国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于PSO-Elman算法的茶葉烘干含水率預(yù)測(cè)

2021-12-28 12:35:14趙麗清段東瑤殷元元鄭映暉薛懿威
關(guān)鍵詞:滾筒含水率茶葉

趙麗清,段東瑤,殷元元,鄭映暉,徐 鑫,孫 穎,薛懿威

基于PSO-Elman算法的茶葉烘干含水率預(yù)測(cè)

趙麗清,段東瑤,殷元元,鄭映暉,徐 鑫,孫 穎,薛懿威

(青島農(nóng)業(yè)大學(xué)機(jī)電工程學(xué)院,青島 266109)

為研究茶葉熱風(fēng)烘干過(guò)程中內(nèi)部水分的變化規(guī)律,該試驗(yàn)以綠茶為例,通過(guò)對(duì)揉捻后的茶葉進(jìn)行動(dòng)態(tài)熱風(fēng)烘干,監(jiān)測(cè)不同喂入量(800~1 200 g)、烘干溫度(90~120 ℃)、滾筒轉(zhuǎn)速(20~30 r/min)下的茶葉含水率變化。試驗(yàn)采用烘干法測(cè)定含水率,將烘干溫度、滾筒轉(zhuǎn)速、烘干初始水分、預(yù)測(cè)時(shí)間作為輸入,含水率作為輸出,分別利用多元線性回歸、BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)、Elman神經(jīng)網(wǎng)絡(luò)以及粒子群優(yōu)化的Elman神經(jīng)網(wǎng)絡(luò)(PSO-Elman)算法建立烘干過(guò)程茶葉含水率預(yù)測(cè)模型。結(jié)果表明,溫度對(duì)烘干過(guò)程影響最大,喂入量以茶葉鋪滿滾筒壁形成完美拋撒料幕為宜,過(guò)多容易造成受熱不均,整個(gè)烘干過(guò)程茶葉含水率降低速率呈現(xiàn)先快后慢的趨勢(shì),烘干結(jié)束時(shí)含水率基本穩(wěn)定在4%~5%。分別對(duì)建立的多元線性回歸、BP、Elman以及PSO-Elman含水率預(yù)測(cè)模型進(jìn)行驗(yàn)證和誤差分析,模型測(cè)試集決定系數(shù)分別為0.960 9、0.998 0、0.998 5和0.999 4,且BP和Elman,PSO-Elman模型的平均絕對(duì)誤差僅為0.035%、0.026%和0.014%,而傳統(tǒng)線性回歸模型的平均絕對(duì)誤差高達(dá)2.414%,相比傳統(tǒng)線性回歸模型,3種神經(jīng)網(wǎng)絡(luò)算法均表現(xiàn)出了更好的預(yù)測(cè)效果,能更好的預(yù)測(cè)茶葉烘干過(guò)程的含水率變化。研究結(jié)果可為茶葉熱風(fēng)烘干工藝和過(guò)程提供理論依據(jù),為指導(dǎo)茶葉加工生產(chǎn),提高加工效率和茶葉品質(zhì)提供參考依據(jù)。

含水率;干燥;茶葉;動(dòng)態(tài)規(guī)律;神經(jīng)網(wǎng)絡(luò);預(yù)測(cè)模型

0 引 言

茶是世界三大飲料(可可,咖啡,茶)中最具生命力、最具市場(chǎng)前景的飲料,已被證明可用于降低如癌癥和心血管等慢性病的發(fā)生率[1-2]。水分是茶葉加工過(guò)程中葉片內(nèi)部一系列化學(xué)反應(yīng)的介質(zhì),是衡量茶葉加工過(guò)程中最重要的品質(zhì)因子,因此水分的散失程度以及速度極大影響了茶葉品質(zhì)[3]。茶葉生產(chǎn)需要經(jīng)過(guò)多道加工工序,其中烘干過(guò)程作為茶葉加工的最后一道工序,隨著茶葉水分散失鞏固外形,茶葉內(nèi)部成分發(fā)生微妙反應(yīng),是形成茶葉色澤、香氣以及滋味的重要過(guò)程[4-6]。傳統(tǒng)茶葉烘干依靠工人師傅的主觀判斷來(lái)控制茶葉品質(zhì),穩(wěn)定性不足,通常采用茶葉機(jī)械輔助茶葉加工過(guò)程,研究茶葉烘干過(guò)程中的含水率變化規(guī)律,建立精確的水分預(yù)測(cè)模型對(duì)于指導(dǎo)茶葉機(jī)械化加工以及提升茶葉品質(zhì)具有重要意義[7-8]。

神經(jīng)網(wǎng)絡(luò)(Neural Networks)擁有出色的數(shù)據(jù)處理,擬合和分類能力,廣泛應(yīng)用于非線性模型的建立,其出色的預(yù)測(cè)能力得到廣泛認(rèn)可。高震宇等[9]結(jié)合機(jī)器視覺(jué)以及卷積神經(jīng)網(wǎng)絡(luò)算法,設(shè)計(jì)了茶葉分選模型;張帥堂等[10]利用高光譜成像技術(shù)和遺傳優(yōu)化神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)對(duì)茶葉病斑的準(zhǔn)確快速識(shí)別;王勝鵬等[11]以神經(jīng)網(wǎng)絡(luò)為基礎(chǔ)建立了青磚茶壓制壓力定量分析模型,為青磚茶產(chǎn)品的研發(fā)和品質(zhì)的快速檢測(cè)奠定了理論基礎(chǔ);王近近等[12]設(shè)計(jì)試驗(yàn)研究足火工藝參數(shù)對(duì)工夫紅茶熱風(fēng)干燥特性和品質(zhì)的影響,為優(yōu)質(zhì)工夫紅茶標(biāo)準(zhǔn)化加工工藝參數(shù)的優(yōu)化提供理論依據(jù)。近年來(lái)關(guān)于預(yù)測(cè)模型的研究較多[13-16],但是目前來(lái)看,大部分研究都忽略了茶葉在加工過(guò)程中含水率的動(dòng)態(tài)變化規(guī)律。本文選取綠茶為試驗(yàn)對(duì)象,探究不同烘干條件下茶葉烘干過(guò)程中的水分變化規(guī)律,采用神經(jīng)網(wǎng)絡(luò)算法,以烘干溫度、滾筒轉(zhuǎn)速、茶葉喂入量、茶葉初始含水率以及烘干時(shí)間作為輸入?yún)?shù),建立精確的茶葉烘干過(guò)程含水率預(yù)測(cè)模型,為茶葉烘干過(guò)程中水分的快速檢測(cè)提供新的思路,為指導(dǎo)茶葉加工,提升茶葉品質(zhì)以及茶葉烘干過(guò)程的智能控制提供理論依據(jù)。

