段 續(xù),徐一銘,任廣躍,李琳琳,侯志昀,趙夢(mèng)月
香菇分段變溫紅外噴動(dòng)床干燥工藝參數(shù)優(yōu)化
段 續(xù)1,2,徐一銘1,任廣躍1,2,李琳琳1,侯志昀1,趙夢(mèng)月1
(1.河南科技大學(xué)食品與生物工程學(xué)院,洛陽(yáng) 471023; 2. 糧食儲(chǔ)藏安全河南省協(xié)同創(chuàng)新中心,鄭州 450001)
為獲得節(jié)能低耗和品質(zhì)較優(yōu)的干香菇,利用紅外噴動(dòng)床干燥設(shè)備,對(duì)香菇分段變溫干燥工藝進(jìn)行試驗(yàn)研究。在單因素試驗(yàn)基礎(chǔ)上運(yùn)用Box-Behnken Design優(yōu)化試驗(yàn),研究前期風(fēng)溫、轉(zhuǎn)換點(diǎn)含水率和后期風(fēng)溫對(duì)單位能耗、粗多糖含量、亮度*值和收縮率的影響,通過(guò)加權(quán)綜合評(píng)分法推導(dǎo)多項(xiàng)式回歸模型,優(yōu)化紅外噴動(dòng)床干燥工藝參數(shù)。經(jīng)響應(yīng)面優(yōu)化的干燥參數(shù)為:前期風(fēng)溫56.00 ℃、轉(zhuǎn)換點(diǎn)含水率53.00%、后期風(fēng)溫72.00 ℃,該工藝下單位能耗為143.52 kJ/g、粗多糖含量9.98 mg/g、亮度*值68.11、收縮率83.15%,綜合評(píng)分值為35.37,與預(yù)測(cè)值擬合度高達(dá)99.27%,表明應(yīng)用紅外噴動(dòng)床干燥取得的香菇制品能滿足當(dāng)前香菇干燥的發(fā)展趨勢(shì)及需求,為香菇干制品的綜合應(yīng)用及生產(chǎn)加工提供參考。
干燥;品質(zhì)控制;工藝優(yōu)化;香菇;紅外噴動(dòng)床干燥;單位能耗
香菇,富含蛋白質(zhì)﹑維生素﹑多糖和多酚類等物質(zhì),味道鮮美且香氣獨(dú)特,深受廣大消費(fèi)者喜愛(ài),是著名的食藥兼用菌[1-2]。大量研究證明香菇多糖具有抗腫瘤、調(diào)節(jié)免疫、抗衰老、抗氧化和防輻射等功效[2]。鮮香菇初始含水率高達(dá)80%(濕基)以上,采收后新鮮度下降快,易引起菌褶褐變、菇體萎縮和霉變等問(wèn)題,進(jìn)而影響香菇的風(fēng)味和商品價(jià)值。故鮮香菇不易貯存,干燥能延長(zhǎng)香菇的貨架期。目前,香菇常用的干燥方法主要有熱風(fēng)干燥、微波干燥、真空冷凍干燥、紅外干燥、熱泵干燥以及聯(lián)合干燥技術(shù)等[3]。
其中紅外輻射加熱干燥技術(shù)被廣泛應(yīng)用于食品加工中,如油菜蜂花粉[4]、胡蘿卜[5]、桑葚[6]等,具有干燥效率高、產(chǎn)品質(zhì)量佳等優(yōu)點(diǎn)[7]。但該技術(shù)存在一定的局限性,如紅外輻射能耗大、成本高[8]、穿透度低、多層干燥物料時(shí)導(dǎo)致干燥不均勻等[9]。物料內(nèi)部結(jié)構(gòu)的含水率大于外部結(jié)構(gòu),采用紅外干燥時(shí)水分由內(nèi)向外進(jìn)行擴(kuò)散,物料內(nèi)部溫度比表面溫度高,因此易造成物料受熱不夠均勻。為改善這一問(wèn)題,合理地將紅外輻射干燥與其他干燥技術(shù)相結(jié)合,如噴動(dòng)床干燥技術(shù)。噴動(dòng)床干燥的設(shè)備結(jié)構(gòu)簡(jiǎn)單易操作[10]、干燥均勻性好、傳熱傳質(zhì)速率高[11]。相關(guān)研究證明,紅外聯(lián)合噴動(dòng)床干燥設(shè)備干燥時(shí)間短,能降低干燥能耗[12]。將紅外干燥與噴動(dòng)床干燥相結(jié)合,不僅改善紅外干燥設(shè)備存在的高耗能,紅外噴動(dòng)床熱損失大等問(wèn)題,也可利用噴動(dòng)床干燥的優(yōu)點(diǎn)提高紅外加熱的均勻性,保持產(chǎn)品品質(zhì)[13]。
相關(guān)研究表明,當(dāng)前雖存在多種香菇干燥技術(shù),但傳統(tǒng)的干燥設(shè)備難以滿足能耗及品質(zhì)方面的優(yōu)質(zhì)高效,此外,對(duì)干燥工藝及技術(shù)方法進(jìn)行優(yōu)化也是目前香菇干燥的需求之一[14]。開(kāi)發(fā)利用節(jié)能環(huán)保且低投入高產(chǎn)出的新型聯(lián)合干燥裝備是香菇干燥的發(fā)展趨勢(shì),聯(lián)合干燥既能提高干燥效率,又能提高物料的品質(zhì),促進(jìn)相關(guān)產(chǎn)業(yè)的發(fā)展[15]。本試驗(yàn)采取紅外與噴動(dòng)床聯(lián)合的新型干燥技術(shù),對(duì)香菇干燥工藝及技術(shù)方法進(jìn)行優(yōu)化,以期得到節(jié)能低耗和優(yōu)質(zhì)的干香菇。通過(guò)在單因素試驗(yàn)基礎(chǔ)上運(yùn)用Box-Behnken Design優(yōu)化試驗(yàn)[16],研究前期風(fēng)溫、轉(zhuǎn)換點(diǎn)含水率和后期風(fēng)溫對(duì)香菇干燥的單位能耗、粗多糖含量、亮度*值和收縮率的影響,在節(jié)能保質(zhì)前提下以期得到香菇優(yōu)化干燥工藝參數(shù),提高香菇的商用價(jià)值,為相關(guān)研究提供理論參考。
新鮮香菇購(gòu)于洛陽(yáng)市大張超市。硫酸、無(wú)水乙醇、苯酚、葡萄糖(均為分析純),洛陽(yáng)奧龍化玻公司。
本研究所用的紅外噴動(dòng)床由實(shí)驗(yàn)室自制,設(shè)備結(jié)構(gòu)如圖1所示。
