄂東南銅山口銅(鉬)礦床黑云母礦物化學特征及其對巖石成因與成礦的指示[J]. 巖石礦物學雜志, 2010, 29(2): 151–165.
Liu Bin, Ma Chang-qian, Liu Yuan-yuan, Xiong Fu-hao. Mineral chemistry of biotites from the Tongshankou Cu–Mo deposit: Implications for petrogenesis and mineralization[J]. Acta PetrolMineral, 2010, 29(2): 151–165 (in Chinese with English abstract).
[10] 陳佑緯, 畢獻武, 胡瑞忠, 董少花, 程德進, 馮張生. 陜南光石溝偉晶巖型鈾礦床黑云母礦物化學研究及其對鈾成礦的啟示[J]. 礦物巖石, 2013, 33(4): 17–28.
Chen You-wei, Bi Xian-wu, Hu Rui-zhong, Dong Shao-hua, Cheng De-jin, Feng Zhang-sheng. Mineral chemistry of biotiteand its implications for uranium mineralization in Guangshigou pegmatite–type uranium deposit, South Shaanxi province[J]. J Mineral Petrol, 2013, 33(4): 17–28 (in Chinese with English abstract).
[11] 彌佳茹, 袁順達, 原埡斌, 軒一撒. 湘南寶山礦床花崗閃長斑巖中黑云母的礦物學特征及其指示意義[J]. 礦床地質(zhì), 2014, 33(6): 1357–1365.
Mi Jia-ru, Yuan Shun-da, Yuan Ya-bin, Xuan Yi-sa. Mineral chemistry of biotites in Baoshan granodiorite_porphyry, southernHunan Province: Implications for petrogenesis and mineralization[J]. Mineral Deposit, 2014, 33(6): 1357–1365 (in Chinese with English abstract).
[12] 田建鋒, 陳振林, 凡元芳, 李平平, 宋立軍. 砂巖中自生綠泥石的產(chǎn)狀、形成機制及其分布規(guī)律[J]. 礦物巖石地球化學通報, 2008, 27(2): 200–205.
Tian Jian-feng, Chen Zhen-lin, Fan Yuan-fang, Li Ping-ping, Song Li-jun. The occurrence, growth mechanism and distribution of authigenic chlorite in sandstone[J]. Bull Mineral Petrol Geochem, 2008, 27(2): 200–205 (in Chinese with English abstract).
[13] 廖震, 劉玉平, 李朝陽, 葉霖, 劉世榮, 鄭文勤. 都龍錫鋅礦床綠泥石特征及其成礦意義[J]. 礦床地質(zhì), 2010, 29(1): 169–176.
Liao Zhen, Liu Yu-ping, Li Chao-yang, Ye Lin, Liu Shi-rong, Zheng Wen-qin. Characteristics of chlorites from Dulong Sn–Zndeposit and their metallogenic implications[J]. Mineral Deposit, 2010, 29(1): 169–176 (in Chinese with English abstract).
[14] 郭國林, 劉曉東, 潘家永, 張展適, 李興斌. 302鈾礦床綠泥石特征及其與鈾成礦的關系[J]. 鈾礦地質(zhì), 2012, 28(1): 35–41.
Guo Guo-lin, Liu Xiao-dong, Pan Jia-yong, Zhang Zhan-shi, Li Xin-bin. Character of chlorite and its relationship to uranium mineralization in uranium deposit No.302[J]. Uran Geol, 2012, 28(1): 35–41 (in Chinese with English abstract).
[15] 王小雨, 毛景文, 程彥博, 張興康, 劉鵬, 劉石華, 方思傑. 粵東新寮崠銅多金屬礦床綠泥石特征及其地質(zhì)意義[J]. 巖石礦物學雜志, 2014, 33(5): 885–905.
