国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

堆肥種子發(fā)芽指數(shù)測(cè)定方法與敏感性種子篩選

2021-12-28 12:32:44王國(guó)英孔藝霖沈玉君李國(guó)學(xué)
關(guān)鍵詞:羊糞堆體豬糞

王國(guó)英,袁 京,孔藝霖,沈玉君,楊 燕,李國(guó)學(xué)

·農(nóng)業(yè)生物環(huán)境與能源工程·

堆肥種子發(fā)芽指數(shù)測(cè)定方法與敏感性種子篩選

王國(guó)英1,袁 京1,孔藝霖1,沈玉君2,楊 燕1,李國(guó)學(xué)1※

(1. 中國(guó)農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院農(nóng)田土壤污染防控與修復(fù)北京市重點(diǎn)實(shí)驗(yàn)室,北京 100193;2. 農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計(jì)研究院,北京 100125)

種子發(fā)芽指數(shù)(Germination Index,GI)作為評(píng)價(jià)堆肥腐熟度的權(quán)威指標(biāo),被廣泛應(yīng)用于評(píng)價(jià)堆肥產(chǎn)品植物毒性等方面,但對(duì)于GI測(cè)定方法和供試種子類型仍缺少統(tǒng)一標(biāo)準(zhǔn),導(dǎo)致不同堆肥研究的GI結(jié)果缺乏可比性。為此,該研究通過(guò)設(shè)置不同毒性梯度的堆肥試驗(yàn)、選取不同類型種子,詳細(xì)介紹了GI測(cè)定方法,規(guī)定根長(zhǎng)為0和1 mm的計(jì)量標(biāo)準(zhǔn)以及根長(zhǎng)起始測(cè)量位置,并系統(tǒng)分析了表征堆肥腐熟度指標(biāo)與種子發(fā)芽之間響應(yīng)關(guān)系。結(jié)果表明:最終產(chǎn)品GI以純豬糞(26.54%~80.49%)、純羊糞(16.71%~92.98%)、豬糞+秸稈(28.28%~110.74%)、羊糞+秸稈(43.38%~119.69%)的順序遞增。綜合分析不同堆肥處理理化指標(biāo)(溫度、氧氣、pH值、碳氮比)和植物毒性因子(電導(dǎo)率、銨根、有機(jī)酸和有機(jī)質(zhì))與不同種子GI(黃瓜、蘿卜、白菜、油菜)相關(guān)性關(guān)系,發(fā)現(xiàn)蘿卜種子響應(yīng)度最高(=0.96),在綜合表征堆肥腐熟度和植物毒性上最具科學(xué)性和代表性。以上結(jié)果可為種子發(fā)芽指數(shù)測(cè)定、有機(jī)肥標(biāo)準(zhǔn)制定以及堆肥農(nóng)田安全施用提供參考。

堆肥;種子;植物毒性;發(fā)芽指數(shù);測(cè)定

0 引 言

堆肥技術(shù)作為有機(jī)固體廢棄物處理處置有效方法,可實(shí)現(xiàn)畜禽糞便等有機(jī)廢棄物肥料化利用,是銜接種養(yǎng)循環(huán)模式的關(guān)鍵技術(shù)[1-2]。將堆肥產(chǎn)品作為有機(jī)肥施用于農(nóng)田,可改善長(zhǎng)期大量使用化肥導(dǎo)致的土壤板結(jié)、鹽漬化、肥力下降等問(wèn)題,是實(shí)現(xiàn)農(nóng)業(yè)綠色發(fā)展的重要舉措[3-4]。但堆肥產(chǎn)品是否可以作為有機(jī)肥施用于農(nóng)田,需要對(duì)其腐熟度進(jìn)行評(píng)價(jià)。加州堆肥質(zhì)量委員會(huì)(CCQC)2001年提出腐熟度指堆肥過(guò)程穩(wěn)定化的程度,同年英國(guó)堆肥協(xié)會(huì)(UKCA)提到腐熟度還需考慮堆肥對(duì)種子發(fā)芽或植物生長(zhǎng)產(chǎn)生抑制作用大小。而種子發(fā)芽指數(shù)(Germination Index,GI)是綜合評(píng)價(jià)堆肥腐熟度生物學(xué)指標(biāo),于1981年由Zucconi等[5]提出,并認(rèn)為GI<50%表示堆肥不腐熟,GI≥80%則表示堆肥完全腐熟,且對(duì)植物完全沒(méi)有毒害作用。迄今為止,GI始終是評(píng)價(jià)堆肥腐熟度最有效的指標(biāo),且被大量應(yīng)用于堆肥腐熟特性研究當(dāng)中[6]。2019年實(shí)施的農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)《畜禽糞便堆肥技術(shù)規(guī)范NY/T 3442-2019》首次規(guī)定堆肥產(chǎn)物GI≥70%安全施用標(biāo)準(zhǔn)。2021年6月1日農(nóng)業(yè)農(nóng)村部新修訂的《有機(jī)肥料NY 525-2021》中,增加了GI的術(shù)語(yǔ)和定義。由此可見(jiàn)GI對(duì)于評(píng)價(jià)畜禽糞便有機(jī)肥的質(zhì)量和農(nóng)田安全應(yīng)用等方面的重要性。

但是關(guān)于GI測(cè)算還未有標(biāo)準(zhǔn)方法和標(biāo)準(zhǔn)種子,且以往關(guān)于堆肥中種子發(fā)芽研究結(jié)果差異較大。例如同樣將餐廚垃圾或畜禽糞便的堆肥進(jìn)行GI測(cè)定,不同種子差別可達(dá)20%~217%[7-12],因此不同研究學(xué)者之間的GI結(jié)果通常沒(méi)有可比性。依據(jù)GI測(cè)定和堆肥過(guò)程,可將影響GI因素分為兩部分,一是指標(biāo)測(cè)算過(guò)程與方法,二是堆肥中植物毒性物質(zhì)脅迫作用。其中測(cè)算過(guò)程受到諸多因素影響,例如發(fā)芽如何界定、芽與根如何計(jì)量、根長(zhǎng)起始位置等問(wèn)題,均沒(méi)有統(tǒng)一規(guī)范和標(biāo)準(zhǔn),即使是同樣的堆肥樣品,測(cè)算人員不同,GI結(jié)果也會(huì)有較大差異。其次,不同種子對(duì)環(huán)境脅迫敏感性差異較大,敏感性強(qiáng)導(dǎo)致發(fā)芽率較低,使腐熟度較好的堆肥也無(wú)法滿足GI≥70%標(biāo)準(zhǔn);反之,敏感性差時(shí)發(fā)芽率較高,種子不受環(huán)境脅迫而使GI較大。研究中多使用黃瓜、蘿卜、白菜等敏感性適宜的種子作為發(fā)芽試驗(yàn)對(duì)象[6,8,13]。再次,種子粒徑大小對(duì)試驗(yàn)過(guò)程影響重要,粒徑較大,所需培養(yǎng)液和培養(yǎng)皿較大,增加試驗(yàn)難度;粒徑較小,消耗大量時(shí)間數(shù)種子,對(duì)試驗(yàn)人員技能提出更高要求。基于以上原因,不同學(xué)者所得GI結(jié)果差異較大(50%~200%)[7,12,14],甚至有學(xué)者提出將GI>110%作為堆肥腐熟標(biāo)準(zhǔn)[15]。由此可見(jiàn),不同研究中GI之間可比性較差,缺乏廣泛適用性。