1 材料與方法

1.1 試驗(yàn)材料

茶鮮葉采摘于山東日照嗣晨茶葉有限公司茶園,為標(biāo)準(zhǔn)一芽一葉、一芽?jī)扇~鮮葉,品種為鳩坑早。

1.2 儀器與設(shè)備

MB45鹵素水分分析儀,上海奧豪斯儀器有限公司;YH型電子天平,上海英衡稱重有限公司;6CST-100L型茶葉清潔化生產(chǎn)流水線,日照春茗機(jī)械制造有限公司;6CH-2A型迷你滾筒烘干機(jī),日照春茗機(jī)械制造有限公司;DHG-9140A型電熱鼓風(fēng)干燥箱,上海一恒科學(xué)儀器有限公司。除此之外還有密實(shí)袋、保鮮膜、鋁盒、烘干皿、計(jì)算機(jī)等輔助用具。

1.3 試驗(yàn)設(shè)計(jì)

將采摘的標(biāo)準(zhǔn)一芽一葉、一芽?jī)扇~鮮葉(含水率76%~80%),置于室溫(18~22℃)下攤青(厚度3 cm)10 h使含水率降至70%左右,依照山東省日照嗣晨茶葉有限公司設(shè)定生產(chǎn)條件(溫度300℃,滾筒轉(zhuǎn)速30 r/min,時(shí)間3~4min)、回潮(室溫18~22℃,時(shí)間1 h)投入6CST-100L型茶葉清潔化生產(chǎn)流水線經(jīng)殺青、揉捻(時(shí)間20~30min)后將茶葉用密實(shí)袋密封。在室溫22 ℃下靜置1 h使茶葉水分均勻分布,此時(shí)茶葉含水率在49%~51%,通過(guò)6CH-2A型烘干機(jī)進(jìn)行烘干試驗(yàn)。6CH-2A型迷你滾筒烘干機(jī)主要技術(shù)參數(shù)和結(jié)構(gòu)圖分別如表1和圖1所示,由烘干機(jī)結(jié)構(gòu)可知,烘干過(guò)程茶葉含水率變化的主要影響因素為茶葉喂入量、烘干溫度、滾筒轉(zhuǎn)速以及烘干時(shí)間,此外,烘干過(guò)程茶葉的初始含水率是決定能否進(jìn)行烘干的重要因素。設(shè)置時(shí)間梯度對(duì)烘干過(guò)程進(jìn)行梯度采樣,記錄初始含水率49%~51%的茶葉樣本在不同喂入量、烘干溫度、滾筒轉(zhuǎn)速的條件下烘干過(guò)程(烘干結(jié)束含水率約為4%~5%)含水率的變化情況。

表1 6CH-2A型滾筒烘干機(jī)主要技術(shù)參數(shù)

茶葉含水率檢測(cè)主要包括直接法和間接法[17-19],本文采用120℃水分快速測(cè)定法(直接法)對(duì)茶葉樣本進(jìn)行水分檢測(cè)。其水分測(cè)量如式(1)所示:

式中為所測(cè)樣品的含水率,%;1為樣品的初始質(zhì)量,g;2為樣品烘干后的質(zhì)量,g。對(duì)樣品測(cè)試3次,取平均值作為當(dāng)前樣品的含水率。

2 水分預(yù)測(cè)模型的建立

為對(duì)茶葉烘干過(guò)程中含水率動(dòng)態(tài)變化過(guò)程進(jìn)行準(zhǔn)確的預(yù)測(cè),本文基于烘干試驗(yàn)所得數(shù)據(jù)集,分別以BP(Back Propagation)神經(jīng)網(wǎng)絡(luò)、Elman神經(jīng)網(wǎng)絡(luò)以及PSO-Elman神經(jīng)網(wǎng)絡(luò)算法建立不同烘干條件下的茶葉含水率預(yù)測(cè)模型,采用平均絕對(duì)誤差MAE、均方根誤差RMSE和決定系數(shù)2作為模型評(píng)價(jià)指標(biāo),2越接近1,平均絕對(duì)誤差、均方根誤差越接近于0,表明模型的預(yù)測(cè)效果越好[20],尋找最優(yōu)模型以解決茶葉烘干過(guò)程中含水率動(dòng)態(tài)預(yù)測(cè)的問(wèn)題。

2.1 Elman神經(jīng)網(wǎng)絡(luò)模型

Elman神經(jīng)網(wǎng)絡(luò)是一種應(yīng)用廣泛的反饋型神經(jīng)網(wǎng)絡(luò)模型,在BP神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)上,增加了一個(gè)承接層,使網(wǎng)絡(luò)具有局部記憶和反饋的能力[21]。Elman網(wǎng)絡(luò)的結(jié)構(gòu)如圖2所示,分為輸入層、隱含層、承接層和輸出層,增加的承接層與隱含層神經(jīng)元數(shù)量一致,從隱含層接收反饋信號(hào),將上一時(shí)刻的隱層狀態(tài)連同當(dāng)前時(shí)刻的輸入一起作為隱層的輸入,從而達(dá)到記憶的目的?;谶@種結(jié)構(gòu)使得Elman網(wǎng)絡(luò)能夠內(nèi)部反饋、存儲(chǔ)和利用過(guò)去時(shí)刻的輸出信息,相比BP網(wǎng)絡(luò),其計(jì)算能力和網(wǎng)絡(luò)穩(wěn)定性都表現(xiàn)的更好[22]。

