亢菊俠 楊林 蘭文學(xué)
摘要 植物病毒與介體蚜蟲(chóng)存在復(fù)雜的互作關(guān)系。前人關(guān)于植物病毒對(duì)蚜蟲(chóng)調(diào)控作用的研究主要集中在植物病毒通過(guò)寄主植物對(duì)蚜蟲(chóng)的間接影響上,未見(jiàn)植物病毒對(duì)介體蚜蟲(chóng)適合度直接調(diào)控的報(bào)道。鑒于此,我們以麥長(zhǎng)管蚜Sitobion miscanthi (Takahashi)為試蟲(chóng),以其傳播的大麥黃矮病毒-GAV(Barley yellow dwarf virus GAV,BYDV-GAV)為測(cè)試病毒,以全純?nèi)斯わ暳霞尤隑YDV-GAV病毒提取液飼養(yǎng)麥長(zhǎng)管蚜4 d,使之在不接觸寄主植物條件下獲毒,然后分別在全純?nèi)斯わ暳虾蜔o(wú)毒小麥葉片上繼續(xù)飼養(yǎng),直至死亡。利用生命表技術(shù)分析麥長(zhǎng)管蚜生長(zhǎng)發(fā)育和繁殖參數(shù)。研究結(jié)果表明:在無(wú)毒小麥葉片飼養(yǎng)條件下,與未獲毒對(duì)照麥長(zhǎng)管蚜相比,獲毒后麥長(zhǎng)管蚜生活史參數(shù)成蟲(chóng)歷期和產(chǎn)仔天數(shù)顯著降低,繁殖力顯著增加;種群參數(shù)內(nèi)稟增長(zhǎng)率、凈繁殖率、周限增長(zhǎng)率顯著增加,平均世代周期顯著降低。在全純?nèi)斯わ暳蠗l件下,與未獲毒對(duì)照相比,獲毒后麥長(zhǎng)管蚜僅成蟲(chóng)歷期和產(chǎn)仔天數(shù)顯著下降,而其他生活史參數(shù)及種群參數(shù)均無(wú)顯著差異。說(shuō)明BYDV-GAV使得介體麥長(zhǎng)管蚜在小麥葉片上的適合度顯著提高,這是由麥長(zhǎng)管蚜與寄主植物互作引起的,而病毒對(duì)介體麥長(zhǎng)管蚜的適合度無(wú)直接調(diào)控作用。
關(guān)鍵詞 大麥黃矮病毒; 麥長(zhǎng)管蚜; 全純?nèi)斯わ暳? 種群適合度; 直接調(diào)控
中圖分類(lèi)號(hào): S 432.41
文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.16688/j.zwbh.
2020351
Direct effect of Barley yellow dwarf virus GAV isolate on population fitness of Sitobion miscanthi under artificial diet
KANG Juxia1*, YANG Lin2, LAN Wenxue2
(1. Bioengineering branch, Yangling Vocational & Technical College, Yangling 712100, China;
2. College of Plant Protection, Northwest A&F University, Yangling 712100, China)
Abstract
There is a complex interaction between plant viruses and vector aphids. Previous studies on the regulatory role of plant viruses on aphids mainly focused on their indirect regulation through host plants, and there was no report on the direct regulation of aphid fitness by plant viruses. In view of this, we used the grain aphid, Sitobion miscanthi (Takahashi), as test insect and Barley yellow dwarf virus GAV isolate (BYDV-GAV) as test virus. The aphid was fed with pure artificial diet added with BYDV-GAV crude extract and successively infected with BYDV-GAV without contact with plants. The aphids fed on pure artificial diets and virus-free wheat leaves were raised until death. Life table technique was used to analyze the growth, development and reproduction parameters of aphids. The results showed that, under host plant conditions, compared with the untreated control group, the life history parameters such as adult longevity and reproductive period of aphids infected BYDV-GAV were significantly reduced, and the fertility was significantly increased. The population parameters such as the intrinsic rate of increase, net reproductive rate and finite rate of increase were significantly increased, but mean generation time was significantly decreased. Under pure artificial feeding conditions, compared with the control group, only the adult longevity and reproductive period of aphid infected with BYDV-GAV were significantly reduced, while other life history and population parameters were not significantly different. It was concluded that infection with BYDV-GAV could significantly improve the fitness of aphids to host plants, which was caused by the interaction between host plants and BYDV-GAV, and BYDV-GAV had no direct effect on the fitness of vector aphids.