其他儀器與設(shè)備:X-rite Color I5色差儀,美國(guó)愛(ài)色麗公司;101型電熱恒溫鼓風(fēng)干燥箱、HH-S4型電熱恒溫水浴鍋,北京科偉永興儀器有限公司;JA-2003N型電子天平,上海佑科儀器儀表有限公司;BCD-565WT/B型電冰箱,北京海信電器有限公司;FA1004型分析天平,上海上平儀器公司;UV2006A型紫外可見(jiàn)分光光度計(jì),尤尼柯(上海)儀器有限公司;KQ-500DE型數(shù)控超聲波清洗器,昆山市超聲儀器有限公司;H1850R型高速冷凍離心機(jī),湖南湘儀離心機(jī)有限公司;FLIR I7紅外熱像儀,深圳市儀達(dá)智能科技有限公司。
1.3.1 工藝流程
新鮮香菇→清洗→去柄→切丁→紅外噴動(dòng)床干燥→粉碎過(guò)篩→指標(biāo)測(cè)定。具體如下:挑選無(wú)霉變、蟲蛀,菌蓋大小均勻、表面無(wú)皺痕的香菇樣品用于干燥試驗(yàn)。將香菇去柄,采用12 mm × 12 mm × 12 mm(長(zhǎng)×寬×高)的切丁器處理。干燥開(kāi)始前,將紅外功率設(shè)置為1 000 W,波長(zhǎng)設(shè)置為10m[13]。每組取200 g投放到紅外噴動(dòng)床內(nèi),以含水率低于13%為干燥終點(diǎn)[17-18]。經(jīng)粉碎過(guò)篩,放置密封袋中備用。試驗(yàn)處理組平行重復(fù)做3次,測(cè)定各自試驗(yàn)指標(biāo)值,最后取其平均值。
1.3.2 確定試驗(yàn)因素
香菇紅外噴動(dòng)床干燥與諸多因素有關(guān),如出風(fēng)溫度、出風(fēng)風(fēng)速等。具體操作如下,將200 g切丁后的新鮮香菇投放至紅外噴動(dòng)床內(nèi),在預(yù)試驗(yàn)中設(shè)置風(fēng)溫為60 ℃[14-19],分別在出風(fēng)風(fēng)速為7.0、7.5、8.0、8.5 m/s下進(jìn)行試驗(yàn),得到當(dāng)出風(fēng)風(fēng)速為8.0 m/s時(shí),樣品的綜合評(píng)分值較高,因此固定出風(fēng)風(fēng)速為8.0 m/s。在預(yù)試驗(yàn)干燥過(guò)程中,樣品處于含水率50%~60%時(shí)形態(tài)變化明顯,因此設(shè)定轉(zhuǎn)換點(diǎn)含水率為45%、50%、55%、60%、65%進(jìn)行試驗(yàn)。本試驗(yàn)以前期風(fēng)溫、轉(zhuǎn)換點(diǎn)含水率和后期風(fēng)溫為因素,分別分析其對(duì)香菇單位能耗、粗多糖含量、亮度*值和收縮率的影響。干燥過(guò)程中的物料溫度由紅外熱像儀進(jìn)行測(cè)定。
1.3.3 單因素試驗(yàn)設(shè)計(jì)
用單因素試驗(yàn)[16]來(lái)分析前期風(fēng)溫、轉(zhuǎn)換點(diǎn)含水率和后期風(fēng)溫對(duì)香菇品質(zhì)的綜合影響。在出風(fēng)風(fēng)速為8.0 m/s 條件下分別進(jìn)行試驗(yàn),試驗(yàn)分為3組,每組3次平行,記錄各組的4項(xiàng)指標(biāo)。
前期風(fēng)溫設(shè)置:40、45、50、55、60 ℃,待含水率降至55%,轉(zhuǎn)至后期風(fēng)溫60 ℃進(jìn)行干燥。
后期風(fēng)溫設(shè)定:前期風(fēng)溫為50 ℃,待含水率降至55%,設(shè)置后期風(fēng)溫為60、65、70、75、80 ℃。
轉(zhuǎn)換點(diǎn)含水率設(shè)定:設(shè)置前期風(fēng)溫為50 ℃,待含水率降至40%、45%、50%、55%、60%、65%,轉(zhuǎn)為后期風(fēng)溫60 ℃。為和單因素前期風(fēng)溫保持一致,設(shè)置后期風(fēng)溫為60 ℃。
1.3.4 響應(yīng)面優(yōu)化設(shè)計(jì)
根據(jù)單因素試驗(yàn)數(shù)據(jù)分析結(jié)果,在單因素試驗(yàn)基礎(chǔ)上,根據(jù)Box-Behnken試驗(yàn)設(shè)計(jì)原理,以前期風(fēng)溫()、轉(zhuǎn)換點(diǎn)含水率()、后期風(fēng)溫()3個(gè)影響香菇紅外噴動(dòng)床干燥的主要因素為自變量,研究其與單位能耗、粗多糖含量、亮度*值和收縮率的關(guān)系。根據(jù)單因素試驗(yàn),確定了各個(gè)試驗(yàn)因素,試驗(yàn)因素水平見(jiàn)表1。
表1 試驗(yàn)因素水平表
1.4.1 含水率的測(cè)定
依據(jù)GB 5009.3-2016《食品中水分的測(cè)定》[20]測(cè)定香菇的初始含水率為89.06%。
1.4.2 單位能耗的測(cè)定
干燥能耗為干燥1 g水分的能耗(kJ),干燥過(guò)程的總脫水量和干燥能耗參考張迎敏等[16]的方法。
按公式(1)、(2)進(jìn)行計(jì)算。
式中1為脫水量,g;為干燥終點(diǎn)樣品質(zhì)量,g;1為初始濕基含水率,%;2為最終濕基含水率,%;為干燥能耗,kJ/g;0為功率,kW;為時(shí)間,h。
1.4.3 粗多糖含量的測(cè)定
粗多糖含量的測(cè)定參考參照NY/T 1676-2008 《食用菌中粗多糖含量的測(cè)定》[21],單位為mg/g,結(jié)果均以干質(zhì)量計(jì)[22]。
1.4.4 色澤的測(cè)定
采用 XT-I5 型色差儀測(cè)定各試驗(yàn)組的亮度值*、紅綠值*、黃藍(lán)值*,按公式計(jì)算彩度(*)[22]。每組樣品測(cè)量3次,取平均值。
1.4.5 收縮率的測(cè)定
尺寸收縮率[23]采用游標(biāo)卡尺分別測(cè)定干燥前后香菇丁的厚度。干燥前隨機(jī)選5個(gè)香菇樣品,分別從3 個(gè)不同的方向進(jìn)行測(cè)量并標(biāo)記,干燥結(jié)束后再次測(cè)量相應(yīng)位置的尺寸,按照公式(4)計(jì)算。
式中0和t分別為干燥前后香菇的厚度,mm。
1.4.6 加權(quán)綜合評(píng)分法