隱含層的層數(shù)和節(jié)點(diǎn)數(shù)的設(shè)置對(duì)網(wǎng)絡(luò)的性能影響很大,過(guò)多會(huì)增加網(wǎng)絡(luò)的復(fù)雜度和計(jì)算量,甚至產(chǎn)生過(guò)擬合,過(guò)少則會(huì)影響網(wǎng)絡(luò)的性能??紤]到網(wǎng)絡(luò)復(fù)雜性,一般設(shè)置網(wǎng)絡(luò)隱含層為1層,根據(jù)經(jīng)驗(yàn)公式(2)和試湊法確定隱含層神經(jīng)元數(shù)目:

式中為隱含層節(jié)點(diǎn)數(shù)目,為輸出層節(jié)點(diǎn)數(shù)目,為輸入層節(jié)點(diǎn)數(shù)目,為調(diào)節(jié)常數(shù),取1~10范圍內(nèi)進(jìn)行訓(xùn)練找到最優(yōu)值。

各層之間神經(jīng)元互相連接,通過(guò)不同的權(quán)值和閾值實(shí)現(xiàn)信息的傳遞。設(shè)輸入層和隱含層之間的權(quán)值為w,承接層和隱含層之間權(quán)值為w,閾值為b,則隱含層每個(gè)節(jié)點(diǎn)的輸出值由式(3)、(4)決定:

輸出層每個(gè)節(jié)點(diǎn)的輸出值由式(5)決定:

式中=1,2,3,…,,=1,2,3,…,。(·)為輸出層激活函數(shù),b為第個(gè)節(jié)點(diǎn)的閾值。(·)與(·)不一定相同。

采用經(jīng)典的梯度下降法實(shí)現(xiàn)信息反向傳遞更新權(quán)值和閾值,取式(6)作為誤差函數(shù):

式中d為真實(shí)值,y為預(yù)測(cè)值,為誤差函數(shù)。

隱含層到輸出層之間的權(quán)值和閾值更新如式(7)、(8)所示

輸入層和承接層到隱含層之間的權(quán)值和閾值更新如式(9)、(10)、(11)所示:

2.2 基于粒子群算法優(yōu)化的Elman神經(jīng)網(wǎng)絡(luò)

Elman神經(jīng)網(wǎng)絡(luò)能夠做到內(nèi)部反饋、存儲(chǔ)和利用過(guò)去時(shí)刻輸出信息,實(shí)現(xiàn)動(dòng)態(tài)系統(tǒng)的映射并直接反映系統(tǒng)的動(dòng)態(tài)特性,在計(jì)算能力及網(wǎng)絡(luò)穩(wěn)定性方面都比BP神經(jīng)網(wǎng)絡(luò)更勝一籌。但是其權(quán)值和閾值的更新與BP神經(jīng)網(wǎng)絡(luò)一樣,首先對(duì)初始的權(quán)值和閾值進(jìn)行隨機(jī)賦值,然后基于梯度下降法對(duì)網(wǎng)絡(luò)進(jìn)行訓(xùn)練,容易陷入局部最小值,較難達(dá)到全局最優(yōu)[23-24]。為了增強(qiáng)網(wǎng)絡(luò)全局尋優(yōu)的能力,引入粒子群優(yōu)化算法對(duì)Elman網(wǎng)絡(luò)進(jìn)行優(yōu)化,避免網(wǎng)絡(luò)陷入局部最小值。

2.2.1 粒子群算法

粒子群優(yōu)化算法(PSO,Particle Swarm Optimization)模擬了自然界鳥(niǎo)群和魚(yú)群捕食的過(guò)程。中心思想是通過(guò)群體信息的共享找到全局最優(yōu)解,在群體活動(dòng)中,每一個(gè)個(gè)體都受益于所有個(gè)體在優(yōu)化過(guò)程中發(fā)現(xiàn)和積累的經(jīng)驗(yàn),不存在局部收斂問(wèn)題[25]。粒子群算法的核心思想如式(12)、(13):

式中v是粒子速度;x是本次粒子位置;是上次粒子位置,是慣性因子;是介于(0,1)之間的隨機(jī)數(shù);1和2是學(xué)習(xí)因子,通常取固定值2;pbest為個(gè)體歷史最優(yōu)值;gbest為全局歷史最優(yōu)值。

采用粒子群算法對(duì)網(wǎng)絡(luò)進(jìn)行初始尋優(yōu),使網(wǎng)絡(luò)在訓(xùn)練前已經(jīng)接近全局最優(yōu)解,在此基礎(chǔ)上網(wǎng)絡(luò)再次進(jìn)行尋優(yōu)訓(xùn)練,提高網(wǎng)絡(luò)尋優(yōu)效率的同時(shí)避免陷入局部最優(yōu)。

2.2.2 PSO-Elman算法

粒子群算法優(yōu)化Elman神經(jīng)網(wǎng)絡(luò)分為三部分:Elman神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)的確定,粒子群算法優(yōu)化以及Elman神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)。Elman根據(jù)輸入輸出參數(shù)個(gè)數(shù)確定網(wǎng)絡(luò)結(jié)構(gòu),從而確定粒子群需要優(yōu)化的權(quán)值和閾值個(gè)數(shù),再通過(guò)粒子群算法對(duì)網(wǎng)絡(luò)初始的權(quán)值和閾值進(jìn)行優(yōu)化,以提高網(wǎng)絡(luò)全局尋優(yōu)的能力。這里粒子群中的每個(gè)粒子個(gè)體都包含了網(wǎng)絡(luò)的所有權(quán)值和閾值,通過(guò)適應(yīng)度函數(shù)計(jì)算個(gè)體的適應(yīng)度值,不斷迭代更新每個(gè)粒子的速度和位置,找到最優(yōu)適應(yīng)度的粒子對(duì)網(wǎng)絡(luò)的初始權(quán)值和閾值進(jìn)行賦值,網(wǎng)絡(luò)經(jīng)過(guò)訓(xùn)練后輸出樣本預(yù)測(cè)值[26]。PSO優(yōu)化Elman神經(jīng)網(wǎng)絡(luò)的算法流程圖如圖3所示。