堆肥過(guò)程中,往往伴隨著復(fù)雜的物質(zhì)轉(zhuǎn)化過(guò)程,有機(jī)質(zhì)含量及其在礦化和腐殖化作用下,產(chǎn)生的小分子有機(jī)酸、鹽分離子和NH4+等是抑制GI的主要物質(zhì)[16-19]。小分子有機(jī)酸主要通過(guò)酸化作用影響土壤微生物代謝生長(zhǎng),鹽分濃度過(guò)高抑制植物組織生長(zhǎng)和分化,NH4+會(huì)導(dǎo)致植物根系氨中毒[11]。有機(jī)質(zhì)是微生物好氧代謝重要能源物質(zhì),直接影響堆肥腐熟程度,進(jìn)而對(duì)種子發(fā)芽產(chǎn)生影響。且Wang等[20]研究有機(jī)質(zhì)對(duì)羊糞堆肥GI影響中發(fā)現(xiàn),添加不同類型碳源對(duì)GI關(guān)鍵影響因子不同。此外,溫度、pH值、氧氣等基本理化指標(biāo),通過(guò)影響堆肥體系環(huán)境狀態(tài),調(diào)節(jié)微生物代謝過(guò)程及其代謝產(chǎn)物,對(duì)GI有間接影響作用。因此,植物毒性物質(zhì)和理化指標(biāo)與堆肥GI之間存在顯著的響應(yīng)關(guān)系。此外,不同類型畜禽糞便性質(zhì)不同,例如豬糞含水率較高、碳氮比(C/N)較低,而羊糞含水率較低且C/N較高,單獨(dú)堆肥往往植物毒性差異較大[21]。與此同時(shí),外援添加碳源輔料是改善堆肥環(huán)境、調(diào)節(jié)堆肥腐熟度最簡(jiǎn)單、直接和有效的途徑,可以潛在地分解、消除或固定植物毒性物質(zhì)[22-23]。目前較為常用的碳源輔料主要為秸稈、菌糠、園林剪枝等高木質(zhì)纖維素含量的農(nóng)業(yè)廢棄物[24]。其中秸稈具有增加堆體含碳量、改善堆體孔隙度、擴(kuò)大微生物附著位點(diǎn)等優(yōu)良特性,對(duì)降低堆肥系統(tǒng)植物毒性、固定養(yǎng)分含量、提高腐熟度顯著效果[25-26]。

目前關(guān)于堆肥GI測(cè)算方法與標(biāo)準(zhǔn)種子選取還未有報(bào)道。因此,本研究采用植物毒性差異較大的豬糞和羊糞作為堆肥原料,通過(guò)添加/不添加秸稈設(shè)置4個(gè)不同堆肥處理?;谝延械难芯?,按照大、中、小粒徑選取黃瓜、蘿卜、白菜、油菜4類種子,對(duì)GI測(cè)算過(guò)程進(jìn)行詳細(xì)描述,并將不同種子GI結(jié)果與堆肥過(guò)程中的植物毒性因子進(jìn)行相關(guān)性分析,進(jìn)而分析不同種子與影響種子發(fā)芽毒性因子總效應(yīng)間響應(yīng)關(guān)系,確定評(píng)價(jià)堆肥腐熟度最佳種子。以期對(duì)堆肥GI指標(biāo)測(cè)定方法進(jìn)行完善,本研究結(jié)果對(duì)于堆肥腐熟度評(píng)價(jià)和有機(jī)肥料農(nóng)用安全評(píng)價(jià)具有重要的指導(dǎo)意義。

1 材料與方法

1.1 堆肥試驗(yàn)

1.1.1 試驗(yàn)原料與方法

為得到不同腐熟度和植物毒性的堆肥產(chǎn)品,按照畜禽飲食方式、消化結(jié)構(gòu)以及糞便特點(diǎn),選擇豬糞和羊糞作為堆肥原料,玉米秸稈為輔料。新鮮豬糞取自中國(guó)農(nóng)科院畜牧,羊糞取自?shī)W鑫牧業(yè)有限公司(北京市順義區(qū)),羊糞采用硬化地板的人工干清糞收集方式;玉米秸稈取自中國(guó)農(nóng)業(yè)大學(xué)上莊試驗(yàn)站,經(jīng)風(fēng)干粉碎處理為2~3 cm小段。原料基本理化性質(zhì)見(jiàn)表1。

表1 堆肥原料基本理化性質(zhì)

注:a基于濕基;b基于干基。

Note:awet weight basis;bdry weight basis.

按照添加和不添加秸稈(添加量為15%,濕基)共設(shè)計(jì)4個(gè)處理,分別為豬糞(PM)、豬糞+秸稈(PM+CS)、羊糞(SM)、羊糞+秸稈(SM+CS)。初始條件均設(shè)置為含水率65%,連續(xù)通風(fēng)且通風(fēng)速率為0.27 L/(kg·min),物料質(zhì)量30 kg,進(jìn)行為期49 d堆肥試驗(yàn)。翻堆取樣時(shí)間為第0、3、7、14、21、28、35、42和49 d,每次翻堆前后記錄堆體質(zhì)量。取樣采用標(biāo)準(zhǔn)的五點(diǎn)取樣法,將堆體充分混勻后堆成一個(gè)正圓錐體,在圓椎體上、中、下部選擇與中心等距離的3~5個(gè)點(diǎn)進(jìn)行取樣(少量多次),充分混合后作為最終樣品??刂茦悠房偭繛?00 g,其中100 g風(fēng)干之后,過(guò)0.2 mm篩,用于有機(jī)質(zhì)(Volatile Solid,VS)和元素(C、N)測(cè)定;100 g鮮樣暫存于4 ℃,用于含水率、pH值、電導(dǎo)率(Electrical Conductivity,EC)、有機(jī)酸(Volatile Fatty Acids,VFAs)和銨根(NH4+)含量測(cè)定;剩余部分主要用于GI測(cè)定。

