張仰全,李學(xué)雷,趙芷浚,王彥娟,苑興洲,張 健*,胡紹爭
抗壞血酸改性Br摻雜g-C3N4光催化降解污染物
張仰全1,李學(xué)雷2,趙芷浚1,王彥娟1,苑興洲1,張健1*,胡紹爭1
(1.遼寧石油化工大學(xué),遼寧 撫順 113001;2.營口理工學(xué)院,遼寧 營口 115014)
以尿素和溴化銨分別作為前驅(qū)體和溴源,同時利用抗壞血酸對g-C3N4進(jìn)行改性,通過二次焙燒法成功制備了抗壞血酸改性的Br摻雜g-C3N4-AA-Br納米片光催化劑.利用XRD、TEM、XPS、UV-Vis DRS、PL、N2吸附-脫附等測試手段對催化劑的結(jié)構(gòu)、形貌、光學(xué)性能進(jìn)行了表征.結(jié)果表明g-C3N4-AA-Br具有較大的比表面積、拓寬的可見光吸收范圍以及較低的電子-空穴復(fù)合率.在可見光下考察了不同催化劑對RhB、甲基橙、活性藍(lán)染料降解的光催化性能,結(jié)果表明g-C3N4-AA-Br-2在可見光下在180min內(nèi)對RhB降解率為72%,其速率常數(shù)=0.00847min-1,是純g-C3N4的5.6倍.通過活性物種捕獲劑實(shí)驗(yàn)發(fā)現(xiàn)降解RhB的主要活性物種為羥基自由基(·OH)和超氧自由基(·O2-),并推測了可能的反應(yīng)機(jī)理.
氮化碳;納米片;溴摻雜;光催化;降解
g-C3N4作為一種環(huán)境友好的非金屬光催化劑,其禁帶寬度適中(約2.7eV),化學(xué)性能穩(wěn)定,制備簡單,因而受到廣泛關(guān)注,可應(yīng)用于水解產(chǎn)氫[1]、降解有機(jī)污染物[2],光催化固氮[3],CO2還原[4]等方面.但 g-C3N4存在電子-空穴復(fù)合率高,比表面積小等缺餡,通過金屬/非金屬摻雜、構(gòu)建異質(zhì)結(jié)構(gòu),貴金屬表面修飾、形貌處理等可改善g-C3N4性能[5-9].
元素?fù)诫s是將少量金屬或非金屬元素?fù)饺雊-C3N4的骨架中,以調(diào)整其電子結(jié)構(gòu)、光學(xué)性能及其它物理性質(zhì).摻雜金屬元素(Fe, Cu, Ni, K等)能在g-C3N4價帶上方產(chǎn)生施主能級或?qū)路疆a(chǎn)生受主能級,使 g-C3N4帶隙變窄,但金屬摻雜易造成晶格缺陷而產(chǎn)生載流子復(fù)合中心[10].非金屬摻雜如非金屬鹵族元素(如F, Cl, Br, I等)機(jī)理與金屬摻雜不同,摻雜元素與 g-C3N4價帶雜化,提升價帶頂使帶隙減小,拓寬催化劑對可見光的響應(yīng),促進(jìn)光生載流子的分離從而提高光催化性能.如Wang等[11]以NH4F為F源制備的F摻雜g-C3N4能有效調(diào)節(jié)電子帶隙,使可見光下的產(chǎn)氫性能提升.Iqbal等[12]以三聚氰胺,葡萄糖和NH4I為原料制備I摻雜的g-C3N4,由于其結(jié)構(gòu)良好的介孔結(jié)構(gòu)和薄納米片結(jié)構(gòu)使得催化劑有更好的電荷分離效率,在可見光下有優(yōu)異的水解產(chǎn)氫活性.所以,非金屬元素?fù)诫sg-C3N4改性是一種提高g-C3N4光催化性能的良好策略.
抗壞血酸(AA)是一種酸性較弱的有機(jī)酸,可用于催化劑的改性處理.Mert等[13]通過制備抗壞血酸(AA)改性的TiO2降解對苯二酚,改性后光生電子從AA移至TiO2的導(dǎo)帶,在TiO2表面形成了配合物,減小了TiO2的帶隙,增強(qiáng)了光催化活性.但通過AA改性g-C3N4并摻雜非金屬元素的報(bào)道較少.本文以尿素和溴化銨分別作為前驅(qū)體和溴源,利用AA對g-C3N4進(jìn)行改性,通過二次焙燒法成功制備了AA改性的Br摻雜g-C3N4-AA-Br納米片光催化劑.在高壓鈉燈模擬可見光的條件下,通過光催化降解羅丹明 B、甲基橙與活性藍(lán)有機(jī)染料,考察了催化劑改性前后的光催化性能,確定了最優(yōu)活性的催化劑及其最佳用量等條件.此外,還通過捕獲劑實(shí)驗(yàn)確定了光催化降解反應(yīng)中的活性物質(zhì),并推測了相應(yīng)的光催化反應(yīng)機(jī)理.