本研究主要是探究一種節(jié)能保質(zhì)的香菇干燥方式,故將單位能耗、粗多糖含量、亮度*值、收縮率這4個(gè)指標(biāo)的重要性比例設(shè)為4∶3∶2∶1進(jìn)行工藝優(yōu)化,根據(jù)公式計(jì)(5)和(6)計(jì)算綜合評(píng)分,其中∑=1,設(shè)ymax對(duì)應(yīng)100分,ymin對(duì)應(yīng) 0分,越小越好的指標(biāo)前應(yīng)為負(fù)號(hào),綜合指標(biāo)越大越好[24],單位能耗和收縮率都是越小越好,因此在計(jì)算綜合指標(biāo)時(shí)應(yīng)在單位能耗和收縮率指標(biāo)前加負(fù)號(hào)。
1.4.7 數(shù)據(jù)分析
運(yùn)用Origin 8.5、SPSS 20.0 和 Design-Expert 8.0 軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行分析和作圖。
2.1.1 前期風(fēng)溫對(duì)香菇品質(zhì)的影響
由圖2可知,香菇經(jīng)紅外噴動(dòng)床干燥后粗多糖含量隨前期風(fēng)溫的升高逐漸增大,在60 ℃時(shí)達(dá)到最大值9.33 mg/g,與戈永慧等[25]、王婭等[26]研究相比,經(jīng)紅外噴動(dòng)床干燥的香菇中粗多糖保留率有所提升。香菇粗多糖含量與加熱溫度[16]和干燥時(shí)間[27]有密切關(guān)系,高溫易引發(fā)美拉德和焦糖化反應(yīng),使得多糖降解為低聚糖和部分焦糖,造成含量下降。圖3顯示在前期風(fēng)溫條件下的溫度曲線,物料在60 ℃時(shí),粗多糖保留率較高,說(shuō)明在該溫度條件下對(duì)物料的營(yíng)養(yǎng)成分損失影響不大。紅外噴動(dòng)床干燥不存在明顯的恒速干燥階段[13],與Szadziska等[28]研究一致,表明在干燥過(guò)程中水分子的主要運(yùn)動(dòng)機(jī)制是擴(kuò)散。因紅外輻射的能量滲透到物料中轉(zhuǎn)化的熱量,減少了由外向內(nèi)擴(kuò)散的過(guò)程,加快水由內(nèi)向外擴(kuò)散的速度[29],且噴動(dòng)床具有干燥均勻性較好的優(yōu)勢(shì),使得物料受熱均勻,從而縮短了干燥時(shí)間。單位能耗在60℃時(shí)達(dá)到最小值160.95 kJ/g,干燥時(shí)間也隨溫度的升高而縮短,耗電量減少,因此單位能耗隨溫度的升高而下降。在前期風(fēng)溫40~60 ℃范圍內(nèi),隨著溫度升高,干燥時(shí)間由260 min縮短至180 min,粗多糖損耗量較小,香菇物料干物質(zhì)的質(zhì)量逐漸增加,干物質(zhì)中粗多糖的含量增加。在較高的空氣溫度下能迅速降低物料的含水率,干燥速率也隨之提高,而低溫則需要消耗更多的熱能,導(dǎo)致干燥時(shí)間增加,單位能耗增加[30],加工成本也隨之增高。選擇合適的前期溫度可有效降低能耗,保持良好的營(yíng)養(yǎng)成分,增加產(chǎn)品經(jīng)濟(jì)效益。
圖4和表2表明,隨著前期風(fēng)溫的增加,干燥后的香菇亮度*值和收縮率呈現(xiàn)先上升后下降的趨勢(shì),均在55 ℃呈現(xiàn)最大值,分別為69.70和91.43%。香菇亮度*值呈現(xiàn)此趨勢(shì)與郭玲玲[31]研究中結(jié)果一致。*值間接反映樣品的受熱程度[32],本試驗(yàn)中*值差異顯著(<0.05)。采用紅外噴動(dòng)床進(jìn)行干燥時(shí),干燥箱內(nèi)物料處于規(guī)律流動(dòng)[12],能有效改善單一紅外干燥方式引起的物料加熱不均勻,避免美拉德反應(yīng)造成褐變的發(fā)生。與紅外熱空氣對(duì)流干燥方法相比,干燥后的香菇樣品亮度有所提升[29]。前期風(fēng)溫為60 ℃時(shí),樣品的亮度*值較55 ℃時(shí)有所下降,但高于40 ℃條件下的亮度值,50 ℃較55 ℃條件下亮度低,原因是在干燥過(guò)程中紅外輻射及噴動(dòng)床干燥對(duì)酶活性的影響和干燥時(shí)間較短,較高溫度下達(dá)到轉(zhuǎn)換點(diǎn)含水率較快,在一定程度上有效抑制了香菇的酶促褐變和氧化反應(yīng)。樣品亮度的增加,有助于保持樣品的色澤,在低溫下會(huì)延長(zhǎng)干燥時(shí)間,進(jìn)而易發(fā)生美拉德反應(yīng),亮度較低。*值隨溫度的升高整體呈現(xiàn)降低趨勢(shì),說(shuō)明香菇在此干燥方式下,由美拉德反應(yīng)產(chǎn)生的焦糊現(xiàn)象不明顯,褐變程度較小。皺縮率值越大,表明皺縮程度越明顯,與干燥過(guò)程中水分?jǐn)U散速率有一定關(guān)聯(lián)。新鮮香菇初始含水率高達(dá)86.06%,在較高溫內(nèi)部水分大量擴(kuò)散蒸發(fā),且紅外輻射使水從樣品內(nèi)部迅速轉(zhuǎn)移到表面,導(dǎo)致細(xì)胞膨脹,內(nèi)外壓差大[29],物料結(jié)構(gòu)發(fā)生劇烈變化,隨著溫度的升高,出現(xiàn)皺縮。收縮率在60 ℃條件下較55 ℃有所下降,干燥時(shí)間隨溫度的升高而縮短,在較高溫度條件下,物料受熱均勻,內(nèi)外結(jié)構(gòu)壓差減小,因此出現(xiàn)下降。低溫會(huì)造成單位能耗增加,且產(chǎn)品品質(zhì)較差,本試驗(yàn)旨在尋求低能耗、高品質(zhì)的干燥條件,能耗作為重要指標(biāo),綜合考慮將50 ℃作為前期風(fēng)溫的較優(yōu)水平。
表2 前期風(fēng)溫對(duì)香菇色澤的影響
注:同列字母不同表示差異顯著(<0.05),下同。
Note: Different letters in the same column indicate significant differences (<0.05). The same below.