1.1.2 試驗(yàn)裝置與樣品測(cè)定

堆肥試驗(yàn)在60 L好氧發(fā)酵反應(yīng)器(圖1)中進(jìn)行,裝置采用雙層不銹鋼圓柱形(內(nèi)徑為36 cm,高度為60 cm)罐體,具有良好的溫度性和密閉性。罐體內(nèi)底部設(shè)有多孔不銹鋼篩板,通過(guò)進(jìn)氣管與空氣泵相連,實(shí)現(xiàn)均勻曝氣。空氣泵通過(guò)自動(dòng)通風(fēng)控制系統(tǒng),可實(shí)現(xiàn)對(duì)通風(fēng)速率和通風(fēng)頻率的調(diào)控。從堆體頂部將帶有自動(dòng)傳感器的溫度探頭插至罐體中間,可實(shí)現(xiàn)溫度自動(dòng)實(shí)時(shí)傳輸和記錄。罐體外底部設(shè)置滲濾液收集口,上部設(shè)置氣體采集口,同時(shí)實(shí)現(xiàn)多余尾氣排出。

堆體溫度通過(guò)熱敏電阻法連續(xù)監(jiān)測(cè),含水率采用烘干法(105 ℃)測(cè)定,氧氣(O2)含量采用便攜式沼氣分析儀(Biogas 5000,德國(guó))測(cè)定,C/N通過(guò)元素分析儀(Vario Micro Cube,德國(guó))所測(cè)定的TC與TN比值得出,VS含量采用馬弗爐灼燒法(550 ℃)測(cè)定。樣品水浸提液(即培養(yǎng)液制備方法見(jiàn)1.2.2)用于pH值、EC(多波長(zhǎng)分析儀DZS-706-A,中國(guó))以及GI測(cè)定(詳見(jiàn)1.2),KCl浸提之后于流動(dòng)分析儀(Auto Analyzer 3,德國(guó))測(cè)定NH4+含量。

1.2 種子發(fā)芽試驗(yàn)

1.2.1 供試種子

本研究依據(jù)文獻(xiàn)查閱、現(xiàn)行標(biāo)準(zhǔn)(NY 525-2021)以及種子自身特點(diǎn)(易發(fā)芽、較敏感、廉價(jià)易得等),按照粒徑大、中、小分別選取黃瓜(12 mm)、蘿卜(4 mm)、白菜和油菜(1~2 mm)4類種子進(jìn)行堆肥樣品種子發(fā)芽試驗(yàn),種子均購(gòu)買自中國(guó)科學(xué)研究院(入袋發(fā)芽率≥80%)。試驗(yàn)前需進(jìn)行種子發(fā)芽率的測(cè)定,檢驗(yàn)其是否滿足80%以上標(biāo)準(zhǔn);試驗(yàn)中需挑選飽滿均勻的種子進(jìn)行培養(yǎng),保證對(duì)照組中不同類型種子發(fā)芽率間差異≤2%(一般為100%),以消除不同種子本身發(fā)芽率對(duì)研究結(jié)果所帶來(lái)的影響。

1.2.2試驗(yàn)方法

1)培養(yǎng)液制備:

①將10 g堆肥樣品(鮮樣)與100 mL去離子水混合(按照樣品質(zhì)量與液體體積之比為1∶10進(jìn)行),可用150 mL錐形瓶盛放,保證固體樣品全部被去離子水浸沒(méi),對(duì)于堆肥中秸稈等粒徑較大物料可適當(dāng)剪碎后浸提;

②將①中所得混合物在25 ℃條件下,于180 r/min恒溫?fù)u床震蕩30 min(啟動(dòng)搖床后,需待轉(zhuǎn)速達(dá)到設(shè)定值之后,試驗(yàn)人員方可離開(kāi)),注意固定錐形瓶,防止物料傾倒、灑出和飛濺,影響試驗(yàn)結(jié)果;

③小心取出②中混合物,靜置5~10 min后,將混合物于無(wú)污染的中速定量濾紙(30~50m)過(guò)濾,期間可依據(jù)過(guò)濾速度更換濾紙,收集濾液于干燥潔凈的容器中,即為種子發(fā)芽試驗(yàn)培養(yǎng)液。

2)培養(yǎng)過(guò)程:

①準(zhǔn)確吸取5 mL培養(yǎng)液(對(duì)照為去離子水),于墊有一張濾紙的干燥無(wú)污染培養(yǎng)皿中(直徑為9 cm)。濾紙需按照培養(yǎng)皿底面積大小適當(dāng)裁剪以達(dá)到完全契合,使得濾紙完全被培養(yǎng)液浸濕(無(wú)氣泡);

②挑選10粒均勻飽滿的供試種子,均勻放置于培養(yǎng)皿中,保證每顆種子都處于培養(yǎng)液中,同時(shí)附著于濾紙之上不至漂浮,將培養(yǎng)皿于25 ℃恒溫條件下黑暗培養(yǎng)48 h,每個(gè)處理設(shè)置4個(gè)生物學(xué)重復(fù)。

3)結(jié)果測(cè)量:使用游標(biāo)卡尺(單位:mm)等工具對(duì)種子根長(zhǎng)進(jìn)行無(wú)損測(cè)定。

①發(fā)芽:種子是否發(fā)芽以種皮是否破裂為依據(jù),種皮破裂即為發(fā)芽;

②根長(zhǎng):從長(zhǎng)根毛的地方開(kāi)始測(cè)量,主要分為3種情況(圖2):a)種皮破裂但沒(méi)有長(zhǎng)芽,或者剛剛出芽且出芽很短,此時(shí)根長(zhǎng)均計(jì)為0;b)種子發(fā)芽,芽較長(zhǎng)但無(wú)根毛長(zhǎng)出,此時(shí)根長(zhǎng)計(jì)為1 mm;c)種子發(fā)芽,芽很長(zhǎng)且長(zhǎng)出根毛,以長(zhǎng)根毛處為起始位置測(cè)量根長(zhǎng)。

4)指標(biāo)計(jì)算:

該計(jì)算方法與許多研究相似[20],首先,分別統(tǒng)計(jì)處理和對(duì)照中發(fā)芽種子的個(gè)數(shù),并按照公式(1)求得相對(duì)發(fā)芽率;其次,分別測(cè)量并計(jì)算處理和對(duì)照中種子根長(zhǎng)之和,并按照公式(2)求得相對(duì)根長(zhǎng);最后,將(1)與(2)結(jié)果按照公式(3)計(jì)算,所得結(jié)果即為該處理的GI結(jié)果。

1.3 數(shù)據(jù)分析方法

本研究所有數(shù)據(jù)均由Microsoft Excel 2016進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,由Origin 2021(Origin Lab,USA)繪圖。用SPSS軟件(Statistical Product and Service Solutions 25.0 Windows,USA)進(jìn)行不同指標(biāo)之間Pearson相關(guān)性分析,用SAS軟件(Statistical Analysis System 9.4,USA)進(jìn)行處理組間顯著性差異分析(<0.05)。

2 結(jié)果與討論

2.1 種子發(fā)芽指數(shù)

不同處理堆肥采用不同類型種子所得最終GI值,基本按照(除黃瓜外):豬糞(26.54%~80.49%)、羊糞(16.71%~92.98%)、豬糞+秸稈(28.28%~110.74%)、羊糞+秸稈(43.38%~119.69%)的順序遞增。由于不同類型種子對(duì)環(huán)境敏感性不同(圖3),整體而言,GI按照蘿卜(≤130%)>黃瓜(≤100%)>油菜(≤70%)>白菜(≤45%)的順序遞減。Li等[27-28]同樣采用蘿卜種子測(cè)定豬糞-秸稈和廚余-污泥聯(lián)合好氧堆肥腐熟情況時(shí),表示GI同樣為先快速上升之后穩(wěn)定于100%~120%;Yuan等[29]研究結(jié)果顯示,黃瓜作為發(fā)芽試驗(yàn)的種子時(shí),GI可達(dá)100%以上且差異不顯著。李紅霞等[30]研究羊糞好氧堆肥過(guò)程中,采用油菜作為GI試驗(yàn)對(duì)象,結(jié)果均在70%~90%之間。而本研究中小白菜種子GI結(jié)果與以往研究有所不同,例如Sun等[31]檢測(cè)禽糞便堆肥浸提液在小白菜種子中GI時(shí),結(jié)果其發(fā)芽率達(dá)120%以上,這可能是由于初始物料中添加的菌糠、碳源物質(zhì)及活性酶等物質(zhì)改變堆肥系統(tǒng)中微生物群落結(jié)構(gòu),改善堆體腐熟情況降低堆肥產(chǎn)品植物毒性而使得GI提高。

其中,黃瓜種子GI均較高,在第7 d均達(dá)到50%以上,且后續(xù)堆肥腐熟期等過(guò)程并沒(méi)有對(duì)GI產(chǎn)生顯著影響(提高2.11%~26.83%)。對(duì)于腐熟度較低的純糞便處理(PM和SM)也表現(xiàn)出較高的GI,且與腐熟度較高處理(PM+CS和SM+CS)近似。蘿卜種子GI范圍較大,腐熟度較低的純糞便處理與腐熟度較高的輔料添加處理表現(xiàn)出極大差異性(<0.01)。GI在14~28 d升高速度最快,28 d以后基本不變,表明不同堆肥階段對(duì)植物毒性消減情況不同。隨著堆肥進(jìn)行,GI基本按照PM

2.2 基本理化指標(biāo)

溫度在一定程度上可以反映堆肥進(jìn)程,同時(shí)是微生物活躍程度的體現(xiàn)[35]。添加輔料的處理(PM+CS和SM+CS)(圖4a)有顯著的高溫期,與以往Estrella-Gonzalez等[14]研究堆肥溫度過(guò)程一致,且溫度顯著高于純糞便的處理(PM和SM)(<0.01)。秸稈可以升高堆體溫度至74.3~75.6 ℃,且延長(zhǎng)高溫期10~20 d。純糞便處理溫度顯著降低(20~45℃)(<0.01),主要由于原料致密、碳源缺乏、氧氣不足等原因所致。O2含量由于微生物好氧消耗而降低(圖4b),在輔料添加處理中,O2含量均在第8 d降至最低(13%~14%),至第14 d恢復(fù)至環(huán)境后,波動(dòng)減少。而純糞便處理,O2含量最低可至1%~2%,已經(jīng)不再適合于微生物呼吸,O2主要消耗于堆肥前14 d和后14 d。研究表明,堆肥O2含量為10%~18%時(shí),微生物活性最佳[36-37],純糞便處理中O2含量不足是微生物活性受限的重要原因。O2與溫度呈顯著負(fù)相關(guān)關(guān)系(<0,<0.05),且在之前研究中也有類似的結(jié)果[28],且與溫度一致,O2含量在純糞便處理與秸稈添加處理中差異顯著(<0.01)。

pH值是影響堆肥過(guò)程中微生物生長(zhǎng)代謝的重要因素之一,可反映堆肥進(jìn)程和物料腐熟度[38]。由于初始原料中(圖4c),微厭氧作用導(dǎo)致有機(jī)酸、H+、SO42-等產(chǎn)生而使得PM及PM+CS處理呈現(xiàn)弱酸性,而SM本身顆粒結(jié)構(gòu)、含水率較低等導(dǎo)致其無(wú)酸化發(fā)酵現(xiàn)象[39]。在好氧通風(fēng)條件下,輔料添加處理(PM與SM)在初始2~3 d內(nèi)pH值迅速升高至8.23與8.29,至第14 d降至7.84與7.67,微弱升高后保持于7.7~7.8直至堆肥結(jié)束。Zhang等[40]研究堆肥中pH變化過(guò)程同樣發(fā)現(xiàn),秸稈等碳源輔料對(duì)于提高畜禽糞便堆肥系統(tǒng)pH值具有重要作用。而純糞便處理均在堆肥前7 d迅速升高(PM+CS為7.40,SM+CS為7.57),隨后波動(dòng)于7.5上下。所有處理均滿足5.5~8.5有機(jī)肥安全標(biāo)準(zhǔn)[41],且秸稈添加與不添加處理之間差異極顯著(<0.01),純糞便處理之間差異顯著(<0.05)。