尿素,溴化銨(NH4Br),抗壞血酸(AA),羅丹明B(RhB),活性藍(lán)(Reactive Blue),甲基橙(MO)均為分析純,購于國藥集團(tuán)化學(xué)試劑有限公司,去離子水為實(shí)驗(yàn)室自制.
磁力攪拌器(HJ-4,江蘇省金壇市榮華儀器制造有限公司);電子天平(WT-B1003,杭州萬特衡器有限公司);馬弗爐(SX2-4-10,沈陽市工業(yè)電爐廠);離心機(jī)(800 型,金壇市榮華儀器制造有限公司);循環(huán)水式真空泵(SHZ-D,鞏義市予華儀器有限公司);臺式干燥箱(101-1EBS,北京市永光明醫(yī)療儀器有限公司);恒溫水浴鍋(DF-101S,鞏義市予華儀器有限責(zé)任公司);紫外可見分光光度計(jì)(U3310,日本島津公司).
X 射線衍射光譜(XRD)采用日本島津XRD- 7000測定催化劑的晶體結(jié)構(gòu).氮?dú)馕降葴鼐€采用 Micrometrics ASAP 2010物理吸附儀在-196℃下測得.催化劑的光學(xué)性質(zhì)采用日本JASCA公司的紫外可見光譜儀(UV-550)進(jìn)行測定.采用Philips Tecnai G220型透射電鏡觀察所制備樣品的形貌特征.X射線光電子能譜(XPS)使用賽默飛世爾科技有限公司的 Thermo ESCALAB 250 光電子能譜儀進(jìn)行測定.催化劑光生電子與空穴分離效率采用日本HORIBA公司的FluoroMax-4光致發(fā)光光譜儀測定.
以尿素為前驅(qū)體制備g-C3N4[14].將尿素置于帶蓋坩堝中,在馬弗爐中以5℃/min升至550℃焙燒2h,得到的淡黃色粉末即g-C3N4稱取一定質(zhì)量g-C3N4與1wt% AA,加入到100mL體積分?jǐn)?shù)30%的乙醇水溶液中,磁力攪拌1h形成均勻混合物,在80℃干燥箱中過夜,記為g-C3N4-AA-pre,將g-C3N4-AA-pre在馬弗爐中以5℃/min升至550℃后維持2h,樣品研磨后記為g-C3N4-AA.將1g g-C3N4-AA-pre與不同質(zhì)量的NH4Br在研缽中充分研磨,其中g(shù)-C3N4- AA-pre與NH4Br質(zhì)量比分別為1:1、2:1、3:1、4:1,研磨后的樣品在馬弗爐中以5℃/min升至550℃焙燒2h,焙燒后樣品分別記為g-C3N4-AA-Br-1、g-C3N4-AA-Br-2、g-C3N4-AA-Br-3、g-C3N4-AA- Br-4.作為對照,將1g g-C3N4與0.5g NH4Br充分研磨后在馬弗爐中以5℃/min升至550℃焙燒2h,焙燒后的樣品記為g-C3N4-Br.
1.5.1 光催化降解染料實(shí)驗(yàn)步驟 采用250W高壓鈉燈(400<<800nm)模擬太陽光對RhB光催化降解來評估催化劑的光催化性能,裝置如圖1所示,鈉燈置于通有冷凝水的石英冷阱中維持恒溫(30℃).具體步驟如下:將0.1g催化劑分散于RhB溶液中(100mL, 10mg/L),避光攪拌30min達(dá)到吸附-脫附平衡.然后打開光源,開燈前后均用磁力攪拌使催化劑在反應(yīng)液中均勻分散.每30min移取5mL反應(yīng)液,離心后取上清液,用紫外-可見分光光度計(jì)測定上清液在552nm處的吸光度.此外,還利用了甲基橙與活性藍(lán)染料以同樣方法進(jìn)行實(shí)驗(yàn),測試催化劑對不同染料的降解性能.