Wang Xiao-yu, Mao Jing-wen, Cheng Yan-bo, Zhang Xing-kang, Liu Peng, Liu Shi-hua, Fang Si-jie. Characteristics of chlorite from Xinliaodong Cu polymetallic deposit in eastern GuangdongProvince and their geological significance[J]. Acta Petrol Mineral, 2014, 33(5): 885–905 (in Chinese with English abstract).
[16] 趙友東, 吳俊奇, 凌洪飛, 王洪作. 贛南富城巖體黑云母及其蝕變產(chǎn)物綠泥石的礦物化學研究——對鈾成礦的指示意義[J]. 礦床地質(zhì), 2016, 35(1): 153–168.
Zhao You-dong, Wu Jun-qi, Ling Hong-fei, Wang Hong-zuo. Mineral chemistry of biotite and chlorite in western part of Fucheng granite, southern Jiangxi Province: Implications for uranium mineralization[J]. Mineral Deposit, 2016, 35(1): 153–168 (in Chinese with English abstract).
[17] 邵飛. 水–巖相互作用及其與鈾成礦關系研究——以相山鈾礦田為例[D]. 武漢: 中國地質(zhì)大學, 2007.
Shao Fei. Study on water–rock interaction and its relation with uranium metallogenesis: A case study in Xiangshan uranium orefield[D]. Wuhan: China University of Geosciences, 2007 (in Chinese with English abstract).
[18] 楊水源. 華南贛杭構造帶含鈾火山盆地巖漿巖的成因機制及動力學背景[D]. 南京: 南京大學, 2013.
Yang Shui-yuan. Petrogenesis and geodynamic setting of magmatic rocks from uranium–bearing volcanic basins, Gan– Hang Belt, Southeast China[D]. Nanjing: Nanjing University, 2013 (in Chinese with English abstract).
[19] 楊慶坤. 江西相山礦田巖漿作用與鈾多金屬成礦[D]. 北京: 中國地質(zhì)大學, 2015.
Yang Qin-kun. Genesis of the volcanic-intrusive complex and metallogenesis of uranium polymetallic in the Xiangshan orefield of Jiangxi province[D]. Beijing: China University of Geoscience, 2015 (in Chinese with English abstract).
[20] 周萬蓬. 相山地區(qū)巖漿演化及其對鈾成礦作用的制約[D]. 北京: 核工業(yè)北京地質(zhì)研究院, 2015.
Zhou Wan-peng. The magmatic evolution in Xianshang area and its important role in the uranium mineralization[D]. Beijing: Beijing Research Institute of Uranium Geology, 2015 (in Chinese with English abstract).
[21] 張萬良. 相山鈾礦田礦體形態(tài)分類及成因意義[J]. 大地構造與成礦學, 2015, 39(5): 844–854.
Zhang Wan-liang. Orebody morphology and mineralization structure type of Xiangshan uranium field[J]. Geotecton Metallogen, 2015, 39(5): 844–854 (in Chinese with English abstract).
[22] 楊水源, 蔣少涌, 姜耀輝, 趙葵東, 范洪海. 江西相山流紋英安巖和流紋英安斑巖鋯石U–Pb年代學和Hf同位素組成及其地質(zhì)意義[J]. 中國科學: 地球科學, 2010, 40(8): 953–969.
Yang Shui-yuan, Jiang Shao-yong, Jiang Yao-hui, Zhao Kui-dong, Fan Hong-hai. Zircon U–Pb geochronology, Hf isotopic composition and geological implications of the rhyodacite and rhyodacitic porphyry in the Xiangshan uranium ore field, Jiangxi Province, China[J]. Sci China Earth Sci, 2010, 40(8): 953–969 (in Chinese).
[23] 陳正樂, 王永, 周永貴, 韓鳳彬, 王平安, 宮紅良, 邵飛, 唐湘生, 徐金山. 江西相山火山–侵入雜巖體鋯石SHRIMP定年及其地質(zhì)意義[J]. 中國地質(zhì), 2013, 40(1): 217–231.