C/N是反應(yīng)有機(jī)質(zhì)降解程度、堆肥進(jìn)程和腐熟度的重要指標(biāo)[35],有機(jī)質(zhì)礦化、腐殖化是堆肥反應(yīng)中重要生化過(guò)程,伴隨著CO2、CH4、NH3、N2O等排放,使得堆肥中C、N有機(jī)質(zhì)在組成、形態(tài)及含量等發(fā)生重大改變[42]。微生物好氧活動(dòng)最適C/N為20~25[43],由于氮源消耗速度快、堆體水分蒸發(fā)等原因,導(dǎo)致堆體C/N均呈現(xiàn)下降變化趨勢(shì)(圖4d)。但對(duì)于秸稈添加處理,C/N下降程度(PM+CS為40.83%、SM+CS為37.57%)顯著高于純糞便處理(PM為32.65%、SM為20.26%),這與前述溫度、氧氣、pH值等條件有關(guān)。而C/N與初始物料密切相關(guān),Liu等[24]將秸稈添加至畜禽糞便中得到不同初始C/N堆體(27.0~37.1),經(jīng)過(guò)堆肥之后其比值下降24.2%~51.7%,包含本研究所得結(jié)果。另外,PM處理組較SM處理組VS下降程度更大,這主要與羊糞中纖維素、木質(zhì)素等難降解有機(jī)質(zhì)含量較高有關(guān)。Muscolo等[44]研究表明,堆肥結(jié)束與初始C/N之比<0.7,則表明堆肥腐熟度較好,按照PM、PM+CS、SM、SM+CS分別為0.67、0.59、0.80、0.62,表明不同堆肥處理腐熟度不同。

2.3 植物毒性物質(zhì)

EC是衡量堆肥中可溶性鹽含量的重要指標(biāo),在一定程度上反應(yīng)堆肥物料對(duì)植物生長(zhǎng)產(chǎn)生抑制作用強(qiáng)度或植物毒性大小[45],當(dāng)EC>4 mS/cm時(shí),堆肥會(huì)對(duì)植物生長(zhǎng)產(chǎn)生抑制作用[46]。堆肥前期(圖5a),有機(jī)質(zhì)礦化分解作用產(chǎn)生鹽分離子導(dǎo)致EC升高,隨后腐殖化作用使得離子被固定聚合EC降低。SM處理中EC較高主要與羊糞本身特性有關(guān)(表1),不同處理EC變化趨勢(shì)基本一致,按照SM>PM>SM+CS>PM+CS順序遞減且差異極顯著(<0.01)。最終添加秸稈的處理均符合安全施用標(biāo)準(zhǔn)(3.57和3.97 mS/cm),而純糞便的處理均未能達(dá)標(biāo)(4.36和4.92 mS/cm),表明其中植物毒性物質(zhì)含量較高。Wang等[13]將添加/不添加輔料于雞糞-煙末好氧堆肥體系中進(jìn)行對(duì)比研究,發(fā)現(xiàn)不添加的處理GI最終沒(méi)有降至標(biāo)準(zhǔn)以下,且毒性較高。

NH4+主要由于原料糞便中微生物分解和積累作用而在堆肥初期處于較高水平,隨著高溫對(duì)硝化細(xì)菌活性抑制、NH3大量排放致使NH4+急劇下降[47-48]。這與以往研究結(jié)果相似,最高為初始階段(約10 g/kg),且在前7 d降低速度最快[14]。秸稈添加處理(PM和SM),NH4+在降溫期繼續(xù)下降(圖5b),直至腐熟期基本穩(wěn)定并趨于0,而純糞便處理(PM+CS和SM+CS)NH4+再次升高,可能是翻堆供氧使微生物再次活躍,以及有機(jī)酸等活化作用,而使得堆體中NH4+增加,但隨著NH3釋放,NH4+再次降低。腐熟期NH4+進(jìn)一步下降,可能與反硝化作用產(chǎn)生的NO3-有關(guān)[49]。不同處理之間NH4+含量差異顯著(<0.01),并按照PM>SM>PM+CS>SM+CS順序遞減,表明SM處理組對(duì)種子抑制作用可能較小。

VFAs易產(chǎn)生于堆肥高溫期(82.11~147.33 g/kg)(圖5c),此時(shí)微生物好氧活動(dòng)劇烈、易導(dǎo)致堆體局部厭氧,有機(jī)質(zhì)降解不完全而產(chǎn)生,但隨著堆肥進(jìn)行,堆體氧氣環(huán)境改善、有機(jī)質(zhì)分解作用減弱,VFAs含量逐漸降低(最終為25.36~62.55 g/kg)。小分子有機(jī)酸中的甲酸、乙酸、丙酸等在Wang等[20]研究中進(jìn)行詳細(xì)報(bào)道,且發(fā)現(xiàn)VFAs主要產(chǎn)生于高溫期且集中于堆肥前3 d,是堆肥植物毒性的重要物質(zhì)之一。添加秸稈處理(PM+CS和SM+CS)相對(duì)于純糞便處理(PM和SM),初始VFAs被稀釋而分別降低23.03%和37.30%,經(jīng)過(guò)49 d好氧堆肥過(guò)程,稀釋作用效果被擴(kuò)增至39.10%和45.46%。表明輔料添加對(duì)于堆肥植物毒性降低和腐熟度提高的重要作用,在Wang等[13]雞糞-菌糠共堆肥研究中也得出相似結(jié)論。另外,SM處理組VFAs均小于PM處理組,表明羊糞植物毒性較豬糞更低。

VS作為能源物質(zhì)直接與微生物生長(zhǎng)代謝相關(guān),但對(duì)于植物來(lái)講,有機(jī)質(zhì)降解消耗氧氣使得作物根系生長(zhǎng)呼吸有限制作用[50]。堆肥初期(圖5d),秸稈增加堆體VS含量約2.72%~3.14%,至堆肥結(jié)束時(shí),VS降解幅度可增加2.39%~4.34%。SM處理組中VS含量整體較高,但PM處理組VS降低10.89%~16.43%,顯著高于SM處理組(3.10%~10.16%),且VS降解程度按照PM+CS>PM>SM+CS>SM的順序遞減。這與以往研究相似,堆肥可使VS降低10%左右,且有機(jī)質(zhì)含量不同會(huì)影響其降解程度,進(jìn)而對(duì)堆肥結(jié)果腐熟效果和植物毒性情況造成一定影響[28]。由此表明,雖然羊糞中有機(jī)質(zhì)含量較豐富,但其中主要為難降解有機(jī)質(zhì),而豬糞中有機(jī)質(zhì)量降解量較多,其降解過(guò)程產(chǎn)物對(duì)種子會(huì)產(chǎn)生抑制作用,表明豬糞植物毒性較高。

