王海永,張晨月,李佳,部帥,李成,趙成龍
蟾毒靈抑制肝癌干細(xì)胞lncRNAs分子篩選研究
王海永1,張晨月2,李佳3,部帥4,李成1,趙成龍1
1.山東省腫瘤防治研究院,山東 濟(jì)南 250117;2.復(fù)旦大學(xué)附屬腫瘤醫(yī)院,上海 200032;3.鄭州大學(xué)附屬腫瘤醫(yī)院,河南 鄭州 450003;4.山東中醫(yī)藥大學(xué)第二附屬醫(yī)院,山東 濟(jì)南 250001
觀察蟾毒靈對(duì)肝癌干細(xì)胞的影響,并探討其相關(guān)機(jī)制。方法 利用無血清懸浮培養(yǎng)技術(shù)富集肝癌干細(xì)胞球,分子生物實(shí)驗(yàn)檢測(cè)腫瘤干細(xì)胞標(biāo)記物CD133、CD44和上皮特異性抗原(ESA)表達(dá),測(cè)序技術(shù)篩選蟾毒靈干預(yù)肝癌干細(xì)胞后lncRNAs分子的差異表達(dá)。結(jié)果 通過無血清懸浮培養(yǎng)方法成功富集肝癌干細(xì)胞球,進(jìn)一步發(fā)現(xiàn)蟾毒靈可抑制肝癌干細(xì)胞球的形成;蟾毒靈能顯著抑制肝癌干細(xì)胞標(biāo)記物CD133、CD44和ESA表達(dá);測(cè)序結(jié)果顯示,蟾毒靈可引起肝癌干細(xì)胞lncRNAs分子的差異表達(dá)。結(jié)論 蟾毒靈具有抑制肝癌干細(xì)胞的作用,其機(jī)制可能與調(diào)控lncRNAs分子有關(guān)。
蟾毒靈;肝癌干細(xì)胞;長鏈非編碼RNA
肝細(xì)胞癌(hepatocellular carcinoma,HCC)是全球惡性程度最高的腫瘤之一[1]。由于其癥狀不明顯且具有非特異性,大多數(shù)HCC患者就診時(shí)已處于晚期,因而失去最佳治療時(shí)機(jī)。迄今為止,HCC發(fā)生發(fā)展的機(jī)制仍未完全明確[2]。研究表明,肝癌干細(xì)胞在促進(jìn)HCC發(fā)生發(fā)展中扮演重要角色,HCC的復(fù)發(fā)與肝癌干細(xì)胞的浸潤密切相關(guān)[3]。
腫瘤干細(xì)胞的調(diào)控過程十分復(fù)雜。研究表明,長鏈非編碼RNA(lncRNA)可通過多種機(jī)制調(diào)控不同種類腫瘤中的干細(xì)胞[4]。lncRNA是一組至少具有200個(gè)堿基但不具備翻譯蛋白質(zhì)功能的轉(zhuǎn)錄本,可通過與miRNA、mRNA和蛋白質(zhì)的相互作用調(diào)節(jié)基因表達(dá)[5]。lncRNA具有促進(jìn)和抑制腫瘤發(fā)生發(fā)展的雙重作用。研究表明,降低lncRNA H19表達(dá)可逆轉(zhuǎn)CD133+腫瘤干細(xì)胞所致化療耐受性[6]。此外,lncRNA HOTTIP可通過調(diào)控Wnt/catenin通路影響胰腺癌干細(xì)胞的特性[7]。
蟾毒靈可在抑制肝癌血管生成、侵襲和轉(zhuǎn)移及誘導(dǎo)肝癌細(xì)胞凋亡等方面發(fā)揮作用[8-10],然而,其對(duì)肝癌干細(xì)胞的作用及其與lncRNAs的相關(guān)性鮮有報(bào)道。本研究觀察蟾毒靈對(duì)肝癌干細(xì)胞的影響,并篩選其可能調(diào)控的lncRNAs分子。
人肝癌細(xì)胞PLC/PRF/5,購自中國科學(xué)院上海細(xì)胞庫。蟾毒靈,德國Sigma Aldrich,貨號(hào)B0261。
CD133,德國Miltenyi公司,貨號(hào)170-070-702;CD44,德國Miltenyi公司,貨號(hào)170-078-029;上皮特異性抗原(ESA),德國Miltenyi,貨號(hào)130-110-998;4%多聚甲醛,上海碧云天生物技術(shù)有限公司,貨號(hào)P0099;0.1%結(jié)晶紫溶液,北京索萊寶,貨號(hào)G1064;TRIzol?試劑,美國Invitrogen公司,貨號(hào)10296010。FACSA流式細(xì)胞儀(美國BD公司),2100生物分析儀(美國Agilent公司),ND2000超微量分光光度計(jì)(美國Thermo Scientific公司),移液槍(美國Thermo公司),3-18KS高速低溫離心機(jī)(美國Sigma公司),CO2細(xì)胞培養(yǎng)箱(美國Thermo公司)。