Chen Zheng-le, Wang Yong, Zhou Yong-gui, Han Feng-bin, Wang Ping-an, Gong Hong-liang, Shao Fei, Tang Xiang-sheng, Xu Jin-shan. SHRIMP U–Pb dating of zircons from volcanic– intrusive complexes in the Xiangshan uranium orefield, Jiangxi Province, and its geological implications[J]. Geol China, 2013, 40(1): 217–231 (in Chinese with English abstract).
[24] 王勇劍. 相山花崗斑巖和中基性脈巖特征及其與鈾成礦關系[D]. 北京: 核工業(yè)北京地質(zhì)研究院, 2015.
Wang Yong-jian. The characteristics of Xiangshan granite porphyry and intermediate-basic dikes and their relationship with uranium mineralization[D]. Beijing: Beijing Research Institute of Uranium Geology, 2015 (in Chinese with English abstract).
[25] 許迅. 相山北部產(chǎn)鈾花崗斑巖巖相學、地球化學、年代學及研究意義[D]. 南昌: 東華理工大學, 2017.
Xu Xun. Petrology, geochemistry, chronology and significanceof uranium–bearing granite porphyries in north of Xiangshan[D]. Nanchang: East China University of Technology, 2017 (in Chinese with English abstract).
[26] 李子穎, 黃志章, 李秀珍, 張玉燕. 相山火成巖與鈾成礦作用顯微圖冊[M]. 北京: 地質(zhì)出版社, 2014: 1–324.
Li Zi-yin, Huang Zhi-zhang, Li Xiu-zhen, Zhang Yu-yan. Micro– photographs of Xiangshan igneous rocks and uranium mineralization[M]. Beijing: Geological Publishing House, 2014: 1–324 (in Chinese with English abstract).
[27] 林文蔚, 彭麗君. 由電子探針分析數(shù)據(jù)估算角閃石、黑云母中的 Fe3+、Fe2+[J]. 長春地質(zhì)學院學報, 1994, 24(2): 155–162.
Lin Wen-wei, Peng Li-jun. The estimation of Fe3+and Fe2+contents in amphibole and biotite from EMPA data[J]. J ChangchunUniv Earth Sci, 1994, 24(2): 155–162 (in Chinese with English abstract).
[28] Deer W A, Howie R A, Zussman J. Rock-forming Minerals. Vol.3: Sheet Silicates[M]. London: Longman, 1967: 528.
[29] 趙沔, 楊水源, 左仁廣, 趙葵東, 姜耀輝, 凌洪飛, 陳培榮. 贛杭構造帶相山火山侵入雜巖的巖漿演化特征——來自斜長石和黑云母的化學成分研究[J]. 巖石學報, 2015, 31(3): 759–768.
Zhao Mian, Yang Shui-yuan, Zuo Ren-guang, Zhao Kui-dong, Jiang Yao-hui, Ling Hong-fei, Chen Pei-rong. Magmatic evolution characteristics of Xiangshan volcanic-intrusive complex from the Gan–Hang Belt: Studies on the mineral chemistry of plagioclase and biotite[J]. Acta Petrol Sinica, 2015, 31(3): 759–768 (in Chinese with English abstract).
[30] Stone D. Temperature and pressure variations in suites of Archean felsic plutonic rocks, Berens River area, northwest Superior Province, Ontario, Canada[J]. Can Mineral, 2000, 38(2): 455–470.
[31] 傅金寶. 斑巖銅礦中黑云母的化學組成特征[J]. 地質(zhì)與勘探, 1981, 9(1): 16–19.
Fu Jin-bao. Chemical composition of biotite in porphyry copper deposits[J]. Geol Explor, 1981, 9(1): 16–19 (in Chinese).
[32] Foster M D. Interpretation of the composition of trioctahedral micas[J]. US Geol Survey Profess Pap, 1960, 354B: 1–49.
[33] Foster M D. Interpretation of the composition and a classification of the chlorites[J]. US Geol survey Profess Pap, 1962, 414A: 1–33.
[34] Robert J L. Titanium solubility in synthetic phlogopite solid solutions[J]. Chem Geol, 1976, 17(3): 213–227.