Key words
Barley yellow dwarf virus; Sitobion miscanthi; artificial diet; population fitness; direct regulation
小麥黃矮?。ú≡瓰榇篼滭S矮病毒Barley yellow dwarf virus,BYDV)和麥蚜是我國(guó)乃至世界小麥上最主要的病蟲(chóng)害[1-2],后者是前者的傳播介體。在田間小麥黃矮病和麥蚜往往混合發(fā)生,一般年份造成30%的減產(chǎn),嚴(yán)重時(shí)甚至造成絕收[3]。大麥黃矮病毒與麥蚜之間復(fù)雜的互作關(guān)系是導(dǎo)致麥蚜大發(fā)生并造成BYDV擴(kuò)散的重要原因[1],受到了科研工作者的廣泛關(guān)注。
前人通過(guò)田間和室內(nèi)試驗(yàn),研究了BYDV對(duì)麥蚜選擇偏好性、生長(zhǎng)發(fā)育和繁殖的影響[4-6]。Ajayi 等[7]的研究表明,蚜蟲(chóng)偏好停留在感染BYDV的植物上。Jimenez-Martinez 等[8]利用抗感品種的研究表明,蚜蟲(chóng)喜愛(ài)刺探被 BYDV感染的寄主植物是由于感病植物產(chǎn)生的揮發(fā)物可以作為蚜蟲(chóng)尋找寄主植物的引誘劑。對(duì)其他種類(lèi)病毒的研究也有類(lèi)似的結(jié)果。Hu等[9]指出相對(duì)于取食健康小麥,取食感染BYDV-GAV小麥的麥長(zhǎng)管蚜Sitobion miscanthi (Takahashi)若蚜發(fā)育歷期顯著縮短,日均體重增長(zhǎng)率、種群內(nèi)稟增長(zhǎng)率顯著增加。前人還對(duì)BYDV提高蚜蟲(chóng)適合度的機(jī)理進(jìn)行了初步的研究,仝則乾等[10]發(fā)現(xiàn)取食感染BYDV-GAV的小麥,麥長(zhǎng)管蚜成蟲(chóng)體內(nèi)過(guò)氧化物酶(peroxidase, POD)、超氧化物歧化酶(superoxide dismutase, SOD)和堿性磷酸酶(alkaline phosphatase, AKP)活性相比取食未感染病毒小麥顯著上升。Li等[11]通過(guò)轉(zhuǎn)錄組分析發(fā)現(xiàn),取食感染BYDV-GAV的小麥和取食健康小麥的麥長(zhǎng)管蚜差異表達(dá)基因?yàn)?92個(gè),其中296個(gè)上調(diào),296個(gè)下調(diào)。包括發(fā)育、多細(xì)胞生物體過(guò)程、繁殖和生長(zhǎng)在內(nèi)的15個(gè)基因本體功能類(lèi)別(gene ontology term, GO term)既有上調(diào)基因又有下調(diào)基因。但上述研究主要集中在BYDV通過(guò)植物對(duì)介體蚜蟲(chóng)的間接作用上。由于寄主植物參與其中,很難厘清是病毒的調(diào)控作用還是寄主植物的調(diào)控作用。
目前使用全純?nèi)斯わ暳巷曫B(yǎng)蚜蟲(chóng)技術(shù)已經(jīng)成熟,蚜蟲(chóng)可在人工飼料上進(jìn)行正常生長(zhǎng)發(fā)育和繁殖[12-14],通過(guò)在人工飼料中添加BYDV的粗提液可使得蚜蟲(chóng)成功獲毒[15],這樣就可排除寄主植物干擾,從而研究BYDV對(duì)介體蚜蟲(chóng)的直接作用。鑒于此,為了豐富植物病毒與介體蚜蟲(chóng)的互作理論,揭示蚜蟲(chóng)種群動(dòng)態(tài)變化和植物病毒病流行的原因。本研究以BYDV-GAV為測(cè)試病毒,以其傳播介體麥長(zhǎng)管蚜(同時(shí)也是我國(guó)北方小麥上蚜蟲(chóng)的優(yōu)勢(shì)種)為試蟲(chóng),通過(guò)在人工飼料中添加BYDV-GAV粗提液,使之不接觸植物獲毒,然后分別在全純?nèi)斯わ暳虾蜔o(wú)毒小麥葉片上繼續(xù)飼養(yǎng),直至死亡。由于生命表能夠全面和詳細(xì)地描述生物與非生物因素對(duì)種群特性的影響[16],本研究利用生命表技術(shù)分析麥長(zhǎng)管蚜生長(zhǎng)發(fā)育和繁殖參數(shù),揭示大麥黃矮病毒對(duì)麥長(zhǎng)管蚜種群適合度的直接影響。