采用無血清懸浮培養(yǎng)分離肝癌干細(xì)胞,并富集肝癌干細(xì)胞球。將生長良好的PLC/PRF/5細(xì)胞消化后離心,棄去含血清培養(yǎng)基,PBS清洗,用不含血清的腫瘤干細(xì)胞培養(yǎng)基重懸,細(xì)胞計(jì)數(shù),取1×103個(gè)PLC/PRF/5細(xì)胞,加入超低吸附細(xì)胞培養(yǎng)皿中培養(yǎng),觀察細(xì)胞成球狀態(tài)[11]。
將1×103個(gè)PLC/PRF/5細(xì)胞和肝癌干細(xì)胞分別接種至6孔板,加入含10%胎牛血清的DMEM培養(yǎng)基培養(yǎng),每3 d更換1次培養(yǎng)基,14 d后觀察2組細(xì)胞克隆形成情況。PBS清洗細(xì)胞,4%多聚甲醛固定,0.1%結(jié)晶紫溶液染色15 min,PBS清洗3次,晾干。由2位研究人員讀取克隆數(shù)目。
0.25%胰蛋白酶消化2組細(xì)胞,100 μL PBS重懸,加入CD133、CD44和ESA一抗(均為1∶100),4 ℃避光孵育15 min;PBS洗滌3次,加入二抗(1∶1 000)孵育15 min;PBS洗滌,流式細(xì)胞儀檢測(cè)腫瘤干細(xì)胞標(biāo)記物CD133、CD44和ESA表達(dá)。
將肝癌干細(xì)胞分為對(duì)照組和蟾毒靈組,分別加入正常培養(yǎng)基和含5 nmol/L蟾毒靈的正常培養(yǎng)基培養(yǎng)24 h,統(tǒng)計(jì)干細(xì)胞球數(shù)目。
將肝癌干細(xì)胞分為對(duì)照組、5 nmol/L蟾毒靈組和20 nmol/L蟾毒靈組,分別加入相應(yīng)藥物培養(yǎng),Western blot檢測(cè)CD133、CD44和ESA表達(dá)。
將肝癌干細(xì)胞分為對(duì)照組、5 nmol/L蟾毒靈組和20 nmol/L蟾毒靈組,分別加入相應(yīng)藥物培養(yǎng),TRIzol試劑提取總RNA,加入DNaseⅠ去除基因組DNA;生物分析儀測(cè)定RNA質(zhì)量,超微量分光光度計(jì)對(duì)RNA進(jìn)行定量。用高質(zhì)量RNA樣品(OD260/280=1.8~2.2,OD260/230≥2.0,RNA完整值≥6.5,28 S∶18 S≥1.0)構(gòu)建測(cè)序文庫。實(shí)驗(yàn)由上海凌恩生物科技有限公司協(xié)助完成。
使用Goatools軟件(https://github.com/tanghaibao/ GOatools)對(duì)3組lncRNAs進(jìn)行富集分析,采用Fisher精確檢驗(yàn)。為控制計(jì)算的假陽性率,共使用4種多重檢驗(yàn)方法(Bonferroni、Holm、Sidak和false discovery rate)對(duì)值進(jìn)行校正,當(dāng)≤0.05時(shí),認(rèn)為此GO功能存在顯著富集情況。
本研究采用無血清懸浮培養(yǎng)成功培養(yǎng)出肝癌干細(xì)胞球,見圖1??寺⌒纬蓪?shí)驗(yàn)顯示,肝癌干細(xì)胞克隆形成能力明顯增強(qiáng)(<0.05),見圖2。流式細(xì)胞儀檢測(cè)結(jié)果顯示,CD133、CD44和ESA在肝癌干細(xì)胞中的表達(dá)明顯高于PLC/PRF/5細(xì)胞,表達(dá)CD133、CD44和ESA的PLC/PRF/5細(xì)胞分別為2.0%、1.9%、1.1%,表達(dá)CD133、CD44和ESA的肝癌干細(xì)胞分別為18.4%、95.1%和57.7%,見圖3。
圖1 肝癌干細(xì)胞球形態(tài)(×200)
圖2 2組肝癌細(xì)胞克隆形成數(shù)目比較(±s,n=3)
圖3 2組肝癌細(xì)胞CD44、ESA和CD133表達(dá)比較(±s,n=3)
與對(duì)照組肝癌細(xì)胞比較,5 nmol/L蟾毒靈干預(yù)后,肝癌干細(xì)胞球數(shù)目明顯減少,見圖4。Western blot結(jié)果顯示,5、20 nmol/L蟾毒靈均可顯著抑制CD133、CD44和ESA表達(dá),見圖5。
與對(duì)照組比較,5、20 nmol/L蟾毒靈組均能引起肝癌干細(xì)胞lncRNAs分子的差異表達(dá)。見圖6。
圖4 2組肝癌干細(xì)胞增殖能力比較(±s,n=3)
圖5 2組肝癌干細(xì)胞CD133、CD44和ESA表達(dá)比較(±s,n=3)