圖1 光催化裝置示意
1.5.2 RhB標(biāo)準(zhǔn)曲線繪制 配制一系列不同濃度的RhB溶液,用紫外-可見分光光度計(jì)測試其在552nm的吸光度,繪制了RhB標(biāo)準(zhǔn)曲線(圖2),擬合直線后得出RhB標(biāo)準(zhǔn)溶液線性回歸方程:= 0.18544+0.00929,2=0.99933,由此方程求得反應(yīng)時刻RhB溶液的濃度,再由降解率公式計(jì)算RhB溶液的降解率:
式中: η為RhB的降解率,C0和A0分別為反應(yīng)前RhB的濃度和吸光度, Ct和At分別為反應(yīng)t時刻RhB的濃度和吸光度.
2.1.1 XRD 表征 如圖3所示,純g-C3N4存在2個不同強(qiáng)度的衍射峰,2分別位于12.8°和27.6°.其中2在12.8°處較弱的衍射峰歸屬于g-C3N4的(100)晶面,層間距=0.69nm,代表g-C3N4面內(nèi)三嗪環(huán)單元的有序堆積,2在27.6°處較強(qiáng)的衍射峰歸屬于g-C3N4的(002)晶面,層間距=0.32nm,代表芳香環(huán)的層間堆垛[15].從譜圖中發(fā)現(xiàn),g-C3N4-AA與純g-C3N4相比,(002)晶面對應(yīng)的特征峰未發(fā)生偏移,但g-C3N4-AA和g-C3N4-AA-Br-2與g-C3N4和g-C3N4-Br相比,在27.6°處衍射峰強(qiáng)度有所增加,表明AA處理后使g-C3N4層間結(jié)構(gòu)密度與有序度增加[16].摻雜Br后, g-C3N4-Br與g-C3N4-AA-Br-2在(002)晶面對應(yīng)的特征峰向低角度方向輕微偏移(如圖3中的插圖所示),可能是Br的摻入使g-C3N4層間距發(fā)生了變化[17].
2.1.2 TEM 表征 采用透射電鏡對樣品的形貌進(jìn)行了分析,從圖4(a)中觀察到g-C3N4為無規(guī)則的二維層狀結(jié)構(gòu),由圖中陰影部分看出g-C3N4層狀堆積較厚.經(jīng)AA摻雜并焙燒后(圖4(b))發(fā)現(xiàn)g-C3N4片層變薄,邊緣出現(xiàn)卷曲狀,形成了類似網(wǎng)狀的結(jié)構(gòu).摻雜Br后(圖4(c))觀察到g-C3N4片層變薄,松散的針狀與斑片狀片層相互堆積.g-C3N4-AA-Br-2樣品(圖4(d))為松散的片層狀結(jié)構(gòu),邊緣呈現(xiàn)卷曲狀并伴有少量碎片,納米片層的產(chǎn)生可能是由于AA與NH4Br的摻入,使其與g-C3N4一同焙燒時釋放了含碳?xì)怏w和NH3等氣體,減小了g-C3N4的片層大小與厚度,片層的卷曲也說明了納米片厚度較薄[12].較薄的片層結(jié)構(gòu)能夠裸露出更多活性位點(diǎn),同時縮短光生載流子到達(dá)表面的距離,并提高光生電子-空穴對在g-C3N4片層中的分離,使Br摻雜g-C3N4納米片有更好光催化活性[18].
圖3 不同催化劑的XRD譜圖
a為g-C3N4; b為g-C3N4-AA; c為g-C3N4-Br; d為g-C3N4-AA-Br-2
2.1.3 XPS 表征 通過XPS分析了催化劑元素組成與化合價態(tài),如圖5所示.全譜分析表明樣品中含有C、N、O、Br元素.g-C3N4的C 1s譜圖擬合后有兩個特征峰,結(jié)合能位于284.6eV的峰歸屬于sp2雜化的C原子(C—C),結(jié)合能位于288.0eV處的峰歸屬于芳環(huán)中sp2鍵合的碳(N—C=N),表明樣品中存在均三嗪結(jié)構(gòu)[19].改性后樣品的C 1s在286.4eV處出現(xiàn)了一個新峰,歸屬于C—NH2鍵,可能是焙燒過程中釋放的氨氣與g-C3N4發(fā)生了相互作用,產(chǎn)生了更多C—NH2基團(tuán)[20].N 1s譜圖可分為3個峰,結(jié)合能位于398.3eV處的峰為C—N=C的sp2雜化的芳香族N,結(jié)合能位于400.1eV處的峰是g-C3N4中的叔氮N-(C)3基團(tuán),結(jié)合能位于401.0eV處的峰為表面未縮合氨基基團(tuán)C—N—H[21].同時發(fā)現(xiàn)N 1s位于400.1eV的峰向低結(jié)合能處偏移至399.7eV,可能是由于Br的摻入影響了N元素周圍的化學(xué)環(huán)境所致[22].O 1s譜圖位于531.9eV結(jié)合能處的峰歸屬于C=O鍵,改性后樣品O 1s峰向低結(jié)合能方向輕微移動,可能是AA的摻雜所致[23].從g-C3N4-AA-Br-2樣品的Br 3d譜圖(圖5(d))中觀察到其特征峰位于68.1eV,這與Br-有關(guān),證明了樣品中存在Br元素[24].