基于相同的數(shù)據(jù)集分別以BP、Elman以及PSO-Elman神經(jīng)網(wǎng)絡(luò)算法建立茶葉烘干過(guò)程的含水率預(yù)測(cè)模型,模型均為4輸入(分別對(duì)應(yīng)烘干溫度、滾筒轉(zhuǎn)速、初始含水率以及烘干時(shí)間)1輸出(對(duì)應(yīng)烘干過(guò)程含水率),通過(guò)參數(shù)尋優(yōu)確定最優(yōu)網(wǎng)絡(luò)參數(shù)(權(quán)值和閾值)進(jìn)行訓(xùn)練。

充電電流是電池的充電速度、效率以及充電電量及其重要的影響因素,因此先采用田口法來(lái)對(duì)5階充電電流進(jìn)行優(yōu)化,得到相應(yīng)的優(yōu)化值。

3 結(jié)果與分析

3.1 茶葉烘干過(guò)程含水率變化規(guī)律

3.1.1 不同喂入量下茶葉含水率的變化規(guī)律

茶葉初始含水率為50%左右,調(diào)整茶葉喂入量進(jìn)行烘干試驗(yàn),根據(jù)烘干機(jī)筒壁容積設(shè)置喂入量變化范圍為800~1 200 g,茶葉烘干時(shí)的含水率變化規(guī)律如圖4所示,結(jié)果表明,在800~1 000 g喂入量情況下茶葉烘干效果較好,超過(guò)1 000 g烘干效果明顯降低,這是因?yàn)楫?dāng)滾筒轉(zhuǎn)動(dòng)時(shí)會(huì)帶動(dòng)茶葉顆粒使其進(jìn)行拋撒形成料幕,與滾筒內(nèi)熱空氣接觸[27-28],當(dāng)喂入量較少時(shí),滾筒內(nèi)茶葉顆粒分布較為稀疏,茶葉在筒體內(nèi)與熱空氣充分接觸,烘干均勻性高,效果較好,當(dāng)喂入量較高時(shí),茶葉顆粒之間接觸較為緊密,在筒體內(nèi)運(yùn)動(dòng)時(shí)茶葉間互相粘連,受熱不均使得烘干效果降低,可見(jiàn)對(duì)于烘干過(guò)程,適當(dāng)增加喂入量可提高茶葉生產(chǎn)效率,同時(shí)有利于茶葉品質(zhì)的提高。

3.1.2 不同轉(zhuǎn)速下茶葉含水率的變化規(guī)律

喂入量設(shè)置為1000 g,茶葉初始含水率均控制在49%~51%之間,固定烘干機(jī)溫度90℃,設(shè)置滾筒轉(zhuǎn)速分別為20、25、30 r/min進(jìn)行烘干試驗(yàn),茶葉投入前對(duì)烘干機(jī)進(jìn)行預(yù)熱,達(dá)到指定的溫度后開(kāi)始烘干。茶葉含水率變化規(guī)律如圖5所示,結(jié)果表明,在相同的溫度下,滾筒轉(zhuǎn)速越高,茶葉含水率降低越快,且高水狀態(tài)下茶葉的失水速度明顯高于低水狀態(tài)的失水速度,烘干后期茶葉失水速度變緩,這是由于滾筒轉(zhuǎn)速較低時(shí),滾筒帶動(dòng)茶葉轉(zhuǎn)動(dòng)形成的料幕面積較小[29],茶葉與筒體內(nèi)熱空氣接觸不充分,含水率變化緩慢,當(dāng)轉(zhuǎn)速過(guò)高時(shí),茶葉失水速度提高,加之茶葉與滾筒內(nèi)壁碰撞加劇,使得部分茶葉破碎。因此在茶葉烘干過(guò)程應(yīng)適當(dāng)增加滾筒轉(zhuǎn)速,在保證合理的碎茶率的基礎(chǔ)上能形成良好的料幕,提高茶葉品質(zhì)。

3.1.3 不同溫度下茶葉含水率的變化規(guī)律

茶葉初始含水率為50%,改變溫度進(jìn)行烘干試驗(yàn),茶葉含水率的變化規(guī)律如圖6所示。試驗(yàn)結(jié)果表明,相比于轉(zhuǎn)速,茶葉含水率的變化受溫度的影響更為明顯,在低溫90 ℃下茶葉失水較為平緩,在高溫120 ℃下茶葉失水迅速,但是容易造成水分變化不均勻,出現(xiàn)焦邊、糊邊、爆點(diǎn)等現(xiàn)象,對(duì)茶葉品質(zhì)有較大影響[30]。由圖6可知,中間溫度100 ℃、110 ℃相比于90 ℃下的水分變化更為迅速,同時(shí)不會(huì)像120 ℃高溫對(duì)茶葉品質(zhì)影響較大,可見(jiàn)在茶葉烘干過(guò)程中,溫度的控制至關(guān)重要,如果溫度過(guò)低,茶葉失水緩慢,茶葉香氣散失,生產(chǎn)效率低且影響茶葉品質(zhì),如果溫度過(guò)高,雖然失水迅速,但是茶葉失水不均勻,容易出現(xiàn)焦邊、糊邊現(xiàn)象。因此茶葉烘干過(guò)程中應(yīng)嚴(yán)格控制烘干溫度,使茶葉在快速失水的同時(shí)固定品質(zhì),整形做形,發(fā)展茶香。

3.1.4 茶葉評(píng)分影響因子的顯著性分析

為探究溫度、轉(zhuǎn)速、喂入量對(duì)茶葉烘干效果的影響程度,對(duì)不同溫度(90~120 ℃)、轉(zhuǎn)速(20~30 r/min)、喂入量(800~1 200 g)下茶葉烘干的效果進(jìn)行評(píng)價(jià)計(jì)分,評(píng)分標(biāo)準(zhǔn)遵循“效率高、質(zhì)量好”的原則,計(jì)算茶葉烘干過(guò)程含水率下降速率并邀請(qǐng)嗣晨茶葉有限公司的3位制茶師傅對(duì)烘干結(jié)束的茶葉進(jìn)行評(píng)價(jià)打分,每個(gè)試驗(yàn)進(jìn)行3次取平均值,最后以速率和質(zhì)量占比3∶7進(jìn)行綜合評(píng)分。設(shè)計(jì)3因素5水平二次回歸正交試驗(yàn)探究各影響因素對(duì)茶葉烘干過(guò)程的影響效果,試驗(yàn)因素編碼與組合試驗(yàn)結(jié)果如表2、表3所示,其中在第10組試驗(yàn)中評(píng)分達(dá)到83.78,說(shuō)明溫度為120 ℃、喂入量為1 000 g、轉(zhuǎn)速為25 r/min時(shí)烘干效果較好。采用Design Expert軟件進(jìn)行二次多項(xiàng)式回歸分析,結(jié)果如表4所示。