圖6 蟾毒靈對(duì)人肝癌干細(xì)胞相關(guān)lncRNAs分子的影響
研究表明,lncRNA主要參與干細(xì)胞調(diào)節(jié)[12]。本研究通過體外實(shí)驗(yàn)探討蟾毒靈對(duì)肝癌干細(xì)胞的作用,結(jié)果提示lncRNA與肝癌干細(xì)胞之間具有相關(guān)性。腫瘤干細(xì)胞僅占腫瘤細(xì)胞中一小部分,因具有自我更新、分化和轉(zhuǎn)移的能力而有別于其他腫瘤細(xì)胞[13]。腫瘤干細(xì)胞標(biāo)記物CD44、CD24和ESA在胰腺癌中首次被發(fā)現(xiàn)[14]。此后,作為腫瘤干細(xì)胞標(biāo)記物的CD133、CXCR4、CXCR1、ABCG2、ALDH1和Nestin等被逐步鑒定[15]。已有研究致力于探索腫瘤干細(xì)胞形成和調(diào)節(jié)的潛在機(jī)制。lncRNA參與了多個(gè)生物學(xué)過程,主要通過調(diào)控轉(zhuǎn)錄組水平發(fā)揮作用[16]。肝癌干細(xì)胞的表型和功能可由lncRNAs直接或間接調(diào)控。
關(guān)于lncRNAs在腫瘤干細(xì)胞中的作用和功能的研究還處于起步階段。已有研究表明,lncRNAs的異常表達(dá)可通過轉(zhuǎn)化為惡性表型而導(dǎo)致腫瘤進(jìn)展[17]。目前,lncRNAs對(duì)腫瘤干細(xì)胞的作用主要集中在肺癌、前列腺癌、乳腺癌和膠質(zhì)瘤上,具體機(jī)制包括組蛋白修飾、SOX2/KLF4途徑的調(diào)控、上皮-間質(zhì)轉(zhuǎn)化的誘導(dǎo)及其與miRNA的相互作用[18-19]。此外,研究發(fā)現(xiàn),lncRNAs可根據(jù)腫瘤類型通過不同方式調(diào)節(jié)腫瘤干細(xì)胞功能[20]。
綜上所述,本研究結(jié)果提示,蟾毒靈可能通過調(diào)節(jié)lncRNAs分子表達(dá)降低肝癌干細(xì)胞比例,發(fā)揮治療HCC的作用。對(duì)lncRNAs分子的深入研究可為治療HCC提供更多新的靶點(diǎn)。
[1] TORRE L A, BRAY F, SIEGEL R L, et al. Global cancer statistics, 2012[J]. CA Cancer J Clin,2015,65(2):87-108.
[2] SIA D, VILLANUEVA A, FRIEDMAN S L, et al. Liver cancer cell of origin, molecular class, and effects on patient prognosis[J]. Gastroenterology,2017,152(4):745-761.
[3] GUO Z, LI LQ, JIANG J H, et al. Cancer stem cell markers correlate with early recurrence and survival in hepatocellular carcinoma[J]. World J Gastroenterol,2014,20(8):2098-2106.
[4] YAN H, BU P. Non-coding RNAs in cancer stem cells[J]. Cancer Lett,2018,421:121-126.
[5] MAO Y, LIU R, ZHOU H, et al. Transcriptome analysis of miRNA- lncRNA-mRNA interactions in the malignant transformation process of gastric cancer initiation[J]. Cancer Gene Ther,2017,24(6):267-275.
[6] DING K, LIAO Y, GONG D, et al. Effect of long non-coding RNA H19 on oxidative stress and chemotherapy resistance of CD133+cancer stem cells via the MAPK/ERK signaling pathway in hepatocellular carcinoma[J]. Biochem Biophys Res Commun,2018, 502(2):194-201.