圖4 不同催化劑的TEM譜
圖5 g-C3N4和g-C3N4-AA-Br-2樣品的XPS譜
2.1.4 N2吸附-脫附表征 如圖6所示,幾種催化劑均顯示出具有H3型遲滯環(huán)的IV型等溫線,說明催化劑中存在介孔與大孔結(jié)構(gòu),可能是催化劑顆粒間相互堆積形成的.g-C3N4-AA-Br-2樣品在較高相對壓力下仍有較高的N2吸附量,表明催化劑存在大量中孔與大孔結(jié)構(gòu)[25].g-C3N4、g-C3N4-AA、g-C3N4-Br、g-C3N4-AA-Br-2的比表面積(BET)分別為43.9, 74.5, 83.3, 137.0m2/g.其中g(shù)-C3N4-AA較g-C3N4比表面積有所增加,g-C3N4-AA-Br-2擁有最大的比表面積,可能是由于AA和NH4Br的摻入與g-C3N4在焙燒過程中使g-C3N4片層變薄,比表面積的提高使催化劑反應(yīng)活性位點(diǎn)增多,并促進(jìn)反應(yīng)物的吸附,削弱了光生電子-空穴對的復(fù)合,改善催化劑的光催化性能[12].
圖6 不同催化劑的N2吸附-脫等溫線
2.1.5 UV-Vis DRS表征 采用紫外-可見漫反射光譜對樣品的光吸收性能進(jìn)行表征,如圖7所示,所有樣品對可見光都有較好的吸收,與g-C3N4相比改性后的樣品在可見光范圍內(nèi)的吸收強(qiáng)度有所增加.通過截線法作g-C3N4吸收譜線的切線并延長,延長線與X軸交點(diǎn)即吸收波長閾值g=450nm,采用公式g=1240/g[26]計(jì)算出g-C3N4樣品的帶隙值為2.76eV,與文獻(xiàn)報(bào)道結(jié)果一致[27].采用相同處理方法得出g-C3N4-AA、g-C3N4-Br、g-C3N4-AA-Br-2樣品的吸收波長閾值g分別為461, 444和455nm,對應(yīng)的帶隙值g分別為2.69, 2.79和2.72eV.可以發(fā)現(xiàn)g-C3N4-AA-Br-2的吸收邊帶較g-C3N4發(fā)生了紅移,說明改性后催化劑對可見光的吸收增強(qiáng),能夠產(chǎn)生更多光生電子與空穴對[28].吸收邊帶的紅移可能是經(jīng)過AA改性或Br的摻雜造成了g-C3N4的晶格缺陷,使催化劑對可見光的吸收增加.此外,g- C3N4-Br與g-C3N4相比,光吸收譜線發(fā)生藍(lán)移,是由于摻雜Br后的g-C3N4納米片產(chǎn)生的量子限域效應(yīng)所致[29].
圖7 不同催化劑的UV-Vis DRS譜
2.1.6 PL 表征 通過PL譜圖測定了催化劑的光生電子與空穴的分離程度,一般情況下PL峰的峰強(qiáng)度越低表明該催化劑的光生載流子的分離程度越好.圖8為g-C3N4、g-C3N4-AA、g-C3N4-Br、g-C3N4-AA-Br-2在激發(fā)波長為360nm下的PL譜圖.可以看出g-C3N4由于電子-空穴的復(fù)合作用,在波長為462nm處出現(xiàn)了較強(qiáng)的PL發(fā)射峰,是由于g-C3N4中π-π*電子躍遷所致[30].改性后催化劑的PL發(fā)射峰強(qiáng)度較純g-C3N4均有所下降,其中g(shù)-C3N4-AA-Br-2的PL發(fā)射峰強(qiáng)度最低,表明經(jīng)過AA改性與Br的摻雜促進(jìn)了光生-電子與空穴的分離,從而增強(qiáng)了g-C3N4的光催化性能[31].