2.4 敏感性種子篩選

為篩選出可綜合評(píng)價(jià)堆肥植物毒性的種子類型,將本研究所選4類種子(黃瓜、蘿卜、白菜、油菜)所得GI與表征堆肥腐熟和植物毒性情況8項(xiàng)指標(biāo)(溫度、pH、C/N、EC、NH4+、VS、VFAs)進(jìn)行相關(guān)性分析(表2)。結(jié)果表明,二者之間響應(yīng)關(guān)系按照:蘿卜>油菜>白菜>黃瓜順序遞減,表明蘿卜是綜合表征堆肥腐熟度和植物毒性,最具科學(xué)性和代表性的種子類型。堆肥過(guò)程不同影響指標(biāo)對(duì)種子GI相關(guān)性總和,按照NH4+>pH>O2>VS>VFAs>EC>C/N>溫度的順序遞減,該結(jié)果與對(duì)蘿卜種子GI影響順序完全一致,且蘿卜種子與總和相關(guān)性最強(qiáng)(=0.96),表明蘿卜種子對(duì)8項(xiàng)指標(biāo)有充分解釋性,可作為表征堆肥腐熟度和植物毒性最佳種子類型。迄今為止,蘿卜種子以其生長(zhǎng)速度快、顆粒大小適宜、植物毒性敏感性強(qiáng)而在堆肥研究中被廣泛應(yīng)用[20-21]。

表2 植物毒性因子與不同種子GI之間相關(guān)性分析

3 結(jié) 論

1)測(cè)算種子發(fā)芽指數(shù)(Germination Index,GI)時(shí),將破皮種子記為發(fā)芽,將破皮無(wú)發(fā)芽、剛剛發(fā)芽或者發(fā)芽很短種子記根長(zhǎng)為0,將發(fā)芽較長(zhǎng)但無(wú)根毛長(zhǎng)出種子記根長(zhǎng)為1 mm,將根毛生長(zhǎng)處選定為根長(zhǎng)測(cè)定起始位置,共設(shè)置4個(gè)重復(fù)。

2)不同處理堆肥GI,按照豬糞<羊糞<豬糞+秸稈<羊糞+秸稈的順序遞增,添加秸稈堆肥可顯著提高堆體溫度、進(jìn)而提升堆肥腐熟度,改善堆體pH值,降低電導(dǎo)率、銨根、小分子有機(jī)酸、有機(jī)質(zhì)等毒性物質(zhì)含量,提高C和N降解程度。

3)蘿卜種子與堆肥GI響應(yīng)系數(shù)最大,與其他種子相比,最能充分解釋腐熟度和植物毒性對(duì)其影響作用(=0.96),可用于表征堆肥過(guò)程植物毒性變化,作為種子發(fā)芽指數(shù)的普遍標(biāo)準(zhǔn)適用種子類型。

[1] Ge J, Huang G, Huang J, et al. Particle-scale modeling of methane emission during pig manure/wheat straw aerobic composting[J]. Environmental Science & Technology, 2016, 50(8): 4374-4383.

[2] Liang J, Li X, Yu Z, et al. Amorphous MnO2modified biochar derived from aerobically composted swine manure for adsorption of Pb (II) and Cd (II)[J]. Acs Sustainable Chemistry & Engineering, 2017, 5(6): 5049-5058.

[3] Feng X, Ling N, Chen H, et al. Soil ionomic and enzymatic responses and correlations to fertilizations amended with and without organic fertilizer in long-term experiments[J]. Scientific Reports, 2016, 6(1): 24559.

[4] Adugna G. A review on impact of compost on soil properties, water use and crop productivity[J]. Agricultural Science Research Journal, 2018, 4(3): 93-104.

[5] Zucconi F, Monaco A, Debertoldi M. Biological evaluation of compost maturity[J]. Biocycle, 1981, 22(4): 27-29.

[6] Luo Y, Liang J, Zeng G, et al. Seed germination test for toxicity evaluation of compost: Its roles, problems and prospects[J]. Waste Management, 2018, 71: 109-114.

[7] Agapios A, Andreas V, Marinos S, et al. Waste aroma profile in the framework of food waste management through household composting[J]. Journal of Cleaner Production, 2020, 257: 120340.

[8] Yuan J, Yang Q Y, Zhang Z Y, et al. Use of additive and pretreatment to control odors in municipal kitchen waste during aerobic composting[J]. Journal of Environmental Sciences, 2015, 37: 83-90.

[9] Ye Z M, Ding H, Yin Z L, et al. Evaluation of humic acid conversion during composting under amoxicillin stress: Emphasizes the driving role of core microbial communities[J]. Bioresource Technology, 2021, 337: 125483.

[10] Feng Y, Wang G Z, Liu Y W, et al. The impacts of oxytetracycline on humification during manure composting can be alleviated by adjusting initial moisture contents as illustrated by NMR[J]. Journal of Integrative Agriculture, 2021, 20(8): 2277-2288.

[11] Zhu N, Zhu Y Y, Li B Q, et al. Increased enzyme activities and fungal degraders by Gloeophyllum trabeum inoculation improve lignocellulose degradation efficiency during manure-straw composting[J]. Bioresource Technology, 2021, 337: 125427.

[12] Abdellah Y A Y, Li T Z, Chen X, et al. Role of psychrotrophic fungal strains in accelerating and enhancing the maturity of pig manure composting under low-temperature conditions[J]. Bioresource Technology, 2021, 320: 124402.

[13] Wang G, Kong Y, Liu Y, et al. Evolution of phytotoxicity during the active phase of co-composting of chicken manure, tobacco powder and mushroom substrate[J]. Waste Management, 2020, 114: 25-32.

[14] Estrella-Gonzalez M J, Suarez-Estrella F, Jurado M M, et al. Uncovering new indicators to predict stability, maturity and biodiversity of compost on an industrial scale[J]. Bioresource Technology, 2020, 313: 123557.

[15] Ko H J, Kim K Y, Kim H T, et al. Evaluation of maturity parameters and heavy metal contents in composts made from animal manure[J]. Waste Management, 2008, 28(5): 813-820.

[16] Gavilanes-Teran I, Jara-Samaniego J, Idrovo-Novillo J, et al. Windrow composting as horticultural waste management strategy-A case study in Ecuador[J]. Waste Management, 2016, 48: 127-134.