表2 試驗(yàn)因素與編碼水平

表3 組合試驗(yàn)結(jié)果

在主效應(yīng)檢驗(yàn)中,發(fā)現(xiàn)溫度1、喂入量2、轉(zhuǎn)速3的值分別為0.000 1、0.003 1、0.027 2,均小于0.05,說(shuō)明溫度、轉(zhuǎn)速、喂入量對(duì)烘干效果均有顯著影響,根據(jù)值大小順序可知對(duì)茶葉烘干效果的影響程度由大到小排序?yàn)闇囟?、喂入量、轉(zhuǎn)速。

表4 回歸模型的顯著性分析

3.2 水分預(yù)測(cè)模型對(duì)比分析

3.2.1 預(yù)測(cè)模型的建立

為了準(zhǔn)確預(yù)測(cè)不同條件下茶葉烘干過(guò)程中的含水率,固定喂入量(根據(jù)滾筒尺寸確定,以旋轉(zhuǎn)時(shí)茶葉能均勻拋撒形成料幕為宜,本試驗(yàn)喂入量為1 000 g),以茶葉初始含水率、烘干溫度、滾筒轉(zhuǎn)速以及烘干時(shí)間為輸入,干燥后含水率為輸出分別建立了BP、Elman以及PSO-Elman神經(jīng)網(wǎng)絡(luò)茶葉含水率動(dòng)態(tài)預(yù)測(cè)模型,總數(shù)據(jù)量為190組。根據(jù)經(jīng)驗(yàn)公式(2)取隱含層神經(jīng)元為1~13,通過(guò)試驗(yàn)確定神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),圖7為不同隱含層神經(jīng)元對(duì)模型MAE、RMSE以及2的影響,結(jié)果表明,在多數(shù)情況下,Elman神經(jīng)網(wǎng)絡(luò)的預(yù)測(cè)效果均優(yōu)于BP神經(jīng)網(wǎng)絡(luò),這是因?yàn)镋lman網(wǎng)絡(luò)的承接層使得網(wǎng)絡(luò)能夠內(nèi)部反饋、存儲(chǔ)和利用過(guò)去時(shí)刻的輸出信息,相比BP有更好的計(jì)算能力和網(wǎng)絡(luò)穩(wěn)定性,通過(guò)試驗(yàn)確定BP隱含層神經(jīng)元個(gè)數(shù)為11,Elman隱含層神經(jīng)元個(gè)數(shù)為13。在此結(jié)構(gòu)基礎(chǔ)上引入粒子群算法對(duì)Elman網(wǎng)絡(luò)的初始權(quán)值和閾值進(jìn)行優(yōu)化,增強(qiáng)網(wǎng)絡(luò)全局尋優(yōu)的能力,避免陷入局部最優(yōu)。

3.2.2 預(yù)測(cè)模型對(duì)比分析

在確定網(wǎng)絡(luò)的基本結(jié)構(gòu)的基礎(chǔ)上分別建立BP、Elman及PSO-Elman茶葉含水率預(yù)測(cè)模型。將實(shí)際烘干試驗(yàn)得到的190組數(shù)據(jù)集按照8:2[31]的比例分為152組訓(xùn)練集與38組測(cè)試集,分別使用3個(gè)網(wǎng)絡(luò)模型進(jìn)行預(yù)測(cè),采用傳統(tǒng)線性擬合方式建立多元回歸模型作為對(duì)比參考,模型方程如式(14)所示:

=52.165 51?0.257 21?0.384 292+0.647 583?0.655 934(14)

式中為預(yù)測(cè)含水率值,%;1為滾筒烘干溫度,℃;2為烘干滾筒轉(zhuǎn)速,r/min;3為待烘干茶葉的初始含水率,%;4為烘干時(shí)間,s。

同樣采用MAE、RMSE以及R作為模型的評(píng)價(jià)指標(biāo),預(yù)測(cè)結(jié)果如表5、圖8、圖9所示。結(jié)果表明,采用同樣的數(shù)據(jù)集建立的線性擬合、BP、Elman以及PSO-Elman預(yù)測(cè)模型的2分別為0.960 9、0.998 0、0.998 5和0.999 4,說(shuō)明基于神經(jīng)網(wǎng)絡(luò)算法所建立的模型相比傳統(tǒng)的線性擬合方法表現(xiàn)出了明顯的優(yōu)勢(shì),其中,PSO-Elman預(yù)測(cè)模型的預(yù)測(cè)效果優(yōu)于BP和Elman預(yù)測(cè)模型。通過(guò)對(duì)不同烘干條件下的茶葉含水率預(yù)測(cè)模型的誤差分析可知,采用PSO-Elman神經(jīng)網(wǎng)絡(luò)算法建立的水分預(yù)測(cè)模型預(yù)測(cè)更加精確,網(wǎng)絡(luò)表現(xiàn)更好,故PSO-Elman動(dòng)態(tài)水分預(yù)測(cè)模型更加適用于指導(dǎo)茶葉烘干過(guò)程。

表5 BP、Elman和PSO-Elman含水率預(yù)測(cè)模型比較

4 結(jié) 論

本研究以日照綠茶為研究對(duì)象,采用熱風(fēng)烘干方式進(jìn)行茶葉烘干試驗(yàn),對(duì)比不同烘干條件下茶葉含水率變化差異,分析茶葉烘干過(guò)程中的含水率動(dòng)態(tài)變化規(guī)律,建立了烘干過(guò)程茶葉含水率預(yù)測(cè)模型,得出以下主要結(jié)論:

