摘 要:采動(dòng)應(yīng)力影響下煤柱護(hù)巷呈現(xiàn)復(fù)雜的非穩(wěn)定和非線性變形特征,煤體結(jié)構(gòu)損傷導(dǎo)致支護(hù)系統(tǒng)失效現(xiàn)象頻發(fā)。以寺河煤礦雙側(cè)開采擾動(dòng)下盤區(qū)大巷留設(shè)問題為工程背景,數(shù)值模擬分析大巷從掘巷至雙側(cè)工作面回采全過程的圍巖應(yīng)力及變形破壞特征。結(jié)果表明雙側(cè)采空后大巷應(yīng)力集中系數(shù)達(dá)3.55?;谙锏览鄯e損傷破壞特征針對(duì)性提出“三主動(dòng)”圍巖協(xié)同控制方法,水力壓裂主動(dòng)切頂卸壓,縮短側(cè)向支承壓力的作用時(shí)間,改變煤柱應(yīng)力分配比例;注漿加固主動(dòng)圍巖改性,重塑煤巖體完整性,提升圍巖承載能力;錨桿錨索主動(dòng)高強(qiáng)支護(hù),確保預(yù)應(yīng)力向圍巖深部傳遞,形成穩(wěn)定的承載結(jié)構(gòu)。井下工作面超前支護(hù)應(yīng)力、圍巖表面位移監(jiān)測(cè)評(píng)價(jià)分析顯示,協(xié)同方案有效控制了多重回采擾動(dòng)下大巷圍巖變形,確保了工作面安全高效開采。關(guān)鍵詞:多重采動(dòng);損傷特征;切頂卸壓;注漿改性;高強(qiáng)支護(hù);協(xié)同控制中圖分類號(hào):TD 322.5
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-9315(2021)05-0808-07
DOI:10.13800/j.cnki.xakjdxxb.2021.0507開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
Cumulative damage characteristics and collaborative rock
control of retaining roadway with multiple mining
SUN Zhiyong
(Coal Mining Research Institute,China Coal Technology and Engineering Group Co.,Ltd.,Beijing 100013,China)
Abstract:Under the influence of mining stress,
unstable and nonlinear deformation tends to accur in the coal pillar of roadway protection,and the structural damage of coal body leads to frequent failures of support system.In this paper,based on the engineering background of the retaining of the main roadway under the disturbance of the two wings mining in Sihe coal mine,the numerical simulation analysis is conducted of the stress and deformation failure characteristics of the surrounding rock in the whole process of the main roadway from the driving to the bilateral working face mining.The calculation results show that the stress concentration factor of the main roadway after the bilateral goaf is 3.55.With the characteristics of cumulative roadway damages in view,the “three active” surrounding rock collaborative control method is proposed,by which hydraulic fracturing active roof cutting and pressure relief can be achieved,shortening