圖8 不同催化劑的PL譜
表1 不同催化劑對 RhB 降解擬合曲線的R2與k值
通過對RhB的光催化降解率評估催化劑的光催化性能,結(jié)果如圖9(a)所示,暗反應(yīng)后所有樣品均對RhB有一定吸附,光催化反應(yīng)中g(shù)-C3N4-AA- Br-2對RhB降解表現(xiàn)出最佳活性,180min內(nèi)對RhB降解率為72%,是純g-C3N4的4倍,而單獨(dú)摻雜Br或AA對RhB的降解率分別為32.5%和62%,均低于g-C3N4-AA-Br-2.根據(jù)一級動力學(xué)方程繪制出-ln(/0)與時間線性相關(guān)的直線,由直線斜率得出速率常數(shù)值[32],擬合曲線的2與值如表1所示,其中g(shù)-C3N4-AA-Br-2的速率常數(shù)最高,是純g- C3N4的5.6倍,說明了經(jīng)過AA改性與Br摻雜能顯著提高g-C3N4對RhB光催化降解性能,雖然g-C3N4- AA的帶隙較g-C3N4-AA-Br-2的更窄,但g-C3N4- AA-Br-2擁有較高光催化活性,主要是由于其較大的比表面積以及更低的電子空穴復(fù)合率所致.
如圖10(a)所示,從g-C3N4-AA-Br-4到g-C3N4-AA-Br-1,隨著NH4Br摻雜量不斷提高,催化劑對RhB降解率先增加后降低,其中g(shù)-C3N4-AA與NH4Br質(zhì)量比為2:1的g-C3N4-AA-Br-2樣品較其它樣品催化活性高.根據(jù)一級動力學(xué)方程繪制出-ln(/0)與時間線性相關(guān)的直線,擬合曲線的2與值如表 2所示,其中 g-C3N4-AA-Br-2的速率常數(shù)最大.圖11為g-C3N4-AA-Br-2催化劑不同用量對RhB溶液的降解活性對比,當(dāng)催化劑用量為0.1g時對RhB的降解有最佳活性,180min內(nèi)降解率為72%,是g-C3N4-AA-Br-4降解率的1.3倍.當(dāng)提高催化劑中Br的含量時RhB降解率降低,可能是過多的Br負(fù)載造成了其在催化劑表面發(fā)生團(tuán)聚,堵塞了催化劑表面的孔道結(jié)構(gòu),從而降低了光催化活性[24].
表2 不同Br負(fù)載量的催化劑對RhB降解擬合曲線的R2與k值
圖11 g-C3N4-AA-Br-2的用量對RhB降解率的影響
如圖12所示,g-C3N4與g-C3N4-AA-Br-2對甲基橙降解率較活性藍(lán)高,且g-C3N4-AA-Br-2對兩種染料的降解率均高于純g-C3N4,其中g(shù)-C3N4- AA-Br-2降解甲基橙有最佳活性,180min內(nèi)對甲基橙降解率為80%,是純g-C3N4的2.5倍.也表明了g-C3N4-AA-Br催化劑不僅對RhB有較好的光催化活性,對其它染料如甲基橙和活性藍(lán)的降解也有較好普適性.
圖12 g-C3N4 與g-C3N4-AA-Br-2降解甲基橙與活性藍(lán)活性對比
對g-C3N4-AA-Br-2降解RhB的實(shí)驗(yàn)中加入不同捕獲劑以確定不同活性物種對RhB降解活性的影響,如圖13所示.加入EDTA-2Na作為光生空穴h+捕獲劑,異丙醇(IPA)作為羥基自由基·OH捕獲劑,對苯醌(BQ)作為超氧自由基·O2-捕獲劑,不加入捕獲劑作空白對照組[33].空白對照組及加入EDTA- 2Na、IPA、BQ后180min內(nèi)對RhB的降解率分別為72%、68%、50%和31%,可以看出加入IPA與BQ后對光催化降解RhB反應(yīng)活性影響較大,表明·OH和·O2-在光催化降解RhB過程中起主要作用,為主要活性物種.而加入 EDTA-2Na后對RhB的降解率稍有降低,說明h+在降解RhB過程中不是主要活性物種.
圖13 各種捕獲劑對RhB降解率的影響
圖14 g-C3N4-AA-Br-2穩(wěn)定性實(shí)驗(yàn)
在相同的實(shí)驗(yàn)條件下,考察了g-C3N4-AA-Br-2對RhB降解的穩(wěn)定性,如圖14所示.每次實(shí)驗(yàn)后,通過對催化劑進(jìn)行分離后用乙醇與去離子水洗滌3次并干燥.經(jīng)過5個周期的循環(huán)實(shí)驗(yàn)發(fā)現(xiàn),催化劑對RhB的降解率未發(fā)生明顯下降,降解率的下降可能由于回收過程造成了催化劑損失所致,說明制備的催化劑具有較好的催化穩(wěn)定性.