1 材料與方法
1.1 供試麥長(zhǎng)管蚜
本試驗(yàn)麥長(zhǎng)管蚜單頭成蟲(chóng)采自西北農(nóng)林科技大學(xué)試驗(yàn)田(34°17′48.5″N, 108°04′34.9″E),接在小麥上(品種為‘矮抗58)放入人工氣候箱培養(yǎng)5代以上(飼養(yǎng)條件:L∥D=16 h∥8 h,相對(duì)濕度70%,溫度20℃),形成單克隆系。每代均通過(guò)RT-PCR檢測(cè)確定其不帶有BYDV。檢測(cè)方法和引物同孟琳欽論文[17]。
1.2 供試BYDV-GAV粗提液
本試驗(yàn)供試BYDV-GAV來(lái)自西北農(nóng)林科技大學(xué)試驗(yàn)田采集的顯癥小麥植株葉片。BYDV在我國(guó)有4種株系,分別為GAV、PAV、GPV和RMV。本研究參照孟琳欽的方法[17]進(jìn)行株系鑒定,確定小麥葉片僅含有BYDV-GAV。將感染BYDV-GAV的顯癥葉片截取10 cm,剪碎后置于1.5 mL離心管,在液氮中研磨后,再加入500 μL PBS緩沖液在冰下研磨,最后以600 r/min離心5 min,上清液即為BYDV-GAV粗提液。
1.3 人工飼料條件下蚜蟲(chóng)獲毒
人工飼料營(yíng)養(yǎng)液配方來(lái)源于西北農(nóng)林科技大學(xué)昆蟲(chóng)生態(tài)組張莉碩士論文中的最佳配方[18]。此配方經(jīng)課題組多年使用,證明可以使麥長(zhǎng)管蚜正常生長(zhǎng)、發(fā)育和繁殖。飼喂器裝置為長(zhǎng)約4 cm的兩頭開(kāi)口的玻璃管。玻璃管一端先用經(jīng)過(guò)拉伸變薄的石蠟?zāi)じ采w封口,在其上滴40 μL人工飼料和5 μL BYDV-GAV粗提液,再用石蠟?zāi)ざ畏饪?,形成一個(gè)兩層石蠟?zāi)ぶ虚g夾層人工飼料的裝置。用毛筆將1頭1日齡麥長(zhǎng)管蚜若蚜放入飼喂器雙層石蠟?zāi)ひ欢说膬?nèi)側(cè),靜置2 h后,翻轉(zhuǎn)人工飼喂器,使雙層石蠟?zāi)ひ欢顺?,放入塑料盒中,每處理?0頭蚜蟲(chóng)。塑料盒中放置含有10 mL飽和食鹽水的燒杯,整個(gè)飼養(yǎng)裝置放置于人工氣候箱內(nèi),飼料條件同1.1。人工飼料和BYDV-GAV粗提液2 d更換1次。對(duì)照組(CK)則為40 μL人工飼料添加5 μL PBS緩沖液。
1.4 生命表參數(shù)測(cè)定
初生1齡麥長(zhǎng)管蚜若蚜在添加BYDV-GAV粗提液的人工飼料上飼養(yǎng)4 d作為處理組,在添加PBS緩沖液的人工飼料上飼養(yǎng)4 d作為對(duì)照組(CK)。再分別用6 cm無(wú)毒小麥葉片在培養(yǎng)皿中進(jìn)行單頭飼喂(A-BYDV組和A-CK組)和用僅添加人工飼料的飼喂器進(jìn)行單頭飼喂(B-BYDV組和B-CK組),飼養(yǎng)條件同1.1。每天記錄蚜蟲(chóng)存活和蛻皮情況,等開(kāi)始產(chǎn)仔時(shí),統(tǒng)計(jì)每天產(chǎn)仔數(shù),隨即剔除初生若蚜,直至成蚜死亡調(diào)查結(jié)束。收集處理組和對(duì)照組死亡蚜蟲(chóng)進(jìn)行RT-PCR檢測(cè)BYDV-GAV感染情況,檢測(cè)方法和引物參照孟琳欽論文[17]。剔除處理組未成功感染BYDV-GAV蚜蟲(chóng)的數(shù)據(jù),并驗(yàn)證對(duì)照組均未感染BYDV-GAV。