2.1.2 后期風(fēng)溫對(duì)香菇品質(zhì)的影響
高溫促進(jìn)美拉德反應(yīng)和焦糖化反應(yīng)的發(fā)生,導(dǎo)致粗多糖含量下降[33]。圖5中表明,60~70 ℃時(shí),粗多糖含量隨溫度的升高而有所增加,后期風(fēng)溫70 ℃達(dá)到最大值10.44 mg/g,高于前期風(fēng)溫60 ℃時(shí)的最大值9.33 mg/g。溫度逐漸升高,達(dá)到80 ℃時(shí),粗多糖含量降至9.10 mg/g,低于后期風(fēng)溫60 ℃時(shí)的含量,且下降趨勢(shì)明顯。溫度過(guò)高,不利于干燥過(guò)程中營(yíng)養(yǎng)成分的保留,多糖降解產(chǎn)生低聚糖和部分焦糖,使多糖含量有所損失,導(dǎo)致產(chǎn)品營(yíng)養(yǎng)品質(zhì)降低,不利于生產(chǎn)加工。單位能耗與前期風(fēng)溫結(jié)果趨勢(shì)保持一致,隨著溫度的升高,物料溫度也不斷上升,干燥速率加快,能耗降低,自由水與弱結(jié)合水易被蒸發(fā),且速度較快,因此干燥時(shí)間縮短,圖6顯示了不同后期風(fēng)溫下的干燥時(shí)間。由于強(qiáng)結(jié)合水需在高熱量的條件下才會(huì)被蒸出,所以綜合考慮應(yīng)選取后期風(fēng)溫在較高條件下以使得產(chǎn)品營(yíng)養(yǎng)成分保留率較高及干燥能耗較低,所以選取70 ℃為較優(yōu)水平進(jìn)行工藝優(yōu)化試驗(yàn)。
圖7和表3顯示了后期風(fēng)溫對(duì)香菇亮度*值和收縮率的影響,*值隨溫度的升高持續(xù)下降,收縮率呈現(xiàn)先上升后下降的趨勢(shì)。溫度為75 ℃時(shí),香菇收縮最為明顯,高達(dá)88.89%,此時(shí)*值處于最大值19.93,說(shuō)明香菇發(fā)生一定程度的褐變反應(yīng),粗多糖含量的下降也表明了香菇發(fā)生糖降解,進(jìn)而出現(xiàn)焦化現(xiàn)象,導(dǎo)致色澤偏黃,且差異顯著(<0.05)。雖然高溫有助于加快干燥速率,降低能耗,但溫度過(guò)高則無(wú)法保持香菇色澤處于良好狀態(tài)。隨著溫度升高,結(jié)構(gòu)中的細(xì)胞失水速率加快,細(xì)胞的孔隙也緊密皺縮[17],收縮率不斷增大。香菇在干燥箱內(nèi)呈現(xiàn)規(guī)律噴動(dòng)的狀態(tài),溫度促進(jìn)干燥速率加快,干燥至一定程度的香菇丁易因噴動(dòng)發(fā)生輕微破碎,也使得收縮率較大。因本試驗(yàn)注重綠色低耗的干燥工藝,單位能耗占比較大,綜合考慮選取70 ℃作為較優(yōu)水平進(jìn)行試驗(yàn)。在單因素試驗(yàn)中,70 ℃時(shí)收縮率為86.57%,*值為68.42。
表3 后期風(fēng)溫對(duì)香菇色澤的影響
2.1.3 轉(zhuǎn)換點(diǎn)含水率對(duì)香菇品質(zhì)的影響
由圖8可知,單位能耗隨轉(zhuǎn)換點(diǎn)含水率的增大而逐漸下降,粗多糖含量呈現(xiàn)先增加后降低的趨勢(shì)。設(shè)定前期風(fēng)溫為50 ℃,后期風(fēng)溫為60 ℃。經(jīng)試驗(yàn)得轉(zhuǎn)換點(diǎn)含水率越高,風(fēng)溫便越快轉(zhuǎn)換為后期風(fēng)溫60 ℃,轉(zhuǎn)換后的溫度升高使得反應(yīng)速率加快,單位能耗隨之呈現(xiàn)逐漸降低趨勢(shì),干燥時(shí)間隨之縮短。物料的水分在干燥過(guò)程中同時(shí)進(jìn)行外擴(kuò)散和內(nèi)擴(kuò)散,擴(kuò)散的速度差及物料內(nèi)部的水分不均勻現(xiàn)象影響著能耗和干燥品質(zhì)[24]。轉(zhuǎn)換點(diǎn)含水率越高,香菇在后期風(fēng)溫條件下干燥的時(shí)間占比越長(zhǎng),較高溫度下干燥易使多糖發(fā)生降解,部分多糖轉(zhuǎn)化為小分子低聚糖,而低聚糖吸收熱能發(fā)生融化[34],多糖含量下降。在轉(zhuǎn)換點(diǎn)含水率55%時(shí),粗多糖含量處于最大值10.26 mg/g,此后隨著轉(zhuǎn)換點(diǎn)含水率增大,粗多糖含量降低。在轉(zhuǎn)換點(diǎn)含水率為55%時(shí),與60%及65%的轉(zhuǎn)換點(diǎn)含水率相比,在較低的前期風(fēng)溫下干燥時(shí)間占比較長(zhǎng),多糖在低溫下不易發(fā)生降解,在此狀況下可能粗多糖含量所占比重增多,因此含量有所上升。紅外噴動(dòng)床干燥的香菇樣品在轉(zhuǎn)換點(diǎn)55%時(shí)營(yíng)養(yǎng)成分保留較好。對(duì)比程慧等[24]采用熱泵-真空聯(lián)合干燥香菇得到最佳工藝條件下的單位能耗為345.01kJ/g及超聲波-微波-紅外輔助對(duì)流干燥物料所得單位能耗[35]均高于本試驗(yàn)得到的單位能耗最大值261.05kJ/g,紅外噴動(dòng)床的干燥速率較快,香菇經(jīng)紅外噴動(dòng)床干燥至含水率為13%以下時(shí),用時(shí)最長(zhǎng)為260 min,比三段式微波真空冷凍干燥、冷凍干燥[17]、太陽(yáng)能干燥、熱風(fēng)干燥及真空冷凍干燥[26]等香菇干燥技術(shù)所用時(shí)間短,有利于節(jié)約生產(chǎn)加工成本。
圖10和表4顯示收縮率與亮度*值隨轉(zhuǎn)換點(diǎn)含水率的增加呈現(xiàn)先增大后減小的趨勢(shì)。本試驗(yàn)中*值差異顯著(<0.05),*值在轉(zhuǎn)換點(diǎn)含水率為55%時(shí),達(dá)到最大值71.75。從*極差值得出,紅外噴動(dòng)床干燥條件下物料受熱較為均勻,與圖9所示的溫度曲線結(jié)果一致。
表4 轉(zhuǎn)換點(diǎn)含水率對(duì)香菇色澤的影響