the action time of lateral abutment pressure,changing the stress distribution proportion of coal pillar;active grouting reinforcement of surrounding rock modification be done,reshaping the integrity of coal and rock mass,improving the bearing capacity of surrounding rock;active high-strength bolt and cable support be? done,ensuring that the prestress is transmitted deep into surrounding rock with? stable load-bearing structure? formed.The monitoring and evaluation analysis of advanced support stress and displacement of surrounding rock surface in underground working face shows that the collaborative scheme effectively controls the surrounding rock deformation of roadway under multiple mining disturbance,and ensures the safe and efficient mining of working face.Key words:multiple mining;damage characteristics;roof cutting and pressure relief;grouting modification;high strength support;collaborative control
0 引 言
煤炭是保障國(guó)家能源安全的重要基礎(chǔ),在較長(zhǎng)一個(gè)時(shí)期內(nèi)作為中國(guó)主體能源的地位不會(huì)發(fā)生變化。據(jù)煤炭工業(yè)協(xié)會(huì)發(fā)布的報(bào)告顯示,截至2019年末,全國(guó)煤礦數(shù)量為5300處左右,其中高瓦斯(突出)礦井?dāng)?shù)量約占比45%。為有效解決高突煤層運(yùn)輸、通風(fēng)等系列問題,盤區(qū)巷道及工作面巷道多采用多巷布置模式[1-2]。護(hù)巷煤柱留設(shè)是煤礦開采中的一個(gè)關(guān)鍵技術(shù),關(guān)系到開采空間穩(wěn)定性、煤炭資源回收率及煤礦安全等一系列問題。采煤工作面順序開采時(shí),護(hù)巷煤柱在時(shí)間上要服務(wù)于2個(gè)工作面,在空間上要經(jīng)受本工作面超前與滯后支承壓力、接續(xù)工作面超前支承壓力等多重采動(dòng)應(yīng)力耦合作用[3]。鑒于在開采空間與時(shí)間上的典型特點(diǎn),護(hù)巷煤柱呈現(xiàn)出持續(xù)大變形、強(qiáng)烈擴(kuò)容性、片冒甚至失穩(wěn)等復(fù)雜的非穩(wěn)定和非線性變形特征[4],引發(fā)煤體結(jié)構(gòu)損傷、強(qiáng)度及錨固性能衰減、支護(hù)系統(tǒng)失效、維修困難,影響安全生產(chǎn)。國(guó)內(nèi)外學(xué)者采用理論分析、數(shù)值計(jì)算[5]、相似模擬等方法對(duì)動(dòng)壓留巷圍巖控制進(jìn)行了大量探索和研究,包括高預(yù)應(yīng)力錨桿支護(hù)[6-8]、錨注聯(lián)合支護(hù)[9-12]、應(yīng)力控制技術(shù)[13-16]等。由于煤礦地質(zhì)條件和圍巖賦存狀況差異性較大,動(dòng)壓留巷圍巖變形量大、支護(hù)材料破斷等現(xiàn)象仍普遍存在。本文以寺河煤礦雙側(cè)開采擾動(dòng)下盤區(qū)大巷留設(shè)問題為工程背景,數(shù)值分析大巷從掘巷至雙側(cè)工作面回采結(jié)束全過程的圍巖應(yīng)力和變形破壞特征,根據(jù)巷道累積損傷破壞特征提出相應(yīng)的圍巖協(xié)同控制方案,結(jié)合現(xiàn)場(chǎng)監(jiān)測(cè)進(jìn)行驗(yàn)證分析。
1 工程概況