通過實(shí)驗(yàn)的結(jié)果推測g-C3N4-AA-Br-2降解RhB的反應(yīng)機(jī)理,如圖15所示.由UV-Vis DRS得出g-C3N4-AA-Br-2的g為2.72eV,利用公式VB=-C+0.5g計(jì)算得知,其價帶值(VB)為1.50eV,導(dǎo)帶值(CB)為-1.22eV.經(jīng)可見光激發(fā)后,g-C3N4-AA-Br增強(qiáng)的可見光吸收性能將產(chǎn)生足夠多的電子和空穴對,其具有較高的比表面積大大提高了光生載流子的分離效率,使電子加速向?qū)б苿?并于價帶中留下大量空穴: g-C3N4-AA-Br + hν → e–+ h+,提高光催化活性.據(jù)文獻(xiàn)報(bào)道·OH/H2O、·OH/OH-和O2/·O2-的氧化還原電位分別為+2.73, +1.99和-0.33eV[34-35],由于g-C3N4-AA-Br的CB較O2/·O2-更負(fù),因此CB中e-能將O2還原為·O2-: O2+ e-→·O2-,但g-C3N4-AA-Br的VB較·OH/H2O和·OH/ OH-低,因此VB中的h+不足以將H2O或OH–氧化為·OH,而是直接參與降解RhB反應(yīng).·OH的生成是由·O2-與溶液中H+反應(yīng)生成H2O2,接著H2O2與e-作用生成·OH.最終,主要活性物種·O2-和·OH將共同參與光催化反應(yīng)降解RhB.
圖15 光催化降解 RhB 的機(jī)理
3.1 以尿素和溴化銨作為前驅(qū)體和溴源,通過抗壞血酸(AA)對g-C3N4進(jìn)行改性,通過二次焙燒法成功制備了g-C3N4-AA-Br納米片光催化劑.
3.2 可見光下g-C3N4-AA-Br-2有最佳活性,催化劑投放量為0.1g時,180min內(nèi)對RhB降解率為72%,其速率常數(shù)=0.00847min-1,是純g-C3N4的5.6倍,該催化劑對甲基橙和活性藍(lán)也有良好的降解活性.
3.3 g-C3N4在二次焙燒時與AA和NH4Br共同作用被剝離為g-C3N4-AA-Br納米片,且產(chǎn)生了介孔結(jié)構(gòu),g-C3N4-AA-Br-2較大比表面積不僅能在降解RhB時提供更多反應(yīng)活性位點(diǎn),也能夠增強(qiáng)光生電子與空穴的分離效率.
3.4 自由基捕獲實(shí)驗(yàn)表明催化劑降解RhB主要活性物種為·O2-和·OH.循環(huán)實(shí)驗(yàn)表明制備的 g-C3N4- AA-Br具有良好催化穩(wěn)定性.
[1] Ran J, Guo W, Wang H, et al. Metal-Free 2D/2D Phosphorene/g-C3N4Van der Waals Heterojunction for Highly Enhanced Visible-Light Photocatalytic H2Production [J]. Advanced Materials, 2018,30(25): 1800128.
[2] 胡紹爭,李薇,顧貴洲,等.熔鹽法制備K+-g-C3N4及其光催化降解有機(jī)污染物性能 [J]. 中國環(huán)境科學(xué), 2020,40(7):3106-3113.
Hu S Z, Li W, GU G Z, et al. Preparation of potassium ion doped graphite carbon nitride via molten salt method and its photocatalytic mineralization ability of organic pollutants [J]. China Environmental Science, 2020,40(7):3106-3113.
[3] Dong G H, Jacobs D L, Zang L, et al. Carbon vacancy regulated photoreduction of NO to N2over ultrathin g-C3N4nanosheets [J]. Applied Catalysis B: Environmental, 2017,218:515-524.
[4] Bhosale R, Jain S, Vinod C P, et al. Direct Z-Scheme g-C3N4/FeWO4nanocomposite for enhanced and selective photocatalytic CO2reduction under visible light [J]. ACS Applied Materials & Interfaces, 2019,11(6):6174-6183.
[5] Li H C, Shan C, Pan B C. Fe(III)-Doped g-C3N4mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species [J]. Energy & Environmental Science, 2018,52(4):2197-2205.
[6] 彭小明,羅文棟,胡玉瑛,等.磷摻雜的介孔石墨相氮化碳光催化降解染料 [J]. 中國環(huán)境科學(xué), 2019,39(8):3277-3285.