轉(zhuǎn)換點(diǎn)含水率過(guò)高或過(guò)低都將對(duì)亮度造成影響,高轉(zhuǎn)換點(diǎn)含水率能加快干燥速率,但在后期風(fēng)溫下干燥時(shí)間比前期風(fēng)溫干燥時(shí)間長(zhǎng),易發(fā)生美拉德反應(yīng)、焦化現(xiàn)象等,*在轉(zhuǎn)換點(diǎn)含水率為55%時(shí)呈現(xiàn)最小值16.73,此條件下色澤較好。本試驗(yàn)中*值均優(yōu)于中短波紅外干燥[31-32]及熱風(fēng)-微波分段聯(lián)合干燥[27]香菇的亮度值,紅外與噴動(dòng)床相結(jié)合的干燥方式有助于改善物料的色澤。收縮率在轉(zhuǎn)換點(diǎn)含水率50%時(shí)達(dá)到最大值。合適的轉(zhuǎn)換點(diǎn)含水率能維持樣品較好的形態(tài),過(guò)高的轉(zhuǎn)換點(diǎn)含水率會(huì)導(dǎo)致后期風(fēng)溫干燥時(shí)間過(guò)長(zhǎng),使樣品結(jié)構(gòu)的收縮加快,降低物料復(fù)水的能力。綜合考慮,選取55%轉(zhuǎn)換點(diǎn)含水率為較佳,作為較優(yōu)水平進(jìn)行試驗(yàn)。
2.2.1 響應(yīng)面試驗(yàn)設(shè)計(jì)和回歸方程顯著性分析
通過(guò)響應(yīng)面法分析前期風(fēng)溫()、轉(zhuǎn)換點(diǎn)含水率()和后期風(fēng)溫()3個(gè)因素對(duì)單位能耗、粗多糖含量、亮度*值和收縮率的綜合評(píng)分值,并進(jìn)行優(yōu)化設(shè)計(jì),結(jié)果見(jiàn)表5。
由表6可知,單位能耗回歸方程的顯著性值為2 618.35,對(duì)應(yīng)的值<0.000 1,表明該模型是極顯著的[36];失擬項(xiàng)F為0.34,對(duì)應(yīng)的P值為0.799 8(P>0.05),失擬項(xiàng)不顯著,表明試驗(yàn)誤差較??;單位能耗回歸方程2為0.998 9,說(shuō)明擬合度達(dá)到99.89%,能較好地預(yù)測(cè)單位能耗;粗多糖含量、*值及收縮率的的2均高達(dá)0.993以上。此外,由表6得到3個(gè)試驗(yàn)因素對(duì)單位能耗的影響主次為:前期風(fēng)溫()、轉(zhuǎn)換點(diǎn)含水率()、熱風(fēng)干燥溫度()且2>2>2;對(duì)粗多糖含量影響的主次為、、且2>2>2;對(duì)色澤亮度*值的影響主次為、、且2>2;對(duì)收縮率的影響主次為、、。
表5 響應(yīng)面試驗(yàn)設(shè)計(jì)與結(jié)果
表6 單指標(biāo)回歸方程
由表7知,以綜合評(píng)分值為響應(yīng)值,經(jīng)過(guò)擬合得到回歸方程:=30.37+12.41+0.55+13.56?7.50– 9.24+7.02–8.842–8.512–17.652。該模型中值為36.19,<0.000 1,表明模型極顯著。模型的決定系數(shù)2=0.984 5,表明經(jīng)試驗(yàn)得到的綜合評(píng)分值與預(yù)測(cè)值一致性較高;模型調(diào)整決定系數(shù)為2=0.964 7,試驗(yàn)值有96.47%能完全解釋預(yù)測(cè)值,只有3.53%不能該模型的預(yù)測(cè)值解釋[37]。由模型均值檢驗(yàn)可得前期風(fēng)溫()、轉(zhuǎn)換點(diǎn)含水率()和后期風(fēng)溫()對(duì)香菇綜合品質(zhì)的影響主次為、、且2>2>2,各個(gè)交互作用影響的主次為、、。
表7 綜合評(píng)分值回歸方程方差分析表
注:<0.01表示差異極顯著。
Note:<0.01 indicates extremely significant difference.
2.2.2 工藝參數(shù)優(yōu)化與驗(yàn)證
通過(guò)軟件分析單指標(biāo)和綜合指標(biāo)的優(yōu)化結(jié)果如表8所示。香菇紅外噴動(dòng)床干燥的綜合指標(biāo)優(yōu)化工藝為:前期風(fēng)溫56.37 ℃、轉(zhuǎn)換點(diǎn)含水率52.52%、后期風(fēng)溫72.36 ℃,此時(shí)綜合評(píng)分值為35.63。為考慮試驗(yàn)的可行性,將優(yōu)化工藝參數(shù)調(diào)整為:前期風(fēng)溫56.00 ℃、轉(zhuǎn)換點(diǎn)含水率53.00%、后期風(fēng)溫72.00 ℃,在此條件下進(jìn)行驗(yàn)證試驗(yàn),得到單位能耗為143.52 kJ/g、粗多糖含量9.98 mg/g、亮度*值68.11、收縮率83.15%,綜合評(píng)分值為35.37,與預(yù)測(cè)值擬合度達(dá)99.27%,相對(duì)誤差約為0.73%,表明經(jīng)該多元二次回歸模型[38-39]得到的工藝參數(shù)可靠系數(shù)高,較適合香菇紅外噴動(dòng)床干燥工藝。
表8 指標(biāo)回歸方程優(yōu)化結(jié)果
本試驗(yàn)以單位能耗、粗多糖含量、亮度*值和收縮率為品質(zhì)指標(biāo)綜合分析前期風(fēng)溫、轉(zhuǎn)換點(diǎn)含水率和后期風(fēng)溫對(duì)香菇紅外噴動(dòng)床干燥的影響。在單因素試驗(yàn)中得出紅外噴動(dòng)床干燥方式在單位能耗、干燥時(shí)間及物料營(yíng)養(yǎng)成分保留率等方面,與香菇單一干燥方式及其他聯(lián)合干燥方式相比,具有一定的干燥優(yōu)勢(shì)。經(jīng)優(yōu)化得到干燥工藝為前期風(fēng)溫56.00 ℃、轉(zhuǎn)換點(diǎn)含水率53.00%、后期風(fēng)溫72.00 ℃,該工藝下單位能耗為143.52 kJ/g、粗多糖含量9.98 mg/g、亮度*值68.11、收縮率83.15%,綜合評(píng)分值為35.37,與預(yù)測(cè)值擬合度高達(dá)99.27%。采用新型聯(lián)合干燥裝備—紅外噴動(dòng)床對(duì)香菇進(jìn)行干燥,在一定程度上達(dá)到了能耗及品質(zhì)方面的優(yōu)質(zhì)高效,解決香菇干燥中對(duì)干燥工藝及技術(shù)方法進(jìn)行優(yōu)化的需求,順應(yīng)香菇干制品的發(fā)展趨勢(shì),為香菇干制品的綜合利用提供理論基礎(chǔ)。
[1] 蘇暢,李小江,賈英杰,等. 香菇多糖的抗腫瘤作用機(jī)制研究進(jìn)展[J]. 中草藥,2019,50(6):1499-1504.