[17] Bargmann I, Rillig M C, Buss W, et al. Hydrochar and biochar effects on germination of spring barley[J]. Journal of Agronomy and Crop Science, 2013, 199(5): 360-373.

[18] Farhoudi R. Effect of seed size on salt tolerance at germination and seedling growth stages of wheat (L.)[J]. Research on Crops, 2011, 12(2): 308-311.

[19] Chang R, Li Y, Chen Q, et al. Comparing the effects of three in situ methods on nitrogen loss control, temperature dynamics and maturity during composting of agricultural wastes with a stage of temperatures over 70 degrees C[J]. Journal of Environmental Management, 2019, 230: 119-127.

[20] Wang G, Yang Y, Kong Y, et al. Key factors affecting seed germination in phytotoxicity tests during sheep manure composting with carbon additives[J]. Journal of Hazardous Materials, 2021, 421: 126809.

[21] Wang G, Li G, Chang J, et al. Enrichment of antibiotic resistance genes after sheep manure aerobic heap composting[J]. Bioresource Technology, 2021, 323: 124620.

[22] Zhang D, Luo W, Yuan J, et al. Effects of woody peat and superphosphate on compost maturity and gaseous emissions during pig manure composting[J]. Waste Management, 2017, 68: 56-63.

[23] Yang F, Li G, Yang Q, et al. Effect of bulking agents on maturity and gaseous emissions during kitchen waste composting[J]. Chemosphere, 2013, 93(7): 1393-1399.

[24] Liu T, Awasthi M K, Verma S, et al. Evaluation of cornstalk as bulking agent on greenhouse gases emission and bacterial community during further composting[J]. Bioresource Technology, 2021, 340: 125713.

[25] Chang R, Li Y, Li N, et al. Effect of microbial transformation induced by metallic compound additives and temperature variations during composting on suppression of soil-borne pathogens[J]. Journal of Environmental Management, 2021, 279: 111816.

[26] Kiatkamjon I, Sajid L, Cao Z, et al. Characterisation of biochar from maize residues produced in a self-purging pyrolysis reactor[J]. Bioresource Technology, 2018, 265: 224-235.

[27] Li S, Li D, Li J, et al. Effect of spent mushroom substrate as a bulking agent on gaseous emissions and compost quality during pig manure composting[J]. Environmental Science and Pollution Research International, 2018, 25(13): 12398-12406.

[28] Zhang D, Luo W, Li Y, et al. Performance of co-composting sewage sludge and organic fraction of municipal solid waste at different proportions[J]. Bioresource Technology, 2018, 250: 853-859.

[29] Yuan J, Chadwick D, Zhang D F, et al. Effects of aeration rate on maturity and gaseous emissions during sewage sludge composting[J]. Waste Management, 2016, 56: 403-410.

[30] 李紅霞,蔡祿,季祥,等. 羊糞好氧堆肥最佳工藝參數(shù)的優(yōu)化研究[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2019,40(6):215-220.

Li Hongxia, Cai Lu, Ji Xiang, et al. Optimization of optimum process parameters for aerobic composting of sheep manure[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(6): 215-220. (in Chinese with English abstract)

[31] Sun C Y, Wei Y B, Kou J N, et al. Improve spent mushroom substrate decomposition, bacterial community and mature compost quality by adding cellulase during composting[J]. Journal of Cleaner Production, 2021, 299: 126928.

[32] Liu Y, Ma R, Li D, et al. Effects of calcium magnesium phosphate fertilizer, biochar and spent mushroom substrate on compost maturity and gaseous emissions during pig manure composting[J]. Journal of Environmental Management, 2020, 267: 110649.

[33] Zhang L, Sun X. Improving green waste composting by addition of sugarcane bagasse and exhausted grape marc[J]. Bioresource Technology, 2016, 218: 335-343.

[34] Tiquia S M, Tam N F Y, Hodgkiss I J. Effects of composting on phytotoxicity of spent pig-manure sawdust litter[J]. Environmental Pollution, 1996, 93(3): 249-256.

[35] Meng X, Liu B, Zhang H, et al. Co-composting of the biogas residues and spent mushroom substrate: Physicochemical properties and maturity assessment[J]. Bioresource Technology, 2019, 276: 281-287.

[36] Magalhaes A M T, Shea P J, Jawson M D, et al. Practical simulation of composting in the laboratory[J]. Waste Management and Resource, 1993, 11(2): 143-154.

[37] Miller F C. Composting As A Process Based on the Control of Ecologically Selective Factors[M]. New York: Soil Microbial Ecology: Applications in Agricultural and Environmental Management. 1992.

[38] Voběrková S, Maxianová A, Schlosserová N, et al. Food waste composting-Is it really so simple as stated in scientific literature?-A case study[J]. Science of Total Environment, 2020, 723: 138202.

[39] Bustamante M A, Ceglie F G, Aly A, et al. Tittarelli. Phosphorus availability from rock phosphate: combined effect of green waste composting and sulfur addition[J]. Journal of Environment Management, 2016, 182: 557-563.

[40] Zhang Z, Liu D H, Qiao Y, et al. Mitigation of carbon and nitrogen losses during pig manure composting: A meta-analysis[J]. Science of the Total Environment, 2021, 783: 147103.

[41] Ivankin A N, Pandya U, Saraf M. Intensification of Aerobic Processing of the Organic Wastes into Compost[M]. Cham: Springer International Publishing, 2014.

[42] Haouas A, Modafar C E, Douira A, et al. Evaluation of the nutrients cycle, humification process, and agronomic efficiency of organic wastes composting enriched with phosphate sludge[J]. Journal of Cleaner Production, 2021, 302: 127051.

[43] Bernal M P, Alburquerque J A, Moral R. Composting of animal manures and chemical criteria for compost maturity assessment. A review[J]. Bioresource Technology, 2009, 100(22): 5444-5453.

[44] Muscolo A, Papalia T, Settineri G, et al. Are raw materials or composting conditions and time that most influence the maturity and/or quality of composts? Comparison of obtained composts on soil properties[J]. Journal of Cleaner Production, 2018, 195: 93-101.

[45] Sayara T, Basheer-Salimia R, Hawamde F, et al. Recycling of organic wastes through composting: process performance and compost application in agriculture[J]. Agronomy, 2020, 10(1): 1838.

[46] Karak T, Bhattacharyya P, Paul R K, et al. Evaluation of composts from agricultural wastes with fish pond sediment as bulking agent to improve compost quality[J]. Clean-Soil Air Water, 2013, 41(7): 711-723.