[35] Sarjoughian F, Kananian A, Ahmadian J, Murata M. Chemical composition of biotite from the Kuh–e Dom pluton, Central Iran: Implication for granitoid magmatism and related Cu–Au mineralization[J]. Arabian J Geosci, 2015, 8(3): 1521–1533.
[36] Parsapoor A, Khalili M, Tepley F, Maghami M. Mineral chemistry and isotopic composition of magmatic, re–equilibrated and hydrothermal biotites from Derreh–Zar porphyry copper deposit, Kerman(Southeast of Iran)[J]. Ore Geol Rev, 2015, 66: 200–218.
[37] Uchida E, Endo S, Makino M. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits[J]. Resour Geol, 2007, 57(1): 47–56.
[38] 劉英俊, 曹厲明. 元素地球化學導論[M]. 北京: 地質(zhì)出版社, 1987: 124–128.
Liu Yin-jun, Cao Li-ming. Introduction to Element Geochemistry[M].Beijing: Geological Publishing House, 1987: 124–128 (in Chinese with English abstract).
[39] Rausell-Colom J A, Wiewiora A, Matesanz E. Relationship between composition and d001 for chlorite[J]. Am Mineral, 1991, 76(7/8): 1373–1379.
[40] Nieto F. Chemical composition of metapelitic chlorites: X–ray diffraction and optical property approach[J]. Eur J Mineral, 1997, 9(4): 829–841.
[41] Battaglia S. Applying X–ray geothermometer diffraction to a chlorite[J]. Clay Clay Mineral, 1999, 47(1): 54–63.
[42] 王勇劍, 林錦榮, 胡志華, 王峰, 龐雅慶, 高飛. 相山鈾礦田云際礦床綠泥石特征及其地質(zhì)意義[J]. 鈾礦地質(zhì), 2018, 34(3): 153–158.
Wang Yong-jian, Lin Jing-rong, Hu Zhi-hua, Wang Fei, Pang Ya-qing, Gao Fei. Characteristics of chlorite in Yunji deposit of Xiangshan uranium ore–field and its geological implication[J]. Uran Geol, 2018, 34(3): 153–158 (in Chinese with English abstract).
[43] Brydzia L T and Scott S D. Application of chlorite–sulfide– oxide equilibria to metamorphosed massive sulfide ores, Snow Lake area, Manitoba(Canada)[J]. Econ Geol, 1987, 82(4): 963–970.
[44] Brydzia L T and Steven D S. The composition of chlorite as a function of sulfur and oxygen fugacity; an experimental study[J]. Am J Sci, 1987, 287(1): 50–76.
[45] Inoue A. Formation of clay minerals in hydrothermal environments[M]//Velde B. Origin and Mineralogy of Clays. Berlin: Spinger, 1995: 268–330.
[46] Abdel-Rahman A F M. Nature of biotite from alkaline, calc-alkaline, and peraluminous magmas[J]. J Petrol, 1994, 35(2): 525–541.
[47] 楊水源, 蔣少涌, 趙葵東, 姜耀輝, 范洪海. 江西相山鈾礦田鄒家山礦床流紋斑巖的鋯石U–Pb年代學、巖石地球化學與Sr–Nd–Hf同位素組成[J]. 巖石學報, 2012, 28(12): 3915–3928.
Yang Shui-yuan, Jiang Shao-yong, Zhao Kui-dong, Jiang Yao-hui, Fan Hong-hai. Zircon U–Pb geochronology, geochemistry and Sr–Nd–Hf isotopic compositions of the rhyolite porphyry from the Zhoujiaoshan deposit in Xiangshan uranium ore field, Jiangxi Province, SE China[J]. Acta Petrol Sinica, 2012, 28(12): 3915–3928 (in Chinese with English abstract).
[48] 楊水源, 蔣少涌, 趙葵東, 姜耀輝, 凌洪飛, 陳培榮. 江西相山鈾礦田如意亭剖面火山巖的年代學格架及其地質(zhì)意義[J]. 巖石學報, 2013, 29(12): 4362–4372.