Su Chang, Li Xiaojiang, Jia Yingjie, et al. Research progress on antitumor activity of lentinan[J]. Chinese Traditional and Herbal Drugs, 2019, 50(6): 1499-1504. (in Chinese with English abstract)
[2] 周偉,凌亮,郭尚. 香菇食藥價(jià)值綜述[J]. 食藥用菌,2020,28(6):461-465,469.
Zhou Wei, Ling Liang, Guo Shang. Overview of the edible and medicinal value of lentinula edodes[J]. Edible and Medicinal Mushrooms, 2020, 28(6): 461-465, 469. (in Chinese with English abstract)
[3] 侯會(huì),陳鑫,方東路,等. 干燥方式對(duì)食用菌風(fēng)味物質(zhì)影響研究進(jìn)展[J]. 食品安全質(zhì)量檢測(cè)學(xué)報(bào),2019,10(15):4877-4883.
Hou Hui, Chen Xin, Fang Donglu, et al. Research progress on influence of drying methods on flavor compounds of edible fungus[J]. Journal of Food Safety and Quality, 2019, 10(15): 4877-4883. (in Chinese with English abstract)
[4] 周子丹,彭文君,倪家寶,等. 不同干燥方式對(duì)油菜蜂花粉色澤、酚酸含量和抗氧化活性的影響[J]. 食品科學(xué),2021,42(17):76-83.
Zhou Zidan, Peng Wenjun, Ni Jiabao, et al. Effect of different drying methods on color, phenolic acids and antioxidant activity of rape bee pollen[J]. Food Science, 2021, 42(17): 76-83.
[5] 劉玉輝,李騰訓(xùn),王相友,等. 胡蘿卜薄片紅外干燥光學(xué)特性研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(4):342-350.
Liu Yuhui, Li Tengxun, Wang Xiangyou, et al. Optical properties of carrot slices during infrared drying[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 342-350. (in Chinese with English abstract)
[6] 劉啟玲,王慶衛(wèi). 中短波紅外干燥對(duì)桑葚干燥特性、營(yíng)養(yǎng)品質(zhì)及抗氧化活性的影響[J]. 食品工業(yè)科技,2021,42(12):39-45.
Liu Qiling, Wang Qingwei. Effects of short- and medium-wave infrared radiation drying on drying characteristics, nutritional quality and antioxidant activity of mulberry[J]. Science and Technology of Food Industry, 2021, 42(12): 39-45. (in Chinese with English abstract)
[7] Fakhreddin S. Recent applications and potential of infrared dryer systems for drying various agricultural products: A review[J]. International Journal of Fruit Science, 2019, 20(3): 1-17.
[8] 趙旭博,孫正宏,田陽(yáng),等. 不同干燥方式對(duì)香菇品質(zhì)的影響[J]. 農(nóng)產(chǎn)品加工,2017,423(1):115-117.
Zhao Xubo, Sun Zhenghong, Tian Yang, et al. Effect of different drying methods on the quality of nushroom[J]. Farm Products Processing, 2017, 423(1): 115-117. (in Chinese with English abstract)
[9] 朱凱陽(yáng),任廣躍,段續(xù),等. 紅外輻射技術(shù)在農(nóng)產(chǎn)品干燥中的應(yīng)用[J/OL]. 食品與發(fā)酵工業(yè),2021,1-11 [2021-06-20]. https://doi.org/10.13995/j.cnki.11-1802/ts.026575.
Zhu Kaiyang, Ren Guangyue, Duan Xu, et al. Application of infrared radiation technology in drying of agricultural products[J/OL]. Food and Fermentation Industries, 2021, 1-11 [2021-06-20]. https://doi.org/10.13995/j.cnki.11-1802/ts.026575.
[10] 侯志昀,段續(xù),任廣躍,等. 噴動(dòng)床在農(nóng)產(chǎn)品干燥中的研究進(jìn)展[J]. 食品與發(fā)酵工業(yè),2021,47(4):275-283.
Hou Zhiyun, Duan Xu, Ren Guangyue, et al. The progress of the utilization of spouted bed in drying of agricultural products[J]. Food and Fermentation Industries, 2021, 47(4): 275-283. (in Chinese with English abstract)
[11] Thanthong P, Mustafa Y, Ngamrungroj D. Production of dried shrimp mixed with turmeric and salt by spouted bed technique enter the rectangular chamber[J]. Journal of Physics Conference Series, 2017, 901(1): 1-4.
[12] 馬立,段續(xù),任廣躍,等. 紅外—噴動(dòng)床聯(lián)合干燥設(shè)備研制與分析[J]. 食品與機(jī)械,2021,37(2):119-124,129.
Ma Li, Duan Xu, Ren Guangyue, et al. Development and analysis of infrared-spouted bed combined drying equipment[J]. Food & Machinery, 2021, 37(2): 119-124, 129. (in Chinese with English abstract)
[13] 段續(xù),張萌,任廣躍,等. 玫瑰花瓣紅外噴動(dòng)床干燥模型及品質(zhì)變化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(8):238-245.
Duan Xu, Zhang Meng, Ren Guangyue, et al. Drying models and quality changes of rose subjected to infrared assisted spouted bed drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 238-245. (in Chinese with English abstract)
[14] 王教領(lǐng),宋衛(wèi)東,任彩紅,等. 我國(guó)香菇干燥技術(shù)研究進(jìn)展[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2021,42(7):76-83.