[7] FU Z, CHEN C, ZHOU Q, et al. LncRNA HOTTIP modulates cancer stem cell properties in human pancreatic cancer by regulating HOXA9[J]. Cancer Lett,2017,410:68-81.
[8] WU S H, BAU D T, HSIAO Y T, et al. Bufalin induces apoptosis in vitro and has antitumor activity against human lung cancer xenografts in vivo[J]. Environ Toxicol,2017,32(4):1305-1317.
[9] WANG H, ZHANG C, XU L, et al. Bufalin suppresses hepatocellular carcinoma invasion and metastasis by targeting HIF-1α via the PI3K/AKT/mTOR pathway[J]. Oncotarget,2016,7(15):20193-20208.
[10] WANG H, ZHANG C, CHI H, et al. Synergistic anti-hepatoma effect of bufalin combined with sorafenib via mediating the tumor vascular microenvironment by targeting mTOR/VEGF signaling[J]. Int J Oncol,2018,52(6):2051-2060.
[11] WANG H Y, NING Z, LI Y, et al. Bufalin suppresses cancer stem-like cells in gemcitabine-resistant pancreatic cancer cells via Hedgehog signaling[J]. Mol Med Rep,2016,14(3):1907-1914.
[12] WONG C M, TSANG F H, NG I O. Non-coding RNAs in hepatocellular carcinoma:molecular functions and pathological implications[J]. Nat Rev Gastroenterol Hepatol,2018,15(3):137-151.
[13] MEDEMA J P. Cancer stem cells:the challenges ahead[J]. Nat Cell Biol,2013,15(4):338-344.
[14] LI C, HEIDT D G, DALERBA P, et al. Identification of pancreatic cancer stem cells[J]. Cancer Res,2007,67(3):1030-1037.
[15] ABBASZADEGAN M R, BAGHERI V, RAZAVI M S, et al. Isolation, identification, and characterization of cancer stem cells:a review[J]. J Cell Physiol,2017,232(8):2008-2018.
[16] TAKAKURA N. Formation and regulation of the cancer stem cell niche[J]. Cancer Sci,2012,103(7):1177-1181.
[17] GRELET S, LINK L A, HOWLEY B, et al. A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression[J]. Nat Cell Biol,2017,19(9):1105-1115.
[18] GHUWALEWALA S, GHATAK D, DAS P, et al. CD44(high) CD24(low) molecular signature determines the cancer stem cell and EMT phenotype in oral squamous cell carcinoma[J]. Stem Cell Res,2016, 16(2):405-417.
[19] BOUMAHDI S, DRIESSENS, LAPOUGE G, et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma[J]. Nature,2014,511(7508):246-250.
[20] ZHOU W, YE X L, XU J, et al. The lncRNA H19 mediates breast cancer cell plasticity during EMT and MET plasticity by differentially sponging miR-200b/c and let-7b[J]. Sci Signal, 2017,10(483):eaak9557.
Study on Screening of lncRNAs Involved in the Inhibitory Effect of Bufalin on Hepatocellular Carcinoma Stem Cells
WANG Haiyong1, ZHANG Chenyue2, LI Jia3, BU Shuai4, LI Cheng1, ZHAO Chenglong1
To investigate the effects of bufalin on hepatocellular carcinoma stem cells; To discuss the possible mechanism.Hepatocellular carcinoma stem cells spheres were enriched by serum-free suspension culture. Molecular biological experiments were used to detect the expressions of tumor stem cell markers CD133, CD44 and ESA in vitro, and sequencing technique was used to screen the differential expression of lncRNAs in hepatocellular carcinoma cells treated with bufalin.Hepatocellular carcinoma stem cells spheres were successfully enriched by serum-free suspension culture. Bufalin inhibited the formation of hepatocellular carcinoma cells spheres, and the expression of hepatocellular carcinoma stem cells markers CD133, CD44 and ESA were inhibited by bufalin in vitro. Sequencing result showed that bufalin induced the differential expression of lncRNAs.Bufalin can inhibit hepatocellular carcinoma stem cells, and the mechanism may be related to the regulation of lncRNAs.
bufalin; hepatocellular carcinoma stem cells; lncRNAs
R285.5
A
1005-5304(2021)12-0041-04
10.19879/j.cnki.1005-5304.202104541
山東省重點(diǎn)研發(fā)計(jì)劃(2018GSF119014);山東省泰山學(xué)者基金(tsqn201812149);山東第一醫(yī)科大學(xué)學(xué)術(shù)提升計(jì)劃(2019RC004)
(2021-04-27)
(修回日期:2021-06-01;編輯:華強(qiáng))