Yang Shui-yuan, Jiang Shao-yong, Zhao Kui-dong, Jiang Yao-hui, Ling Hong-fei, Chen Pei-rong. Timing and geological implicationsof volcanic rocks from the Ruyiting section, Xiangshan uranium ore field, Jiangxi Province, SE China[J]. Acta Petrol Sinica, 2013, 29(12): 4362–4372 (in Chinese with English abstract).
[49] Yu Z Q, Chen W F, Chen P R, Wang K X, Fang Q C, Tang X S, Ling H F. Chemical composition and Sr isotopes of apatite in the Xiangshan A–type volcanic–intrusive complex, Southeast China: New insight into petrogenesis[J]. J Asian Earth Sci, 2019, 172: 66–82.
[50] 楊文金, 王聯(lián)魁, 張紹立, 徐文新. 華南兩個不同成因系列花崗巖的云母標型特征[J]. 礦物學報, 1986, 6(4): 298–307.
Yang Wen-jin, Wang Lian-kui, Zhang Shao-li, Xu Wen-xin. Micas of the two series of granites in South China[J]. Acta Mineral Sinica, 1986, 6(4): 298–307 (in Chinese with English abstract).
[51] Peiffert C, Nguyen-trung C, Cuney M. Uranium in granitic magmas: Part 2. Experimental determination of uranium solubility and fluid–melt partition coefficients in the uranium oxide–haplogranite-H2O-NaX(X=Cl, F) system at 770 ℃, 2 kbar[J]. Geochim Cosmochim Acta, 1996, 60(9): 1515–1529.
[52] 王利玲. 相山鈾礦田南、北部花崗斑巖特征對比研究[D]. 南昌: 東華理工大學, 2019.
Wang Li-ling. A comparative study on the characteristics of granite porphyry in the south and north of Xiangshan uranium ore field, Jiangxi Province [D]. Nanchang: East China University of Technology, 2019 (in Chinese with English abstract).
[53] 胡建, 邱檢生, 王汝成, 蔣少涌, 凌洪飛, 王孝磊. 廣東龍窩和白石岡巖體鋯石U–Pb年代學、黑云母礦物化學及其成巖指示意義[J]. 巖石學報, 2006, 22(10): 2464–2474.
Hu Jian, Qiu Jian-sheng, Wang Ru-cheng, Jiang Shao-yong, Ling Hong-fei, Wang Xiao-lei. Zircon U–Pb geochronology, biotite mineral chemistry and their petrogenetic implications of the Longwo and Baishigang plutons in Guangdong province[J]. Acta Petrol Sinica, 2006, 22(10): 2464–2474 (in Chinese with English abstract).
[54] 鐘福軍, 潘家永, 許幼, 祁家明, 舒田田, 牟平, 吳德海. 南嶺中段黃沙鈾礦區(qū)黑云母與綠泥石的礦物化學特征及其對成巖成礦的約束[J]. 高校地質(zhì)學報, 2017, 23(4): 575–590.
Zhong Fu-jun, Pan Jia-yong, Xu You, Qi Jia-ming, Shu Tian-tian, Mu Ping, Wu De-hai. Mineral chemistry of biotites and chlorites from Huangsha uranium mining area in the middle nangling range: Constraints on petrogenesis and uranium mineralization[J]. Geol J China Univ, 2017, 23(4): 575–590 (in Chinese with English abstract).
[55] Cuney M. The extreme diversity of uranium deposits[J]. Mineralium Deposita, 2009, 44(1): 3–9.
[56] Hu R Z, Burnard P G, Bi X W, Zhou M F, Peng J T, Su W C, Zhao J H. Mantle-derived gaseous components in ore–forming fluids of the Xiangshan uranium deposit, Jiangxi province, China: Evidence from He, Ar and C isotopes[J]. Chem Geol, 2009, 266(1/2): 86–95.