1.5 數(shù)據(jù)處理
在年齡-階段兩性生命表理論的基礎(chǔ)上[19],分析初始數(shù)據(jù)反映出的年齡-階段特征存活率(sxj),即個(gè)體發(fā)育至x年齡j階段的概率;種群年齡特征存活率(lx),即蚜蟲(chóng)由新生若蚜發(fā)育存活至年齡x的概率;種群年齡特征繁殖力(mx),即蚜蟲(chóng)在年齡x的平均產(chǎn)卵量;種群年齡繁殖值(lxmx),即種群在年齡x時(shí)的凈繁殖力。
種群生命表參數(shù)中,內(nèi)稟增長(zhǎng)率rm采用的是二分迭代法,依據(jù)Euler-Lotka公式計(jì)算而來(lái);而種群的凈繁殖率(R0)、平均世代周期(T)以及周限增長(zhǎng)率(λ)分別通過(guò)以下公式計(jì)算而來(lái)[20]。
∑∞x=0e-rm(x+1)lxmx=1
R0=∑∞x=0lxmx
T=lnR0rm
λ=erm
利用TWOSEX-MSChart軟件分析數(shù)據(jù)[21]。該軟件采用bootstrap方法進(jìn)行100 000次重抽樣估計(jì)生活史和種群參數(shù)的標(biāo)準(zhǔn)誤。各處理間的差異顯著性采用5%顯著性水平的配對(duì)bootstrap測(cè)驗(yàn)[22]。作圖軟件為SigmaPlot 10.0。
2 結(jié)果與分析
2.1 BYDV-GAV對(duì)麥長(zhǎng)管蚜生長(zhǎng)發(fā)育和繁殖的影響
在無(wú)毒小麥葉片飼養(yǎng)條件和全純?nèi)斯わ暳巷曫B(yǎng)條件下,與未獲毒麥長(zhǎng)管蚜(A-CK,B-CK)相比,獲毒后麥長(zhǎng)管蚜(A-BYDV,B-BYDV)1齡、2齡、3齡、4齡若蚜發(fā)育歷期及壽命均無(wú)顯著差異,僅成蟲(chóng)發(fā)育歷期顯著縮短(P=0.007,P=0.005)(表1)。
在無(wú)毒小麥葉片飼養(yǎng)條件下,與未獲毒對(duì)照麥長(zhǎng)管蚜(A-CK)相比,獲毒后麥長(zhǎng)管蚜(A-BYDV)總產(chǎn)仔前期無(wú)顯著差異,繁殖力顯著升高(P=0002),產(chǎn)仔天數(shù)顯著降低(P=0.017);在全純?nèi)斯わ暳蠗l件下,與未獲毒麥長(zhǎng)管蚜對(duì)照(B-CK)相比,獲毒后麥長(zhǎng)管蚜(B-BYDV)總產(chǎn)仔前期和繁殖力均無(wú)顯著差異,僅產(chǎn)仔天數(shù)顯著下降(P=0020)(表2)。
上述結(jié)果說(shuō)明,攜帶BYDV-GAV的麥長(zhǎng)管蚜繁殖力顯著提高是由麥長(zhǎng)管蚜與寄主植物互作引起的,而B(niǎo)YDV-GAV對(duì)宿主麥長(zhǎng)管蚜繁殖力無(wú)直接調(diào)控作用。
2.2 BYDV-GAV對(duì)麥長(zhǎng)管蚜種群存活率和繁殖力的影響
通過(guò)構(gòu)建不同處理的人工飼料以及無(wú)毒小麥葉片飼養(yǎng)條件下麥長(zhǎng)管蚜年齡-階段特征存活率曲線(圖1)可知,在無(wú)毒小麥葉片飼養(yǎng)條件下,A-BYDV組存活到1齡、2齡、3齡、4齡若蚜與成蟲(chóng)的概率分別為100%,100%,100%,96.67%和93.33%;而A-CK組存活到1齡、2齡、3齡、4齡若蚜與成蟲(chóng)的概率分別為100%,100%,9667%,96.67%和86.67%。在全純?nèi)斯わ暳蠗l件下,B-BYDV組存活到1齡、2齡、3齡、4齡若蚜與成蟲(chóng)的概率分別為100%,100%,94.55%,9091%和8545%;而B(niǎo)-CK組存活到1齡、2齡、3齡、4齡若蚜與成蟲(chóng)的概率分別為100%,100%,9636%,9273%和90.91%。