寺河煤礦是煤與瓦斯突出礦井,主采二疊系下統(tǒng)山
西組3號(hào)煤層,東五盤區(qū)煤層的平均厚度為6 m,為近水平煤層,埋深320~350 m,工作面開采使用一次采全高。為滿足通風(fēng)和輔助運(yùn)輸?shù)囊?,布?條盤區(qū)大巷,大巷軸向均為東西向,與雙側(cè)工作面回采方向平行,南翼距5303工作面巷道53033巷中-中煤柱40 m,北翼距為5304工作面巷道53043巷凈煤柱55 m。如圖1所示,回風(fēng)一巷為頂板巖巷,斷面為直墻半圓拱,距3號(hào)煤層頂板垂距為13 m。其他3條大巷為煤巷,沿3號(hào)煤層底板掘進(jìn)。5303、5304這2個(gè)工作面順序回采,雙側(cè)回采后4條大巷要留巷為后續(xù)工作面服務(wù)。
根據(jù)巷道生產(chǎn)地質(zhì)情況,盤區(qū)大巷存在以下典型特點(diǎn)。1)強(qiáng)采動(dòng):盤區(qū)巷道要經(jīng)受多巷掘進(jìn)擾動(dòng)和雙側(cè)大采高工作面順序回采動(dòng)壓影響,采動(dòng)影響強(qiáng)烈。
2)長(zhǎng)時(shí)效:至少要服務(wù)于5303和5304這2個(gè)工作面,大巷軸向與兩側(cè)工作面回采方向平行,護(hù)巷煤柱要經(jīng)受側(cè)向懸臂結(jié)構(gòu)由形成至穩(wěn)定整個(gè)周期的影響,巷道圍巖變形量隨時(shí)間持續(xù)增大,直至覆巖趨于穩(wěn)定。
3)小尺寸:大巷密集且巷間煤柱尺寸偏小,距離兩側(cè)采空區(qū)分別為35 m和55 m,輔助運(yùn)輸巷與膠帶運(yùn)輸巷之間凈煤柱15 m,應(yīng)力分布復(fù)雜且集中程度高。
2 多重采動(dòng)影響大巷圍巖應(yīng)力分析
2.1 模型的建立根據(jù)寺河煤礦東五盤區(qū)大巷地應(yīng)力原位測(cè)量結(jié)果顯示,最大水平主應(yīng)力12.9 MPa,最小水平主應(yīng)力為6.97 MPa,垂直應(yīng)力為7.74 MPa,應(yīng)力場(chǎng)類型為σH>σh>σV型,以構(gòu)造應(yīng)力場(chǎng)為主,量值上屬于中等應(yīng)力區(qū)。3個(gè)測(cè)點(diǎn)最大水平主應(yīng)力方向分別為N80.2°E,N75.6°E,N83.8°E,方向基本為近東西向,與盤區(qū)大巷軸線方向平行。為進(jìn)一步了解大巷圍巖變形、應(yīng)力分布及破壞特征,采用軟件FLAC3D進(jìn)行數(shù)值模擬。根據(jù)巷道頂?shù)装鍘r層分布,模型劃分為7層,長(zhǎng)×寬×高尺寸為800 m×30 m×100 m,網(wǎng)格尺寸劃分為1 m×1 m×1 m,各巖層均服從莫爾-庫(kù)侖破壞準(zhǔn)則,模型四周水平位移約束,上部為應(yīng)力邊界,底部為固定邊界,上覆巖層重力用均分分布的應(yīng)力載荷取代,圍巖力學(xué)參數(shù)見表1。
模擬過程為:巷道開挖→5303工作面開采,模擬單翼開采后大巷圍巖變形情況及煤柱應(yīng)力分布→5304工作面開采,模擬雙側(cè)開采后大巷圍巖變形情況。
2.2 大巷圍巖應(yīng)力分析
2.2.1 掘進(jìn)影響階段盤區(qū)巷道掘進(jìn)按支護(hù)設(shè)計(jì)進(jìn)行施工后,圍巖應(yīng)力、變形分布情況如圖2所示。
從圖2可以看出,作為巷道密集區(qū),當(dāng)巷道掘進(jìn)后,巷道底板、兩幫形成了一定程度的應(yīng)力集中,巷道之間的煤柱產(chǎn)生了應(yīng)力集中現(xiàn)象,但應(yīng)力集中現(xiàn)象不明顯。從位移方面分析,巷道掘進(jìn)后圍巖變形主要發(fā)生在頂?shù)装?,最大垂直位移?60mm,變形量較小。
2.2.2 一次采動(dòng)影響階段5303工作面回采后,盤區(qū)巷道的垂直應(yīng)力及塑性區(qū)分布如圖3所示。