[57] 張邦桐. 華南花崗巖中鈾活化轉移的地球化學證據(jù)[J]. 地球化學, 1994, 23(2): 161–167.
Zhang Bang-tong. Geochemical evidence for uranium mobilization and migration in granites from south China[J]. Geochemica, 1994, 23(2): 161–167 (in Chinese with English abstract).
[58] 邵飛, 陳曉明, 徐恒力, 黃輝明, 唐湘生, 鄒茂卿, 何曉梅, 李梅. 江西相山鈾礦田成礦模式探討[J]. 地質(zhì)力學學報, 2008, 14(1): 65–73.
Shao Fei, Chen Xiao-ming, Xu Heng-li, Huang Hui-ming, Tang Xiang-sheng, Zou Mao-qing, He Xiao-mei, Li Mei. Metallogenic model of the Xiangshan uranium ore field, Jiangxi province[J]. J Geomechan, 2008, 14(1): 65–73 (in Chinese with English abstract).
Mineral chemistry and geological significance of biotite and chlorite from granite porphyries in the northern Xiangshan uranium orefield
LIU Long1, ZHANG Shu-ming1,2*, WANG Li-ling1,3, ZHANG Xin1,2, OUYANG Jun-yong1, XIA Yin-chu1and WU Zhi-chun1,2
1. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang ?330013, China; 2. Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China Institute of Technology, Nanchang ?330013, China; 3. Shanwei Technical School, Shanwei ?516600, China
Xiangshan uranium orefield is the largest volcanic-type uranium deposit in China. Granite-porphyries subtype uranium deposits in the northern part of Xiangshan uranium orefield account for 36.65% of the total reserves. Although systematic studies have been made on granite porphyries in the north of Xiangshan orefield, research on mineral chemistry in granite porphyries is rare. Based on the detailed chemical analyses of biotite and chlorite, this study discusses the formational conditions of biotite and chlorite from granite porphyries in the northern part of Xiangshan uranium orefield and their significance for diagenesis and mineralization. The results are as follows: (1) biotite belongs to Fe-biotite. Chemical composition of biotite suggests that granitic porphyries have high crystallization temperature of 721 ℃ to 753 ℃ (average of 737 ℃) and their lg(O2) range from ?14.8 to ?15.7. Crystallization pressure for biotite is 112 MPa to 147 MPa with corresponding solidification depth of 4.1 to 5.4 km. Granite porphyries in the northern part of Xiangshan uranium orefield belong to A-type granite formed in the non-orogenic tectonic setting. In addition, granite porphyries originated from partial melting of upper crust. (2) Chlorite in the northern part of Xiangshan uranium orefield is Fe-rich prochlorite formed under reducing conditions. The temperature of chlorite ranges from 230 to 271 ℃(average 258 ℃); hence, it belongs to the region of mesothermal alteration. (3) The main carriers of uranium in granite porphyries are uranium-bearing accessory minerals enclaved in biotite. In the early metallogenic stage, chlorite was formed by hydrothermal metasomatism of biotite, making the uranium in uranium-bearing accessory minerals in biotite activated and transferred into a dispersive adsorbent condition. Active uranium was absorbed by minerals such as chlorite on the surface of mineral lattice or mineral fissures, which provided uranium source for the hydrothermal melt during the metallogenic stage.
biotite; chlorite; granite porphyries; chemical characteristics of minerals; diagenesis and mineralization; northern Xiangshan
P597
A
0379-1726(2021)06-0550-12
10.19700/j.0379-1726.2021.06.002
2020-03-20;
2020-07-08;
2020-07-14
國家自然科學基金(41862006, 41802247); 江西省研究生創(chuàng)新基金(YC2020-B159)
劉龍(1989–), 男, 博士研究生, 地質(zhì)資源與地質(zhì)工程專業(yè)。E-mail: 584456270@qq.com
ZHANG Shu-ming, E-mail: shmzhang@ecit.cn; Tel: +86-791-83897549