1)經(jīng)過(guò)揉捻的茶葉含水率基本保持在49%~51%之間,即為烘干工序茶葉的初始含水率,烘干條件對(duì)茶葉含水率的監(jiān)測(cè)表明,茶葉烘干過(guò)程含水率總體呈先快后慢的趨勢(shì)降低,其主要影響指標(biāo)依次為烘干溫度以及滾筒轉(zhuǎn)速,而茶葉喂入量應(yīng)根據(jù)實(shí)際滾筒尺寸確定,旋轉(zhuǎn)時(shí)茶葉能均勻拋撒形成料幕且與熱空氣充分接觸為宜。試驗(yàn)表明:隨著溫度升高,滾筒轉(zhuǎn)速對(duì)于含水率的變化影響程度逐漸減小,轉(zhuǎn)速過(guò)快會(huì)使碎茶率升高。因此對(duì)于茶葉烘干過(guò)程,應(yīng)充分考慮溫度以及轉(zhuǎn)速對(duì)水分變化的影響,以動(dòng)態(tài)含水率變化規(guī)律作為指導(dǎo)茶葉烘干過(guò)程的依據(jù)。

2)為準(zhǔn)確預(yù)測(cè)不同烘干條件下茶葉含水率的變化規(guī)律,分別采用BP神經(jīng)網(wǎng)絡(luò)(Back Propagation neural network)、Elman神經(jīng)網(wǎng)絡(luò)(Elman neural network)以及PSO-Elman神經(jīng)網(wǎng)絡(luò)(PSO-Elman neural network)三種模型,以茶葉初始含水率、烘干溫度、滾筒轉(zhuǎn)速以及烘干時(shí)間為輸入,茶葉含水率為輸出建立茶葉含水率動(dòng)態(tài)預(yù)測(cè)模型,并與傳統(tǒng)的多元線性回歸模型進(jìn)行對(duì)比分析。結(jié)果表明,針對(duì)茶葉烘干過(guò)程,智能算法與傳統(tǒng)線性回歸方法相比預(yù)測(cè)效果更好。建立的BP、Elman以及PSO-Elman模型測(cè)試集的決定系數(shù)2分別為0.9980、0.9985和0.9994,對(duì)不同烘干條件下的預(yù)測(cè)結(jié)果進(jìn)行誤差分析,結(jié)果表明采用粒子群優(yōu)化的Elman神經(jīng)網(wǎng)絡(luò)建立的預(yù)測(cè)模型性能更好,對(duì)于茶葉烘干工序具有更好的應(yīng)用價(jià)值。

[1] Stangl V, Dreger H, Stangl K, et al. Molecular targets of tea polyphenols in the cardiovascular system[J]. Cardiovascular Research, 2007, 73(2): 348-358.

[2] Butt M S, Sultan M T. Green tea: Nature’s defense against malignancies[J]. Critical Reviews in Food Science and Nutrition, 2009, 49(5): 463-473.

[3] 宋楚君,縱榜正,周森杰,等. 龍井茶加工中制葉水分變化及其對(duì)茶葉滋味品質(zhì)的影響[J]. 茶葉,2020,46(2):77-83.

Song Chujun, Zong Bangzheng, Zhou Senjie, et al. The change of leaf moisture in Longjing tea processing and its effect on the taste and quality of tea[J]. Tea, 2020, 46(2): 77-83. (in Chinese with English abstract)

[4] 李琛,艾仄宜,余志,等. 優(yōu)質(zhì)綠茶加工過(guò)程主要物理特性變化的研究[J]. 茶葉科學(xué),2019,39(6):705-714.

Li Chen, Ai Zeyi, Yu Zhi, et al. Study on changes in main physical characteristics of high-quality green tea during processing[J]. Tea Science, 2019, 39(6): 705-714. (in Chinese with English abstract)

[5] 葉飛,龔自明,桂安輝,等. 自動(dòng)化加工生產(chǎn)線改善機(jī)采綠茶理化品質(zhì)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(3):281-286.

Ye Fei, Gong Ziming, Gui Anhui, et al. Research on improving the physical and chemical quality of machine-picked green tea by automated processing production lines[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 281-286. (in Chinese with English abstract)

[6] Zhao Z, Chen L, Chen G, et al. An approach for in-line control of moisture content during green tea processing[J]. IEEE Access, 2020, 8: 59701-59714.

[7] 王輝. 茶葉加工生產(chǎn)線集散控制系統(tǒng)[D]. 杭州:浙江工業(yè)大學(xué),2017.

Wang Hui. Distributed Control System of Tea Processing Production Line[D]. Hangzhou: Zhejiang University of Technology, 2017. (in Chinese with English abstract)

[8] 王凡,趙春江,徐波,等. 便攜式茶鮮葉品質(zhì)光譜檢測(cè)裝置研制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(24):273-280.

Wang Fan, Zhao Chunjiang, Xu Bo, et al. Development of a portable detection device for the quality of fresh tea leaves using spectral technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 273-280. (in Chinese with English abstract)

[9] 高震宇,王安,劉勇,等. 基于卷積神經(jīng)網(wǎng)絡(luò)的鮮茶葉智能分選系統(tǒng)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(7):53-58.

Gao Zhenyu, Wang An, Liu Yong, et al. Research on intelligent sorting system of fresh tea based on convolutional neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 53-58. (in Chinese with English abstract)

[10] 張帥堂,王紫煙,鄒修國(guó),等. 基于高光譜圖像和遺傳優(yōu)化神經(jīng)網(wǎng)絡(luò)的茶葉病斑識(shí)別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(22):200-207.

Zhang Shuaitang, Wang Ziyan, Zou Xiuguo, et al. Tea disease spot recognition based on hyperspectral image and genetically optimized neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(22): 200-207. (in Chinese with English abstract)

[11] 王勝鵬,滕靖,鄭鵬程,等. 青磚茶壓制壓力優(yōu)化及GCG近紅外快速檢測(cè)模型建立[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(8):271-277.

Wang Shengpeng, Teng Jing, Zheng Pengcheng, et al. Optimizing processing pressure of qingzhuan tea and development of GCG models for near infrared spectroscopy detection[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 271-277. (in Chinese with English abstract)

[12] 王近近,袁海波,滑金杰,等. 足火工藝參數(shù)對(duì)工夫紅茶熱風(fēng)干燥特性和品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(10):287-296.