從圖3(a)垂直應(yīng)力分布可以看出,當(dāng)5303工作面開采后,工作面與回風(fēng)二巷之間煤柱產(chǎn)生應(yīng)力集中,最大垂直應(yīng)力為26 MPa;對(duì)比回風(fēng)二巷兩側(cè)圍巖應(yīng)力分布可知,回風(fēng)二巷兩側(cè)的煤柱應(yīng)力呈現(xiàn)出左側(cè)高、右側(cè)低的特征,而隨著距采空區(qū)的距離增大,垂直應(yīng)力逐漸降低,由此可知,受5303工作面回采影響后,大巷圍巖垂直應(yīng)力隨著距采空區(qū)距離的增大而減小;結(jié)合圖3(b)巷道圍巖塑性區(qū)分布可知,回風(fēng)二巷左側(cè)圍巖塑性區(qū)與采空區(qū)貫通,右側(cè)圍巖最大塑性區(qū)范圍為7 m,輔助運(yùn)輸巷左側(cè)圍巖塑性區(qū)最大范圍為7 m,右側(cè)與膠帶運(yùn)輸巷貫通,膠帶運(yùn)輸巷右側(cè)圍巖塑性區(qū)最大范圍也為7 m,當(dāng)5303工作面開采后,盤區(qū)巷道的塑性區(qū)范圍進(jìn)一步增大,尤其是回風(fēng)二巷的左幫,塑性區(qū)基本與采空區(qū)貫通。
2.2.3 二次采動(dòng)影響階段5304工作面回采后巷道圍巖應(yīng)力集中系數(shù)如圖4所示。
從圖中可以看出,雙側(cè)采空以后,盤區(qū)巷道應(yīng)力集中程度更高,5303工作面采空區(qū)與回風(fēng)二巷之間煤柱垂直應(yīng)力最高為27.4 MPa,應(yīng)力集中系數(shù)為3.55,集中應(yīng)力對(duì)巷道的變形破壞產(chǎn)生顯著影響,輔運(yùn)巷與膠帶巷之間的15 m煤柱基本發(fā)生塑性破壞。
3 留巷圍巖協(xié)同控制
3.1 總體思路基于多重采動(dòng)應(yīng)力下大巷累積損傷破壞特征,提出“三主動(dòng)”圍巖控制總體思路:主動(dòng)切頂卸壓、主動(dòng)注漿改性、主動(dòng)高強(qiáng)支護(hù)。
1)主動(dòng)切頂卸壓:通過人工干預(yù)改變上覆巖層結(jié)構(gòu),減少側(cè)向懸臂梁的跨距,縮短側(cè)向支承壓力的作用時(shí)間,改變煤柱應(yīng)力分配比例,減小留巷圍巖變形。
2)主動(dòng)圍巖改性:多次動(dòng)壓影響下,大巷間煤柱內(nèi)部及巷道圍巖會(huì)產(chǎn)生明顯的離層、滑動(dòng),原生裂隙張開,并出現(xiàn)新的裂紋,導(dǎo)致圍巖松散、破碎以及劇烈變形。對(duì)盤區(qū)集中巷圍巖進(jìn)行主動(dòng)改性,利用漿液充填圍巖內(nèi)的裂隙,將破碎的煤體固結(jié)起來,重塑圍巖的完整性,保證支護(hù)體預(yù)應(yīng)力的有效擴(kuò)散,進(jìn)一步增強(qiáng)圍巖自身承載能力。
3)主動(dòng)高強(qiáng)支護(hù):在圍巖主動(dòng)改性的基礎(chǔ)上,采用高強(qiáng)度、高剛度、高延伸率、高沖擊韌性的支護(hù)材料對(duì)圍巖進(jìn)行強(qiáng)力主動(dòng)支護(hù),將支護(hù)體的錨固與注漿技術(shù)有機(jī)結(jié)合,一方面實(shí)現(xiàn)在巷道淺層通過錨桿加固形成穩(wěn)定的承載結(jié)構(gòu),另一方面增大錨索預(yù)緊力來保證預(yù)應(yīng)力向深部傳遞,提高承載結(jié)構(gòu)的穩(wěn)定性。
3.2 切頂卸壓根據(jù)水力壓裂作用機(jī)理,為了減小采空區(qū)側(cè)向懸臂跨距,卸載或轉(zhuǎn)移傳遞到護(hù)巷煤柱的高應(yīng)力[17-20],選擇在53033巷內(nèi)實(shí)施切頂卸壓?;诠ぷ髅嫔细矌r層結(jié)構(gòu)與井下現(xiàn)場(chǎng)施工條件,切頂卸壓方案設(shè)計(jì)如下:每排布置2個(gè)卸壓鉆孔(圖5),排距10 m,鉆孔直徑均為75 mm。煤柱側(cè)鉆孔在巷幫打設(shè),上距巷道頂板0.3~0.5 m,鉆孔長(zhǎng)度40 m,仰角60°,鉆孔水平投影與巷道夾角60°;受皮帶運(yùn)轉(zhuǎn)影響,5303工作面?zhèn)茹@孔在頂板打設(shè),距煤柱側(cè)幫1.5~2 m,鉆孔長(zhǎng)度為32 m,仰角為60°,鉆孔水平投影與巷道夾角20°。超前回采工作面100 m進(jìn)行水力壓裂,選擇巖層完整段進(jìn)行倒退式壓裂,壓裂間隔2~3 m,壓裂時(shí)間不低于20 min。
3.3 注漿改性方案由于先進(jìn)行修復(fù)的巷道要經(jīng)受后修巷道的擾動(dòng),本著重點(diǎn)巷道放在后面維護(hù)的原則,巷道注漿加固順序?yàn)椋夯仫L(fēng)二巷→回風(fēng)一巷→輔助運(yùn)輸巷→膠帶運(yùn)輸巷。從圍巖變形特征分析得出,巷幫煤巖體受采動(dòng)影響變形劇烈,因此巷幫是重點(diǎn)加固對(duì)象。避免注漿漿液外流,為確保注漿效果,首先對(duì)加固區(qū)域圍巖表面進(jìn)行噴漿封閉。根據(jù)窺視結(jié)果,回風(fēng)二巷煤幫破壞深度在4~6 m,確定注漿鉆孔采用“邁步”布置,深度8 m,上排孔距巷道頂板0.9 m,下排孔距巷道底板0.9 m,間距為2 m,排距6 m。回風(fēng)一巷每排5個(gè)鉆孔,深度6 m,排距6 m,間距3 m,注漿孔布置如圖6所示。注漿水灰比0.6~0.8∶1,注漿終止壓力6~8 MPa。