Peng X M, Luo W D, Hu Y Y, et al. Study on the photocatalytic degradation of dyes by phosphorus doped mesoporous graphite carbon nitride [J]. China Environmental Science, 2019,39(8):3277-3285.
[7] 郭梅,任學(xué)昌,王建釗,等.TiO2/pg-C3N4復(fù)合催化劑的制備及光催化性能 [J]. 中國環(huán)境科學(xué), 2019,39(12):5119-5125.
Guo M, Ren X C, Wang J Z, et al. Preparation and photocatalytic properties of TiO2/pg-C3N4composite photocatalyst [J]. China Environmental Science, 2019,39(12):5119-5125.
[8] Ma S L, Zhan S H, Jia Y N, et al. Enhanced disinfection application of Ag-modified g-C3N4composite under visible light [J]. Applied Catalysis B: Environmental, 2016,186:77-87.
[9] Li Y Y, Si Y, Zhou B X, et al. Strategy to boost catalytic activity of polymeric carbon nitride: synergistic effect of controllable in situ surface engineering and morphology [J]. Nanoscale, 2019,11(35): 16393-16405.
[10] 郭雅容,陳志鴻,劉瓊,等.石墨相氮化碳光催化劑研究進(jìn)展 [J]. 化工進(jìn)展, 2016,35(7):2063-2070.
Guo Y R, Chen Z H, Liu Q, et al. Research progress of graphitic carbon nitride in photocatalysis [J]. Chemical Industry and Engineering Progress, 2016,35(7):2063-2070.
[11] Wang Y, Di Y, Antonietti M, et al. Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids [J]. Chemistry of Materials, 2010,22:5119-5121.
[12] Iqbal W, Yang B, Zhao X, et al. Facile one-pot synthesis of mesoporous g-C3N4nanosheets with simultaneous iodine doping and N-vacancies for efficient visible-light-driven H2evolution performance [J]. Catalysis Science & Technology, 2020,10(2):549- 559.
[13] Mert E H, Yalcin Y, Kilic M, et al. Surface modification of TiO2with ascorbic acid for heterogeneous photocatalysis: Theory and experiment [J]. Journal of Advanced Oxidation Technologies, 2008, 11(2):199-207.
[14] Fu J W, Xu Q L, Low J X, et al. Ultrathin 2D/2D WO3/g-C3N4step- scheme H2-production photocatalyst [J]. Applied Catalysis B: Environmental, 2019,243:556-565.
[15] Wang X C, Chen X F, Thomas A, et al. Metal-containing carbon nitride compounds: A new functional organic–metal hybrid material [J]. Advanced Materials, 2009,21(16):1609-1612.
[16] Zhang J S, Zhang G G, Chen X F, et al. Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light [J]. Angewandte Chemie International Edition, 2012, 51(13):3183-3187.
[17] Wang D B, Huang X Q, Huang Y, et al. Self-assembly synthesis of petal-like Cl-doped g-C3N4nanosheets with tunable band structure for enhanced photocatalytic activity [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021,611:125780.
[18] Jiang L B, Yuan X Z, Zeng G M, et al. Nitrogen self-doped g-C3N4nanosheets with tunable band structures for enhanced photocatalytic tetracycline degradation [J]. Journal of Colloid and Interface Science, 2019,536:17-29.
[19] Ye L Q, Liu J Y, Jiang Z, et al. Facets coupling of BiOBr-g-C3N4composite photocatalyst for enhanced visible-light-driven photocatalytic activity [J]. Applied Catalysis B: Environmental, 2013, 142-143:1-7.
[20] Wang M, Zeng Y B, Dong G H, et al. Br-doping of g-C3N4towards enhanced photocatalytic performance in Cr(VI) reduction [J]. Chinese Journal of Catalysis, 2020,41(10):1498-1510.
[21] Liu J H, Zhang T K, Wang Z C, et al. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity [J]. Journal of Materials Chemistry, 2011,21(38):14398- 14401.
[22] Li C M, Yu S Y, Zhang X X, et al. Insight into photocatalytic activity, universality and mechanism of copper/chlorine surface dual-doped graphitic carbon nitride for degrading various organic pollutants in water [J]. Journal of Colloid and Interface Science, 2019,538:462-473.
[23] Wang H, Sun P F, Cong S, et al. Nitrogen-doped carbon dots for "green" quantum dot solar cells [J]. Nanoscale Research Letters, 2016,11(1):27.