Wang Jinjin, Yuan Haibo, Hua Jinjie, et al. Effects of foot-fire process parameters on the hot-air drying characteristics and quality of Gongfu black tea[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(10): 287-296. (in Chinese with English abstract)

[13] 李琳琳,陳俊亮,段續(xù),等. 基于LF-NMR及不同干燥方法的哈密瓜片含水率預(yù)測(cè)模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(2):304-312.

Li Linlin, Chen Junliang, Duan Xu, et al. Moisture content prediction model of cantaloupe slices based on LF-NMR and different drying methods[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(2): 304-312. (in Chinese with English abstract)

[14] 宋彥,謝漢壘,寧井銘,等. 基于機(jī)器視覺(jué)形狀特征參數(shù)的祁門紅茶等級(jí)識(shí)別[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(23):279-286.

Song Yan, Xie Hanlei, Ning Jingming, et al. Qimen black tea grade recognition based on machine vision shape feature parameters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 279-286. (in Chinese with English abstract)

[15] 張付杰,辛立東,代建武,等. 獼猴桃片旋轉(zhuǎn)托盤式微波真空干燥特性分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(S1):501-508.

Zhang Fujie, Xin Lidong, Dai Jianwu, et al. Rotating tray microwave vacuum drying characteristics of kiwifruit slices[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S1): 501-508. (in Chinese with English abstract)

[16] 董春旺,朱宏凱,周小芬,等. 基于機(jī)器視覺(jué)和工藝參數(shù)的針芽形綠茶外形品質(zhì)評(píng)價(jià)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(9):38-45.

Dong Chunwang, Zhu Hongkai, Zhou Xiaofen, et al. Quality evaluation for appearance of needle green tea based on machine vision and process parameters[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 38-45. (in Chinese with English abstract)

[17] 陳壽松,占楊,鄭功宇,等. 茶葉含水率常用測(cè)定方法及比較分析[J]. 中國(guó)茶葉加工,2013(3):33-36.

Chen Shousong, Zhan Yang, Zheng Gongyu, et al. Commonly used methods and comparative analysis of tea moisture content[J]. China Tea Processing, 2013(3): 33-36. (in Chinese with English abstract)

[18] You K, Lee C, Chan K, et al. Monitoring moisture content for various kind of tea leaves in drying processes using RF reflectometer-sensor system[J]. Instruments, 2018, 2(3): 18.

[19] 吳偉斌,劉文超,李澤藝,等. 基于高光譜的茶葉含水量檢測(cè)模型建立與試驗(yàn)研究[J]. 河南農(nóng)業(yè)大學(xué)學(xué)報(bào),2018,52(5):818-824.

Wu Weibin, Liu Wenchao, Li Zeyi, et al. Study on detection model establishment and experiment of tea water content based on hyperspectral [J]. Journal of Henan Agricultural University, 2018, 52(5): 818-824. (in Chinese with English abstract)

[20] 楊成飛,和壽星,孟繁佳,等. 不同深度基質(zhì)含水率變化規(guī)律與預(yù)測(cè)模型研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(S2):408-414.

Yang Chengfei, He Shouxing, Meng Fanjia, et al. Research on the variation law and prediction model of matrix moisture content at different depths[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 408-414. (in Chinese with English abstract)

[21] 王勝鵬,龔自明,鄭鵬程,等. 青磚茶品質(zhì)近紅外特征光譜篩選及預(yù)測(cè)模型建立[J]. 食品科學(xué),2020,41(18):283-287.

Wang Shengpeng, Gong Ziming, Zheng Pengcheng, et al. Selection of characteristic near infrared spectra and establishment of prediction model for qingzhuan tea quality[J]. Food Science, 2020, 41(18): 283-287. (in Chinese with English abstract)

[22] Zheng Y, Zhang X, Wang X, et al. Predictive study of tuberculosis incidence by time series method and Elman neural network in Kashgar, China[J]. BMJ Open, 2021, 11(1): e041040.

[23] 冀榮華,李鑫,張舒蕾,等. 基于時(shí)延神經(jīng)網(wǎng)絡(luò)的多深度土壤含水率預(yù)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(增刊1):132-136.

Ji Ronghua, Li Xin, Zhang Shulei, et al. Multi-depth soil moisture prediction based on time-delayed neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(Supp.1): 132-136. (in Chinese with English abstract)

[24] Kalathingal M S H, Basak S, Mitra J. Artificial neural network modeling and genetic algorithm optimization of process parameters in fluidized bed drying of green tea leaves[J]. Journal of Food Process Engineering, 2020, 43(1), e13128.

[25] 陳嘯,王紅英,孔丹丹,等. 基于粒子群參數(shù)優(yōu)化和BP神經(jīng)網(wǎng)絡(luò)的顆粒飼料質(zhì)量預(yù)測(cè)模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(14):306-314.

Chen Xiao, Wang Hongying, Kong Dandan, et al. Pellet feed quality prediction model based on particle swarm parameter optimization and BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 306-314. (in Chinese with English abstract)

[26] Zhang Z, Shen Y, Zhang G, et al. Short-term prediction for opening price of stock market based on self-adapting variant PSO-Elman neural network[C]//2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS). Beijing, China: IEEE, 2017: 225-228.

[27] 謝立揚(yáng),張晨光,劉立強(qiáng),等. 烘干筒表面?zhèn)鳠徇^(guò)程與數(shù)值計(jì)算[J]. 中國(guó)公路學(xué)報(bào),2016,29(3):151-158.

Xie Liyang, Zhang Chenguang, Liu Liqiang, et al. Heat transfer process and numerical calculation on the surface of drying cylinder[J]. China Journal of Highway and Transport, 2016, 29(3): 151-158. (in Chinese with English abstract)

[28] 滑金杰,王華杰,王近近,等. 用PLS-DA分析毛火方式對(duì)工夫紅茶品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(8):260-270.