Wang Jiaoling, Song Weidong, Ren Caihong, et al. Research on the drying progress of lentinus edodes in China[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(7): 76-83. (in Chinese with English abstract)
[15] 劉靜,翁小祥,奚小波,等. 香菇干燥技術(shù)研究進(jìn)展[J]. 包裝與食品機(jī)械,2021,39(2):37-44.
Liu Jing, Weng Xiaoxiang, Xi Xiaobo, et al. Research progress in technology of drying lentinus edodes[J]. Packaging and Food Machinery, 2021, 39(2): 37-44. (in Chinese with English abstract)
[16] 張迎敏,任廣躍,段續(xù),等. 紅薯葉粉熱泵—熱風(fēng)聯(lián)合干燥工藝優(yōu)化[J]. 食品與發(fā)酵工業(yè),2021,47(1):198-205.
Zhang Yingmin, Ren Guangyue, Duan Xu, et al. Optimization of heat pump-hot air combined drying on sweet potato leaf powder[J]. Food and Fermentation Industries, 2021, 47(1): 198-205. (in Chinese with English abstract)
[17] 張海偉,魯加惠,張雨露,等. 干燥方式對(duì)香菇品質(zhì)特性及微觀結(jié)構(gòu)的影響[J]. 食品科學(xué),2020,41(11):150-156.
Zhang Haiwei, Lu Jiahui, Zhang Yulu, et al. Effects of drying methods on the quality characteristics and microstructure of shiitake mushrooms (lentinus edodes)[J]. Food Science, 2020, 41(11): 150-156. (in Chinese with English abstract)
[18] 國(guó)家衛(wèi)生和計(jì)劃生育委員會(huì). 食品安全國(guó)家標(biāo)準(zhǔn)食用菌及其制品:GB 7096-2014[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2014:3-4.
[19] 高雪. 中短波紅外聯(lián)合熱風(fēng)干燥工藝對(duì)香菇干燥特性和品質(zhì)的影響[D]. 沈陽(yáng):沈陽(yáng)農(nóng)業(yè)大學(xué),2020,53-54.
Gao Xue. Effects of Drying Characteristics and Quality of Shiitake Mushrooms Using MIRD Combined HAD Drying Processes[D]. Shenyang: Shenyang Agricultural University, 2020, 53-54. (in Chinese with English abstract)
[20] 中華人民共和國(guó)國(guó)家衛(wèi)生和計(jì)劃生育委員會(huì). GB 5009.3-2016食品安全國(guó)家標(biāo)準(zhǔn)食品中水分的測(cè)定[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,2016.
[21] 農(nóng)業(yè)部. 食用菌中粗多糖含量的測(cè)定:NY/T 1676-2008[S]. 北京:中國(guó)農(nóng)業(yè)出版社,2008.
[22] 張莉會(huì),廖李,汪超,等. 超聲和滲透預(yù)處理對(duì)干燥草莓片品質(zhì)及抗氧化活性影響[J]. 現(xiàn)代食品科技,2018,34(12):196-203.
Zhang Lihui, Liao li, Wang Chao, et al. Effects of ultrasonic and osmotic pretreatment on quality and antioxidant activity of dried strawberry slices[J]. Modern Food Science and Technology, 2018, 34(12): 196-203. (in Chinese with English abstract)
[23] Luo D, Wu J, Ma Z, et al. Production of high sensory quality shiitake mushroom (Lentinus edodes) by pulsed air-impingement jet drying (AID) technique[J]. Food Chemistry, 2020, 341(2): 128290.
[24] 程慧,姬長(zhǎng)英,張波,等. 香菇熱泵—真空聯(lián)合干燥工藝優(yōu)化[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,40(1):125-132.
Cheng Hui, Ji Changying, Zhang Bo, et al. Optimization of drying process for lentinus edodes by combing heat pump with vacuum[J]. Journal of South China Agricultural University, 2019, 40(1): 125-132. (in Chinese with English abstract)
[25] 戈永慧,張慧,彭菁,等. 熱蒸汽燙漂聯(lián)合熱風(fēng)微波耦合干燥香菇的工藝優(yōu)化[J]. 食品工業(yè)科技,2020,41(13):59-64,71.
Ge Yonghui, Zhang Hui, Peng Jing, et al. Optimization of the technology of hot steam blanching coupled with hot air-microwave combined drying process of shiitakes[J]. Science and Technology of Food Industry, 2020, 41(13): 59-64, 71. (in Chinese with English abstract)
[26] 王婭,姚利利,王頡,等. 不同干燥方式對(duì)香菇品質(zhì)影響的研究[J]. 食品研究與開(kāi)發(fā),2019,40(19):38-41, 58.
Wang Ya, Yao Lili, Wang Jie, et al. Study on the effect of different drying methods on the quality of dried mushrooms[J]. Food Research and Development, 2019, 40(19): 38-41, 58. (in Chinese with English abstract)
[27] 許洋,徐茂,蔣和體. 不同干燥方法對(duì)香菇片品質(zhì)及微觀結(jié)構(gòu)的影響[J]. 食品與發(fā)酵工業(yè),2020,46(14):189-197.
Xu Yang, Xu Mao, Jiang Heti. Effects of different drying methods on the quality and microstructure of shiitake slices[J]. Food and Fermentation Industries, 2020, 46(14): 189-197. (in Chinese with English abstract)
[28] Szadziska J, Mierzwa D. The influence of hybrid drying (microwave-convective) on drying kinetics and quality of white mushrooms[J]. Chemical Engineering and Processing, 2021, 167(1): 108532.
[29] Zhang J, Yagoub E, Sun Y, et al. Role of thermal and non-thermal drying techniques on drying kinetics and the physicochemical properties of shiitake mushroom[J/OL]. Journal of the Science of Food and Agriculture, 2021, [2021-06-20]. https://doi.org/10.1002/jsfa.11348
[30] Lu X F, Zhou Y, Ren Y P, et al. Improved sample treatment for the determination of flavonoids and polyphenols in sweet potato leaves by ultra performance convergence chromatography- tandem mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis, 2019, 901(169): 245-253.
[31] 郭玲玲. 香菇中短波紅外干燥工藝及應(yīng)用研究[D]. 長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué),2016,21-29.
Guo lingling. Research on Technology and Application of Medium and Short Wave Infrared Radiation Drying for Shiitake Mushrooms[D]. Changsha: Hunan Agricultural University, 2016, 21-29. (in Chinese with English abstract)
[32] 王洪彩. 香菇中短波紅外干燥及其聯(lián)合干燥研究[D]. 無(wú)錫:江南大學(xué),2014,26-30.
Wang Hongcai. Mid-infrared Drying Shiitake Mushrooms and Its Hybrid Drying Study[D]. Wuxi: Jiangnan University, 2014, 26-30. (in Chinese with English abstract)
[33] Tian Y, Zhao Y, Huang J, et al. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms[J]. Food Chemistry, 2016, 197(A): 714-722.