[47] Li Y, Luo W, Li G, et al. Performance of phosphogypsum and calcium magnesium phosphate fertilizer for nitrogen conservation in pig manure composting[J]. Bioresource Technology, 2018, 250: 53-59.

[48] Chen M, Huang Y, Wang C, et al. The conversion of organic nitrogen by functional bacteria determines the end-result of ammonia in compost[J]. Bioresource Technology, 2020, 299: 122599.

[49] Guo H, Gu J, Wang X, et al. Microbial driven reduction of N2O and NH3emissions during composting: effects of bamboo charcoal and bamboo vinegar[J]. Journal of Hazardous Materials, 2020, 390: 121292.

[50] Zhu H, Banuelos G. Influence of salinity and boron on germination, seedling growth and transplanting mortality of guayule: A combined growth chamber and greenhouse study[J]. Industrial Crops and Products, 2016, 92: 236-243.

Determination of seed germination index and selection of sensitive seeds for phytotoxicity evaluation of composting

Wang Guoying1, Yuan Jing1, Kong Yilin1, Shen Yujun2, Yang Yan1, Li Guoxue1※

(1.1001932100125)

Composting has historically been carried out by farmers for manure management, which is a reliable way to recycle manure for use on croplands in sustainable agriculture. However, poor management of the composting process can result in un-mature compost product, which inhibits plant growth and deteriorates soil condition. The seed Germination Index (GI), an authoritative parameter to evaluate the maturity of compost, has been widely utilized in evaluating the phytotoxicity and other aspects of composting process. However, there are still lack of unified standards for the measurement method of GI and the representative type of experimental seed until now, which leads to the diverse results of GI (fluctuated from 20%-217%), and the newest standard of organic fertilizer (NY525–2021) requirements GI≥70% of organic fertilizer. Thus, it is meaningless to compare these values between different studies in related fields and urgently for public to provide a reference measurement process for GI during composting. Therefore, this study protocoled four treatments, composting chicken manure with or without auxiliary material (carbon additive) for different phytotoxicity compost, and selected four types of seeds for sensitive assays according to previous studies, mainly included cucumber, radish, Chinese cabbage and oil rape. Besides, in the process of germination experiments and indexes calculation, detailly instruction for the whole process of GI determination and calculation was documented, which stipulated the definition of radical length for 0, 1 mm and the start position for measure (with diagram). Furthermore, systematically detecting the response relationships between influenced parameters and GI of different composting treatments. The results showed that, according to the GI of final compost, the maturity increased in the order of pure pig manure treatment (26.54%-80.49%), pure sheep manure treatment (16.71%-92.98%), pig manure and straw treatment (28.28%-110.74%), sheep manure and straw treatment (43.38%-119.69%). Carbon additive of straw could significantly improve temperature of composting systems and further maturity of the final products. Increasing pH and decreasing phytotoxicity of electronical conductivity, low molecular organic acid and organic matter contents at the same time. Seeds’ GI decreased with the order of radish (≤130%), cucumber (≤100%), oil rape (≤70%), Chinese cabbage (≤45%). The sensitives were reflected with correlation analysis, which between physical and chemical indicators (temperature, oxygen, pH, carbon and nitrogen ratio) and biological toxicity factors (electronical conductivity, ammonium nitrogen, organic acid and organic matter) and GI with different seeds (cucumber, radish, cabbage, rape) of four composting processes, and fond the factors influenced GI with the sequence of NH4+, pH value, O2, VS, VFAs, EC, C/N, temperature, which was in accordance with the affected sequence of radish seed. Besides, radish seed showed the highest responsivity (3.69,=0.96) of GI for influenced factors, which was the most scientific and representative type of seeds for comprehensively reflecting maturity and phytotoxicity of compost of discrepancy qualities compost. Furthermore, radish has been widely studied for the reasons of fasting germination speed, moderating molecular size, obtaining easily and lowering price. These results can provide scientific references for the determination and comparation of GI, the establishment of organic fertilizer standards and the safe application of compost in farmlands.

composting; seed; phytotoxicity; germination index; determination

王國(guó)英,袁京,孔藝霖,等. 堆肥種子發(fā)芽指數(shù)測(cè)定方法與敏感性種子篩選[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(19):220-227.doi:10.11975/j.issn.1002-6819.2021.19.025 http://www.tcsae.org

Wang Guoying, Yuan Jing, Kong Yilin, et al. Determination of seed germination index and selection of sensitive seeds for phytotoxicity evaluation of composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(19): 220-227. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.19.025 http://www.tcsae.org

2021-06-10

2021-08-16

財(cái)政部和農(nóng)業(yè)農(nóng)村部國(guó)家絨毛用羊現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-39-19)

王國(guó)英,博士生,研究方向?yàn)楣腆w廢棄物資源化利用。Email:wangguoying@cau.edu.cn

李國(guó)學(xué),教授,博士生導(dǎo)師,研究方向?yàn)楣腆w廢棄物資源化利用。Email:ligx@cau.edu.cn

10.11975/j.issn.1002-6819.2021.19.025

X713; X502

A

1002-6819(2021)-19-0220-08

猜你喜歡
羊糞堆體豬糞
不起眼的羊糞粒
發(fā)酵菌劑與堆體方式對(duì)菇渣發(fā)酵效果的影響
不同碳氮比下豬糞高溫堆肥腐熟進(jìn)程研究
食用菌菌糠堆肥化發(fā)酵特性及腐熟進(jìn)程
好氧堆肥降低豬糞中重金屬生物有效性的可行性概述
EM原露堆漚發(fā)酵羊糞對(duì)高丹草栽培的影響初探
豬糞變有機(jī)肥一年賣了3個(gè)億
豬糞中添加腐殖酸添加劑可降低糞便中的臭氣
寧夏果園羊糞腐熟方法初探
經(jīng)堆肥處理蠶沙可達(dá)到資源化利用的要求
寿阳县| 平阴县| 荣成市| 扬中市| 焉耆| 启东市| 澄城县| 云林县| 临潭县| 那坡县| 南宁市| 海门市| 资阳市| 翁牛特旗| 洱源县| 彩票| 大田县| 昭通市| 城市| 兴海县| 革吉县| 敖汉旗| 凌源市| 封开县| 安龙县| 东安县| 即墨市| 慈溪市| 胶南市| 搜索| 桂平市| 桓台县| 寻甸| 信宜市| 贡山| 霞浦县| 介休市| 凤阳县| 安阳市| 思南县| 城口县|