Hua Jinjie, Wang Huajie, Wang Jinjin, et al. Influences of first-drying methods on the quality of Congou black tea using partial least squares-discrimination analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(8): 260-270. (in Chinese with English abstract)

[29] 王文中. 滾筒式茶葉熱風(fēng)復(fù)干機(jī)的設(shè)計(jì)與試驗(yàn)研究[D]. 泰安:山東農(nóng)業(yè)大學(xué),2020.

Wang Wenzhong. Design and Experimental Research of Drum-type Tea Hot Air Re-drying Machine[D]. Tai’an: Shandong Agricultural University, 2020. (in Chinese with English abstract)

[30] 李兵,孫長(zhǎng)應(yīng),李為寧,等. 基于DMC-PID串級(jí)控制的茶葉遠(yuǎn)紅外烘干機(jī)設(shè)計(jì)與試驗(yàn)[J]. 茶葉科學(xué),2018,38(4):410-415.

Li Bang, Sun Changying, Li Weining, et al. Design and experiment of tea far infrared dryer based on DMC-PID cascade control[J]. Tea Science, 2018, 38(4): 410-415. (in Chinese with English abstract)

[31] Perea R G, Poyato E C, Montesinos P, et al. Irrigation demand forecasting using artificial neuro-genetic networks[J]. Water Resources Management, 2015, 29(15): 5551-5567.

Prediction of tea drying moisture content based on PSO Elman algorithm

Zhao Liqing, Duan Dongyao, Yin Yuanyuan, Zheng Yinghui, Xu Xin, Sun Ying, Xue Yiwei

(,,266109,)

Moisture content is critical in the process of tea hot air drying. Taking green tea as an example, an experiment was performed on the dynamic hot air drying of rolled tea, in order to monitor the dynamic change of moisture content of tea with drying time under different feeding amounts (800-1 200 g), drying temperatures (90-120 ℃) and drum speeds (20-30 r/min). Each significant factor was analyzed to explore the dynamic changes of the water content of tea under different drying conditions. The experimental results show that there were significant effects of temperature, rotational speed, and feeding rate on the drying of tea leaves. The influence was sorted in the descending order of temperature, feeding rate, and rotating speed. Among them, the temperature has posed the greatest influence on drying. In the feeding amount, it was appropriate to cover the drum wall with tea to form a perfect casting curtain. That was because too much feeding amount easily caused uneven heating of tea, and then appeared dry outside and wet inside, even focal point explosion. The decreasing rate of water content in tea leaves showed a trend of first increased and then decreased in the whole drying. As such, the water loss was less at the lower water content, and finally, the water change tended to be gentle. The water content of tea leaves was basically stable at 4%-5% at the end of drying, particularly for convenient transportation and preservation. A prediction experiment was carried out, where the water content of tea drying was taken as the output, while the structure parameters of the dryer, drying temperature, drum speed, drying initial water, and prediction time as the input. BP, Elman, and PARTICLE swarm optimization Elman neural network (PSO Elman) neural network were used to establish the dynamic prediction model of tea moisture content during drying. A comparison was also made on the traditional multiple linear regression fitting model. The results of verification and error analysis of the Linear fit, BP neural network, Elman neural network and PSO-Elman neural network models showed that their determination coefficients were 0.960 9, 0.998 0, 0.998 5, and 0.999 4, respectively. Compared with the traditional linear regression, the neural network was more accurately expressed the linear or nonlinear relationship in the complex system, showing better prediction for the tea drying. In three neural network models, the PSO-Elman model was more accurate than BP and Elman model, indicating better prediction on the change of water content during tea drying. The findings can provide a strong theoretical basis for the hot air drying of tea, therebyguiding tea processing and production for high efficiency and tea quality.

moisture content; drying; tea; dynamic change; neural network; prediction model

趙麗清,段東瑤,殷元元,等. 基于PSO-Elman算法的茶葉烘干含水率預(yù)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(19):284-292.doi:10.11975/j.issn.1002-6819.2021.19.033 http://www.tcsae.org

Zhao Liqing, Duan Dongyao, Yin Yuanyuan, et al. Prediction of tea drying moisture content based on PSO Elman algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 284-292. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.19.033 http://www.tcsae.org

2021-05-29

2021-07-23

國(guó)家級(jí)自然科學(xué)基金項(xiàng)目(32071911);山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018GNC112012);山東省重大科技創(chuàng)新工程項(xiàng)目(2019TSLH0802);青島市科技惠民示范引導(dǎo)專項(xiàng)(21-1-4-ny-2-nsh)

趙麗清,博士,教授,研究方向?yàn)橹悄軝z測(cè)傳感器技術(shù)。Email:zhlq017214@163.com

10.11975/j.issn.1002-6819.2021.19.033

S24

A

1002-6819(2021)-19-0284-09

猜你喜歡
滾筒含水率茶葉
《茶葉通訊》簡(jiǎn)介
茶葉通訊(2022年2期)2022-11-15 08:53:56
我們成功了
昆明森林可燃物燃燒機(jī)理研究
復(fù)合剪刃滾筒飛剪開(kāi)發(fā)應(yīng)用
基于表面能的濕煤顆粒含水率表征方法
藏族對(duì)茶葉情有獨(dú)鐘
創(chuàng)造(2020年5期)2020-09-10 09:19:22
弱膨脹土增濕變形量試驗(yàn)及路堤填筑分析
基于改進(jìn)蟻群算法的滾筒截割軌跡規(guī)劃
香噴噴的茶葉
原油含水率在線測(cè)量技術(shù)研究
電子制作(2016年1期)2016-11-07 08:42:56
清远市| 南京市| 大姚县| 容城县| 扎赉特旗| 萨迦县| 富顺县| 南木林县| 庆阳市| 南和县| 宁阳县| 丰宁| 金昌市| 淮安市| 鲁山县| 镇康县| 孟村| 临漳县| 平定县| 滨海县| 来安县| 云龙县| 阆中市| 临漳县| 腾冲县| 临清市| 吉隆县| 濮阳市| 鄢陵县| 白银市| 泰安市| 阳泉市| 信阳市| 石泉县| 江阴市| 汕尾市| 中西区| 昌图县| 鹿邑县| 太湖县| 长春市|