從圖2可知,在無(wú)毒小麥葉片飼養(yǎng)條件下,A-BYDV組種群年齡特征存活率(lx)曲線在5 d和8 d時(shí)有小幅下降,在18 d后快速下降,其余時(shí)間較為平穩(wěn);A-CK在4 d和8 d時(shí)有小幅下降,在22 d后快速下降。在全純?nèi)斯わ暳蠗l件下,B-BYDV組在3~8 d下降較快,在15 d后快速下降,其余時(shí)間較為平穩(wěn);B-CK組在3~8 d下降較快,在16 d后快速下降,其余時(shí)間較為平穩(wěn)。在小麥葉片飼養(yǎng)條件下,A-BYDV組種群年齡特征繁殖力(mx)曲線和種群年齡特征繁殖值(lxmx)在7~23 d出現(xiàn)繁殖高峰期,峰值出現(xiàn)在第15天;A-CK組在7~25 d出現(xiàn)繁殖高峰期,峰值出現(xiàn)在第24天。在全純?nèi)斯わ暳蠗l件下,B-BYDV組在7~21 d出現(xiàn)繁殖高峰期,峰值出現(xiàn)在第13天,B-CK在8~19 d出現(xiàn)繁殖高峰期,峰值出現(xiàn)在第14天。
由上述可知,在無(wú)毒小麥葉片飼養(yǎng)條件下, BYDV-GAV會(huì)提高麥長(zhǎng)管蚜成蟲(chóng)階段存活率,但在全純?nèi)斯わ暳蠗l件下BYDV-GAV會(huì)降低麥長(zhǎng)管蚜成蟲(chóng)階段存活率,而對(duì)種群的繁殖高峰期以及峰值日期無(wú)影響。
2.3 BYDV-GAV對(duì)麥長(zhǎng)管蚜種群參數(shù)的影響
由表3可知,在無(wú)毒小麥葉片飼養(yǎng)條件下,與未獲毒對(duì)照麥長(zhǎng)管蚜(A-CK)相比,獲毒后麥長(zhǎng)管蚜(A-BYDV)內(nèi)稟增長(zhǎng)率、凈繁殖率和周限增長(zhǎng)率顯著升高(P =0.004,P =0.032,P=0.004),平均世代周期顯著下降(P =0.047)。在全純?nèi)斯わ暳蠗l件下,與未獲毒麥長(zhǎng)管蚜對(duì)照(B-CK)相比,獲毒后麥長(zhǎng)管蚜(B-BYDV)內(nèi)稟增長(zhǎng)率、凈繁殖率、周限增長(zhǎng)率和平均世代周期均無(wú)顯著差異。上述結(jié)果說(shuō)明,感染BYDV-GAV的麥長(zhǎng)管蚜種群參數(shù)的變化是由麥長(zhǎng)管蚜與寄主植物互作引起的,BYDV-GAV對(duì)介體麥長(zhǎng)管蚜種群參數(shù)無(wú)直接調(diào)控作用。
3 討論
本研究通過(guò)在人工飼料中添加大麥黃矮病毒的方法使麥長(zhǎng)管蚜獲取病毒,再分別在無(wú)毒小麥葉片和人工飼料上繼續(xù)飼養(yǎng),采用生命表技術(shù)分析BYDVs對(duì)麥長(zhǎng)管蚜的影響,結(jié)果發(fā)現(xiàn):在無(wú)毒小麥葉片飼養(yǎng)條件下,與未獲毒對(duì)照麥長(zhǎng)管蚜相比,獲毒后麥長(zhǎng)管蚜成蟲(chóng)歷期和產(chǎn)仔天數(shù)顯著降低,繁殖力顯著增加;種群內(nèi)稟增長(zhǎng)率、凈繁殖率、周限增長(zhǎng)率顯著增加,平均世代周期顯著降低。在全純?nèi)斯わ暳蠗l件下,與未獲毒對(duì)照相比,獲毒后麥長(zhǎng)管蚜僅成蟲(chóng)歷期和產(chǎn)仔天數(shù)顯著下降,而其他生活史參數(shù)及種群參數(shù)均無(wú)顯著差異。