3.4 高強(qiáng)支護(hù)注漿改性完成后進(jìn)行幫頂高預(yù)應(yīng)力錨索支護(hù)控制圍巖變形,煤巷頂板錨索規(guī)格為SKP22-1/1720-7300,采用1支MSK2335和2支MSZ2360樹脂錨固劑錨固,鎖定損失后的預(yù)緊力水平按要求不低于250kN。巷幫錨索規(guī)格為SKP22-1/1720-4300,采用1支MSK2335和2支MSZ2360樹脂錨固劑錨固,鎖定損失后的預(yù)緊力水平要求不低于150 kN。錨索間距1.1 m,排距1 m;巖巷錨索規(guī)格為SKP22-1/1720-5300,沿巷道斷面成排布置,排距2 m,間距2 m,全部垂直巖面,鎖定損失后預(yù)緊力水平要求不低于250 kN,如圖7所示。
4 井下試驗(yàn)效果評(píng)價(jià)綜合加固完成后,采用工作面超前支護(hù)應(yīng)力、圍巖表面位移監(jiān)測(cè)等手段評(píng)價(jià)盤區(qū)大巷穩(wěn)定性控制效果。
4.1 超前支護(hù)應(yīng)力監(jiān)測(cè)對(duì)切頂卸壓前后工作面超前支護(hù)應(yīng)力進(jìn)行監(jiān)測(cè),分別布置在超前工作面5,10,15,20 m這4個(gè)位置,監(jiān)測(cè)結(jié)果如圖8所示。
從工作面超前單體柱受力分析,未壓裂情況下單體柱受力監(jiān)測(cè)曲線忽高忽低變化較快,壓力值在3~18 MPa之間,單體柱受力呈現(xiàn)不穩(wěn)定性,說明超前段頂板壓力存在多變性;水力壓裂切頂卸壓后單體柱受力監(jiān)測(cè)曲線變化平緩,壓力值在9~15 MPa之間,壓裂后超前壓力比壓裂前要大,但是單體柱受力比較穩(wěn)定,應(yīng)力集中程度降低,說明水力壓裂后明顯改善超前段頂板的應(yīng)力環(huán)境。
4.2 圍巖變形監(jiān)測(cè)盤區(qū)巷道經(jīng)過綜合方案加固后,對(duì)巷道圍巖變形進(jìn)行監(jiān)測(cè),結(jié)果如圖9所示。
圖9為盤區(qū)大巷表面位移曲線,歷經(jīng)1年左右的監(jiān)測(cè)結(jié)果顯示,回風(fēng)二巷頂板下沉264 mm,底鼓117 mm,兩幫移近量365 mm;回風(fēng)一巷頂板下沉208 mm,底鼓235 mm,兩幫移近423 mm,綜合加固方案有效控制雙側(cè)回采擾動(dòng)下盤區(qū)大巷圍巖變形,加固后的巷道滿足安全使用要求。
5 結(jié) 論1)通過分析采掘動(dòng)壓對(duì)巷道圍巖破壞特征的影響,掌握了動(dòng)壓分布規(guī)律,為支護(hù)方式的選擇提供了依據(jù)。2)根據(jù)大巷的變形破壞特征,提出“水力壓裂切頂卸壓、破碎圍巖注漿改性傳遞應(yīng)力、高預(yù)應(yīng)力錨索主動(dòng)支護(hù)”圍巖綜合控制方法,實(shí)現(xiàn)載荷傳遞、變形控制的耦合與協(xié)同。3)采用水力壓裂、注漿加固、高強(qiáng)支護(hù)技術(shù),有效控制雙側(cè)回采擾動(dòng)下盤區(qū)大巷圍巖變形,基本滿足了巷道的使用要求,實(shí)現(xiàn)了工作面安全開采。
參考文獻(xiàn)(References):
[1] 康紅普,顏立新,郭相平,等.回采工作面多巷布置留巷圍巖變形特征與支護(hù)技術(shù)[J].巖石力學(xué)與工程學(xué)報(bào),2012,31(10):2022-2026.KANG Hongpu,YAN Lixin,GUO Xiangping,et al.Characteristics of surrounding rock deformation and reinforcement technology of retained entry in working face with multi-entry layout[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(10):2022-2026.