[24] Lan Z A, Zhang G G, Wang X C. A facile synthesis of Br-modified g-C3N4semiconductors for photoredox water splitting [J]. Applied Catalysis B: Environmental, 2016,192:116-125.
[25] Tian N, Zhang Y H, Li X W, et al. Precursor-reforming protocol to 3D mesoporous g-C3N4established by ultrathin self-doped nanosheets for superior hydrogen evolution [J]. Nano Energy, 2017,38:72-81.
[26] Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting [J]. Chemical Society Reviews, 2009,38(1):253-278.
[27] Lei W W, Portehault D, Dimova R, et al. Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors [J]. Journal of the American Chemical Society, 2011,133(18):7121-7127.
[28] Dong H, Guo X T, Yang C, et al. Synthesis of g-C3N4by different precursors under burning explosion effect and its photocatalytic degradation for tylosin [J]. Applied Catalysis B: Environmental, 2018, 230:65-76.
[29] Fattahimoghaddam H, Mahvelati-Shamsabadi T, Lee B K. Efficient photodegradation of rhodamine B and tetracycline over robust and green g-C3N4Nanostructures: Supramolecular design [J]. Journal of Hazardous Materials, 2021,403:123703.
[30] Deifallah M, Mcmillan P F, Corà F. Electronic and structural Properties of Two-Dimensional Carbon Nitride Graphenes [J]. The Journal of Physical Chemistry C, 2008,112(14):5447-5453.
[31] Bai X J, Wang L, Wang Y J, et al. Enhanced oxidation ability of g- C3N4photocatalyst via C60modification [J]. Applied Catalysis B: Environmental, 2014,152-153:262-270.
[32] Orooji Y, Ghanbari M, Amiri O, et al. Facile fabrication of silver iodide/graphitic carbon nitride nanocomposites by notable photo- catalytic performance through sunlight and antimicrobial activity [J]. Journal of Hazardous Materials, 2020,389:122079.
[33] Fu H B, Zhang S C, Xu T G, et al. Photocatalytic degradation of RhB by fluorinated Bi2WO6and distributions of the intermediate products [J]. Energy & Environmental Science, 2008,42(6):2085-2091.
[34] Liu G, Niu P, Yin L, et al. alpha-Sulfur crystals as a visible- light-active photocatalyst [J]. Journal of the American Chemical Society, 2012,134(22):9070-9073.
[35] Liu Q, Guo Y Y, Chen Z H, et al. Constructing a novel ternary Fe(III)/graphene/g-C3N4composite photocatalyst with enhanced visible-light driven photocatalytic activity via interfacial charge transfer effect [J]. Applied Catalysis B: Environmental, 2016,183:231- 241.
Ascorbic acid modified Br-doped g-C3N4photocatalytic degradation of pollutants.
ZHANG Yang-quan1, LI Xue-lei2, ZHAO Zhi-jun1, WANG Yan-juan1, YUAN Xing-zhou1, ZHANG Jian1*, HU Shao-zheng1
(1.Liaoning Shihua University, Fushun 113001, China;2.Yingkou Institute of Tecnology, Yingkou 115014, China)., 2021,41(11):5160~5168
Using urea and ammonium bromide as precursor and bromine source, respectively, and ascorbic acid was used to modify g-C3N4. The ascorbic acid modified Br-doped g-C3N4-AA-Br nanosheets photocatalyst was successfully prepared through secondary roasting. The structure, morphology and optical properties of the catalysts were characterized by XRD, TEM, XPS, UV-Vis DRS, PL, N2adsorption-desorption and other test methods. The results show that g-C3N4-AA-Br had larger specific surface area, wider visible light absorption range and lower electron-hole recombination rate. The photocatalytic performance of different catalysts on the degradation of rhodamine B, methyl orange, and reactive blue dyes was investigated under visible light. The results showed that g-C3N4-AA-Br-2 increased the degradation of RhB by 72% within 180minutes, and its rate constant=0.00847min-1, which is 5.6 times that of pure g-C3N4. Through the active species trapping agent experiment, it is found that the main active species that degrade RhB are hydroxyl radicals(·OH) and superoxide radicals(·O2-), and the possible reaction mechanism is speculated.
carbon nitride;nanosheets;Br doping;photocatalytic;degradation
X703.5
A
1000-6923(2021)11-5160-09
張仰全(1999-),男,黑龍江哈爾濱人,遼寧石油化工大學(xué)碩士研究生,主要從事石墨相氮化碳光催化研究.發(fā)表論文1篇.
2021-04-25
遼寧省自然科學(xué)基金項(xiàng)目(20170540475)
* 責(zé)任作者, 副教授, zhangjian2011@lnpu.edu.cn