[34] 聶林林,張國(guó)治,王安建,等. 熱泵干燥對(duì)香菇品質(zhì)特性的影響[J]. 河南工業(yè)大學(xué)學(xué)報(bào):自然科學(xué)版,2015,36(6):59-63.
Nie Linlin, Zhang Guozhi, Wang Anjian, et al. Effect of heat-pump drying on the quality characteristics of lentinula edodes[J]. Journal of Henan University of Technology: Natural Science Edition, 2015, 36(6): 59-63. (in Chinese with English abstract)
[35] Abbaspour-Gilandeh Y, Kaveh M, Aziz M. Ultrasonic- Microwave and infrared assisted convective drying of carrot: Drying kinetic, quality and energy consumption[J]. Applied Sciences, 2020, 10(18): 6309.
[36] Machado J C B, Ferreira M R A, Soares L A L. Optimization of the drying process of standardized extracts from leaves ofL. using Box–Behnken design and response surface methodology[J/OL]. Journal of Food Processing and Preservation, 2021, [2021-06-20]. https://doi.org/10.1111/jfpp.15595.
[37] 靳力為,任廣躍,段續(xù),等. 超聲波協(xié)同作用對(duì)真空凍干杏脫水及其品質(zhì)的影響[J]. 食品與發(fā)酵工業(yè),2020,46(6):133-139.
Jin Liwei, Ren Guangyue, Duan Xu, et al. Effect of ultrasonic synergy on the dehydration and quality of vacuum freeze-dried apricots[J]. Food and Fermentation Industries, 2020, 46(6): 133-139. (in Chinese with English abstract)
[38] Obajemihi O I, Olaoye J O, Ojediran J O, et al. Model development and optimization of process conditions for color properties of tomato in a hot-air convective dryer using Box- Behnken design[J/OL]. Journal of Food Processing and Preservation, 2020, 44(10): e14771. [2021-06-20]. https://doi.Org/10. 1111/jfpp.14771.
[39] Rahmawati L, Saputra D, Sahim K, et al. Optimization of infrared drying condition for whole duku fruit using response surface methodology[J]. Potravinarstvo Slovak Journal of Food Sciences, 2019, 13(1): 462-469.
Optimization of the drying process parameters for lentinus edodes in segment variable temperature infrared assisted spouted bed
Duan Xu1,2, Xu Yiming1, Ren Guangyue1,2, Li Linlin1, Hou Zhiyun1, Zhao Mengyue1
(1.,,471023,; 2.,,450001,)
Lentinus edodes are favored by consumers, due mainly to the antitumor, immunoregulation, anti-aging, antioxidation, and anti-radiation. However, the drying process can be used to extend the shelf life, because the fresh lentinus edodes are not easy to store. In this experiment, a new infrared-assisted spouted bed drying equipment was used to investigate the drying process of lentinus edodes under the segment variable temperature. An infrared-assisted spouted bed was utilized to improve the high energy consumption and heat loss of infrared drying with uniform distribution. A single factor Box-Behnken Design was used to optimize the response surface experiment. The parameters included the early wind temperature, water content at conversion point, and late wind temperature on specific power consumption, crude polysaccharide content, brightness value*and shrinkage ratio. The polynomial regression was derived by a weighted comprehensive score to optimize the drying process parameters of an infrared-assisted spouted bed. The results showed that the crude polysaccharide content of lentinus edodes dried by infrared spouted assisted bed gradually increased, with the increase of early wind temperature (), where the retention rate increased to a maximum of 9.33 mg/g at 60°C. The materials were also heated evenly during drying. The specific power consumption decreased to reach the minimum of 160.95 kJ/g, while the drying time was shortened, with the increase of temperature, when the early wind temperature was 60°C. Brightness value*and shrinkage ratio showed a trend of first increased and then decreased, with the increase of early wind temperature at the maximum of 55°C. Appropriate early wind temperature could effectively reduce the specific power consumption, thereby maintaining high nutrients for better economic benefits. The content of crude polysaccharide increased significantly, where the maximum was 10.44 mg/g at 70°C, particularly when the late wind temperature () was 60°C-70°C. Furthermore, there was an obvious downward trend, when the temperature continued to rise. Excessive temperature could damage the retention of nutrients during drying, due mainly to polysaccharide degradation produced oligosaccharides and partial caramel. The drying rate accelerated, but the specific power consumption decreased, with the increase of temperature. In addition, there was the most obvious shrinkage ratio at 75°C, with the maximum yellow/blue value*of 19.93, while the brightness value*value continued to decrease, with the increase of late wind temperature. Correspondingly, there was a significant difference (<0.05), particularly slightly browning, and yellow color of Lentinula edodes.The specific power consumption decreased gradually, with the increase of water content at conversion point (). There was also a trend of first increasing and then decreasing in the crude polysaccharide content. The shrinkage ratio and brightness value*increased first and then decreased, with the increase of water content at the conversion point. The single factor interaction was ranked in the order of>>The optimal drying parameters were achieved using the response surface method, where the early wind temperature was 56.00°C, the water content at the conversion point was 53.00%, and the late wind temperature was 72.00°C. In this case, the specific power consumption was 143.52 kJ/g, the crude polysaccharide content was 9.98 mg/g, the brightness value*value was 68.11, the shrinkage ratio was 83.15%, the comprehensive score value was 35.37, and the fitting degree with the predicted value was 99.27%. Consequently, the infrared-assisted spouted bed drying can widely be expected to fully meet the development trend and demand of lentinus edodes products. The finding can also provide a theoretical foundation for the production and processing of dried lentinus edodes products.
drying; quality control; process optimization; lentinus edodes; infrared assisted spouted bed drying; specific power consumption
段續(xù),徐一銘,任廣躍,等. 香菇分段變溫紅外噴動(dòng)床干燥工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(19):293-302.doi:10.11975/j.issn.1002-6819.2021.19.034 http://www.tcsae.org
Duan Xu, Xu Yiming, Ren Guangyue, et al. Optimization of the drying process parameters for lentinus edodes in segment variable temperature infrared assisted spouted bed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 293-302. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.19.034 http://www.tcsae.org
2021-06-24
2021-08-20
“十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃“現(xiàn)代食品加工及糧食儲(chǔ)運(yùn)技術(shù)與裝備”(2017YFD0400901).
段續(xù),博士,教授,研究方向?yàn)檗r(nóng)產(chǎn)品加工。Email:duanxu_dx@163.com
10.11975/j.issn.1002-6819.2021.19.034
TS255.3
A
1002-6819(2021)-19-0293-10