[2]楊凱,勾攀峰.高強(qiáng)度開采雙巷布置巷道圍巖差異化控制研究[J].采礦與安全工程學(xué)報(bào),2021,38(1):76-83.
YANG Kai,GOU Panfeng.Differential control of surrounding rocks in high-intensity mining with double roadways[J].Journal of Mining & Safety Engineering,2021,38(1):76-83.
[3]孫志勇,賀廣會(huì),馬晉元.高瓦斯礦井巷道群合理布置及圍巖控制技術(shù)研究[J].中國(guó)礦業(yè),2018,27(8):103-106.SUN Zhiyong,HE Guanghui,MA Jinyuan.Study on rational layout optimization and rock control technology of roadway group in high gas mine[J].China Mining Magazine,2018,27(8):103-106.
[4]黃炳香,張農(nóng),靖洪文,等.深井采動(dòng)巷道圍巖流變和結(jié)構(gòu)失穩(wěn)大變形理論[J].煤炭學(xué)報(bào),2020,45(3):911-926.
HUANG Bingxiang,ZHANG Nong,JING Hongwen,et al.Large deformation theory of rheology and structural instability of the surrounding rock in deep mining roadway[J].Journal of China Coal Society,2020,45(3):911-926.
[5]張劍,劉愛卿,程蓬,等.巷道群應(yīng)力場(chǎng)分布特征的數(shù)值模擬研究[J].煤炭工程,2014,46(12):81-83.
ZHANG Jian,LIU Aiqing,CHENG Peng,et al.Study on numerical simulation of stress field distribution features in mine gateway group[J].Coal Engineering,2014,46(12):81-83.
[6]康紅普.深部煤礦應(yīng)力分布特征及巷道圍巖控制技術(shù)[J].煤炭科學(xué)技術(shù),2013,41(9):12-17.KANG Hongpu.Stress distribution characteristics and strata control technology for roadways in deep coal mines[J].Coal Science and Technology,2013,41(9):12-17.
[7]康紅普,王金華,林健.高預(yù)應(yīng)力強(qiáng)力支護(hù)系統(tǒng)及其在深部巷道中的應(yīng)用[J].煤炭學(xué)報(bào),2007(12):1233-1238.KANG Hongpu,WANG Jinhua,LIN Jian.High pretensioned stress and intensive bolting system and its application in deep roadways[J].Journal of China Coal Society,2007(12):1233-1238.
[8]張農(nóng),高明仕.煤巷高強(qiáng)預(yù)應(yīng)力錨桿支護(hù)技術(shù)與應(yīng)用[J].中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2004,33(5):34-37.
ZHANG Nong,GAO Mingshi.High-Strength and pretension bolting support of coal roadway and its application[J].Journal of China University of Mining & Technology,2004,33(5):34-37.
[9]姜鵬飛,康紅普,王志根,等.千米深井軟巖大巷圍巖錨架充協(xié)同控制原理、技術(shù)及應(yīng)用[J].煤炭學(xué)報(bào),2020,45(3):1020-1035.
JIANG Pengfei,KANG Hongpu,WANG Zhigen,et al.Principle technology and application of soft rock roadway strata control bymeans of “rock bolting,Ushaped yielding steel arches and back filling”in synergy in 1 000 m deep coal mines[J].Journal of China Coal Society,2020,45(3):1020-1035.
[10]李學(xué)彬,楊仁樹,高延法,等.大斷面軟巖斜井高強(qiáng)度鋼管混凝土支架支護(hù)技術(shù)[J].煤炭學(xué)報(bào),2013,38(10):1742-1748.LI Xuebin,YANG Renshu,GAO Yanfa,et al.High-strength steel tubular confined concrete supports support technology for large section soft rock inclined shaft[J].Journal of China Coal Society,2013,38(10):1742-1748.