昆蟲(chóng)種群適合度(population fitness)是種群所具有的對(duì)生態(tài)環(huán)境的適應(yīng)、生存、繁殖的相對(duì)能力,其衡量指標(biāo)包括種群生活史參數(shù)(如各發(fā)育階段的歷期,整個(gè)世代的發(fā)育歷期和繁殖力等)以及生命表參數(shù)(如內(nèi)稟增長(zhǎng)率、周限增長(zhǎng)率等)[23-24]。其中內(nèi)稟增長(zhǎng)率和繁殖力是衡量昆蟲(chóng)種群適合度的重要指標(biāo)[25-26],本研究結(jié)果表明在無(wú)毒小麥葉片飼養(yǎng)條件下,感染BYDV-GAV病毒的麥長(zhǎng)管蚜其內(nèi)稟增長(zhǎng)率和繁殖力顯著增加,說(shuō)明在寄主植物上BYDV-GAV能顯著提高介體蚜蟲(chóng)的適合度。而在人工飼料飼養(yǎng)條件下,感染BYDV-GAV病毒麥長(zhǎng)管蚜的內(nèi)稟增長(zhǎng)率和繁殖力均無(wú)顯著差異,說(shuō)明在排除寄主植物條件下,BYDV-GAV對(duì)介體蚜蟲(chóng)適合度無(wú)直接調(diào)控作用。
植物病毒可以通過(guò)寄主植物與媒介昆蟲(chóng)的互作關(guān)系間接影響媒介昆蟲(chóng)。孟琳欽等[27]研究了介體麥二叉蚜Schizaphis graminum取食感染BYDV-GAV小麥后其成蟲(chóng)體內(nèi)保護(hù)酶和解毒酶的活性變化情況。結(jié)果發(fā)現(xiàn),與取食健康小麥相比,取食感染BYDV-GAV小麥的麥二叉蚜體內(nèi)POD、SOD和AKP活性均顯著下降,分別下降47.91%,39.56%和66.61%。Chen等[28]采用Illumina獲得玉米細(xì)條紋病毒Maize fine streak virus(MFSV)的介體昆蟲(chóng)黑面葉蟬Graminella nigrifrons的表達(dá)序列標(biāo)簽(expressed sequence tags,ESTs),發(fā)現(xiàn)該蟲(chóng)攜帶病毒后其肽聚糖識(shí)別蛋白相關(guān)基因(peptidoglycan recognition proteins,PGRP)顯著下調(diào)。上述研究結(jié)果或可為本研究的結(jié)果提供合理的解釋。更多的直接證據(jù)還需要通過(guò)田間試驗(yàn)和分子生物學(xué)進(jìn)行進(jìn)一步研究和驗(yàn)證。
在自然界中,許多因素,包括溫度、濕度、光照、天敵、食物等都會(huì)影響昆蟲(chóng)的種群動(dòng)態(tài)。這些因素中的每一個(gè)都會(huì)導(dǎo)致發(fā)育率、存活率、繁殖力、繁殖年齡等的變化[29-30]。由于生命表能夠全面和詳細(xì)地描述這些因素對(duì)各種生物學(xué)特性的影響,因此在昆蟲(chóng)種群生態(tài)學(xué)起著至關(guān)重要的作用[31]。本試驗(yàn)在人工飼料條件下證明感染BYDV-GAV對(duì)麥長(zhǎng)管蚜無(wú)直接調(diào)控作用, 今后將進(jìn)一步研究其生理生化機(jī)理及其對(duì)麥長(zhǎng)管蚜治理的影響。此外,本研究可為研究其他植物病毒和介體昆蟲(chóng)互作關(guān)系提供參考。
參考文獻(xiàn)
[1] 汪信東, 陳亮, 張?jiān)銎G. 抗小麥黃矮病相關(guān)蛋白激酶TiDPK1與BYDV外殼蛋白的互作[J]. 作物學(xué)報(bào), 2013, 39(10): 1720-1726.
[2] 曹雅忠, 尹姣, 李克斌, 等. 小麥蚜蟲(chóng)不斷猖獗原因及控制對(duì)策的探討[J]. 植物保護(hù), 2006, 32(5):72-75.
[3] 王錫鋒, 周廣和. 大麥黃矮病毒介體麥二叉蚜和麥長(zhǎng)管蚜體內(nèi)傳毒相關(guān)蛋白的確定[J]. 科學(xué)通報(bào), 2003, 48(15): 85-89.
[4] AJAYI O. The effect of Cereal yellow dwarf virus on the amino acid composition of spring wheat [J]. Annals of Applied Biology, 1986, 108: 145-149.
[5] FERERES A R, LISTER M, ARAYA J E, et al. Development and reproduction of the English grain aphid (Homoptera: Aphididae) on wheat cultivars infected with Barley yellow dwarf virus [J]. Environmental Entomology, 1989, 18(3): 388-393.
[6] QUIROZ C R, LISTER M, ARAYA J E, et al. Effects of symptom variants derived from the NY-MAV isolate of Barley yellow dwarf virus on the life cycle of the English grain aphid (Homoptera: Aphididae) and on yield components in wheat and oats [J]. Journal of Economic Entomology, 1991, 84(6):1920-1925.
[7] AJAYI O, DEWAR A M. The effect of Barley yellow dwarf virus on field populations of the cereal aphids, Sitobion avenae and Metopolophium dirhodum [J]. Annals of Applied Biology, 1983, 103(1): 1-11.
[8] JIMENEZ-MARTINEZ E S, BOSQUE-PEREZ N A, BERGER P H, et al. Volatile cues influence the response of Rhopalosiphum padi (Homoptera: Aphididae) to Barley yellow dwarf virus-infected transgenic and untransformed wheat [J]. Environmental Entomology, 2004, 33(5): 1207-1216.
[9] HU Zuqing, ZHAO Huiyan, THIEME T. Comparison of the potential rate of population increase of brown and green color morphs of Sitobion avenae (Homoptera: Aphididae) on barley infected and uninfected with Barley yellow dwarf virus [J]. Insect Science, 2014, 21: 326-333.
[10]仝則乾, 孟琳欽, 蘇丹, 等. 取食感染大麥黃矮病毒的小麥后介體麥長(zhǎng)管蚜和非介體禾谷縊管蚜體內(nèi)抗氧化酶和解毒酶活性的變化[J]. 昆蟲(chóng)學(xué)報(bào), 2019, 62(12): 1392-1399.
[11]LI Dandan, SU Dan, TONG Zeqian, et al. Virus-dependent and-independent responses of Sitobion avenae (Hemiptera: Aphididae) feeding on wheat infected by transmitted and nontransmitted viruses at transcriptomic level [J]. Journal of Economic Entomology, 2019, 112(5): 2067-2076.