[11]王連國(guó),李明遠(yuǎn),王學(xué)知.深部高應(yīng)力極軟巖巷道錨注支護(hù)技術(shù)研究[J].巖石力學(xué)與工程學(xué)報(bào),2005(16):2889-2893.
WANG Lianguo,LI Mingyuan,WANG Xuezhi.Study on mechanisms and technology for bolting and grouting in special soft rock roadways under high stress[J].Chinese Journal of Rock Mechanics and Engineering,2005(16):2889-2893.
[12]王連國(guó),陸銀龍,黃耀光,孫海洋.深部軟巖巷道深-淺耦合全斷面錨注支護(hù)研究[J].中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2016,45(1):11-18.
WANG Lianguo,LU Yinlong,HUANG Yaoguang,et al.Deep-shallow coupled bolt-grouting support technology for soft rock roadway in deep mine[J].Journal of China University of Mining & Technology,2016,45(1):11-18.
[13]馮彥軍,康紅普.定向水力壓裂控制煤礦堅(jiān)硬難垮頂板試驗(yàn)[J].巖石力學(xué)與工程學(xué)報(bào),2012,31(6):1148-1155.FENG Yanjun,KANG Hongpu.Test on hard and stable roof control by means of directional hydraulic fracturing in coal mine[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(6):1148-1155.
[14]孫志勇,張鎮(zhèn),王子越,等.水力壓裂切頂卸壓技術(shù)在大采高留巷中的應(yīng)用研究[J].煤炭科學(xué)技術(shù),2019,47(10):190-197.SUN Zhiyong,ZHANG Zhen,WANG Ziyue,et al.Application of pressure relief technology by hydraulic fracturing in retaining roadway with large mining height[J].Coal Science and Technology,2019,47(10):190-197.
[15]王衛(wèi)軍,李樹清,歐陽(yáng)廣斌.深井煤層巷道圍巖控制技術(shù)及試驗(yàn)研究[J].巖石力學(xué)與工程學(xué)報(bào),2006(10):2102-2107.
WANG Weijun,LI Shuqing,OUYANG Guangbin.Study on techniqus and test of surrounding rock control of deep shaft coal roadway[J].Chinese Journal of Rock Mechanics and Engineering,2006(10):2102-2107.
[16]王衛(wèi)軍,袁超,余偉健,等.深部高應(yīng)力巷道圍巖預(yù)留變形控制技術(shù)[J].煤炭學(xué)報(bào),2016,41(9):2156-2164.
WANG Weijun, YUAN Chao, YU Weijian,et al.Control technology of reserved surrounding rock deformation in deep roadway under high stress[J].Journal of China Coal Society,2016,41(9):2156-2164.
[17]宋明明.水力壓裂切頂在寺河礦的應(yīng)用[J].山東煤炭科技,2017(4):190-197.SONG Mingming.Application of hydrofracture topping in Sihe Mine[J].Shandong Coal Science and Technology,2017(4):190-197.
[18]康紅普,馮彥軍.煤礦井下水力壓裂技術(shù)及在圍巖控制中的應(yīng)用[J].煤炭科學(xué)技術(shù),2017,45(1):1-9.KANG Hongpu,F(xiàn)ENG Yanjun.Hydraulic fracturing technology and its applications in stratacontrol in underground coal mines[J].Coal Science and Technology,2017,45(1):1-9.
[19]吳擁政,康紅普.煤柱留巷定向水力壓裂卸壓機(jī)理及試驗(yàn)[J].煤炭學(xué)報(bào),2017,42(5):1130-1137.WU Yongzheng,KANG Hongpu.Pressure relief mechanism and experiment of directional hydraulic fracturing in reused coal pillar roadway[J].Journal of China Coal Society,2017,42(5):1130-1137.
[20]孫志勇,馮彥軍,郭相平.鳳凰山煤礦堅(jiān)硬頂板定向水力壓裂技術(shù)應(yīng)用研究[J].中國(guó)礦業(yè),2014,23(11):108-110.SUN Zhiyong,F(xiàn)ENG Yanjun,GUO Xiangping.Appliction of hard and stable roof control by means of directional hydraulic facturing in Fenghuangshan Coal Mine[J].Coal Mining Magazine,2014,23(11):108-110.