[12]DADD R H, MITTLER T E. Permanent culture of an aphid on a totally synthetic diet [J]. Experientia, 1966, 22(12): 832-833.
[13]AUCLAIR J L, CARTIER J J. Pea aphid: Rearing on a chemically defined diet [J]. Science, 1963, 142(3595):1068-1069.
[14]SINGH P R F. Handbook of insect rearing [M]. Elsevier Science Publish, 1985.
[15]LUNKEL H. Membrane feeding system in aphid research [M]∥HARRIS K F,MARAMOROSCH K. Aphis as virus vectors. New York: Academic Press, 1977.
[16]齊心, 傅建煒, 尤民生. 年齡-齡期兩性生命表及其在種群生態(tài)學(xué)與害蟲(chóng)綜合治理中的應(yīng)用[J]. 昆蟲(chóng)學(xué)報(bào), 2019, 62(2): 255-262.
[17]孟琳欽. 大麥黃矮病毒—麥蚜—小麥互作的生理機(jī)制初探[D]. 楊凌:西北農(nóng)林科技大學(xué), 2018.
[18]張莉. 麥長(zhǎng)管蚜全人工飼料的篩選及共生菌對(duì)麥長(zhǎng)管蚜生殖、生長(zhǎng)的影響[D]. 楊陵:西北農(nóng)林科技大學(xué), 2004.
[19]CHI H. Timing of control based on the stage structure of pest populations: a simulation approach [J]. Journal of Economic Entomology, 1990, 83(4): 1143-1150.
[20]CHI H, LIU H. Two new methods for the study of insect population ecology [J]. Bulletin of the Institute of Zoology, 1985, 24(2): 225-240.
[21]CHI H. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis [CP/OL]. 2010. http:∥140.120.197.173/Ecology/.
[22]YU Lingyuan, CHEN Zhenzhen, ZHENG Fangqiang, et al. Demographic analysis, a comparison of the jackknife and bootstrap methods, and predation projection: a case study of Chrysopa pallens (Neuroptera: Chrysopidae) [J]. Journal of Economic Entomology, 2013, 106(1): 1-9.
[23]FERERES A R, LISTER M, ARAYA J E, et al. Development and reproduction of the English grain aphid (Homoptera: Aphididae) on wheat cultivars infected with Barley yellow dwarf virus [J]. Environmental Entomology, 1989, 18(3): 388-393.
[24]HUANG Yubing, CHI H. Assessing the application of the jackknife and bootstrap techniques to the estimation of the variability of the net reproductive rate and gross reproductive rate: a case study in Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) [J]. Journal of Agriculture and Forestry, 2012, 61(1): 37-45.
[25]HUANG Yubing, CHI H. Life tables of Bactrocera cucurbitae (Diptera: Tephritidae): with an invalidation of the jackknife technique [J]. Journal of Applied Entomology, 2012,137(5):327-339.
[26]GAO Suxia, LIU Deguang. Differential performance of Sitobion avenae (Hemiptera: Aphididae) clones from wheat and barley with implications for its management through alternative cultural practices [J]. Journal of Economic Entomology, 2013, 106(3): 1294-1301.
[27]孟琳欽, 李丹丹, 蘇丹, 等. 取食感染大麥黃矮病毒小麥后麥二叉蚜體內(nèi)保護(hù)酶和解毒酶活性變化[J]. 植物保護(hù)學(xué)報(bào), 2019, 46(3): 707-708.
[28]CHEN Yuting, CASSONE B J, BAI Xiaodong et al. Transcriptome of the plant virus vector Graminella nigrifrons, and the molecular interactions of Maize fine streak rhabdovirus transmission [J/OL]. PLoS ONE, 2012, 7(7): e40613. DOI: 10.1371/journal.pone.0040613.
[29]HOFFMANN A A, SRENSEN J G, LOESCHCKE V. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches [J]. Journal of Thermal Biology, 2003, 28(3): 175-216.
[30]BROUFAS G D, PAPPAS M L, KOVEOS D S. Effect of relative humidity on longevity, ovarian maturation, and egg production in the olive fruit fly (Diptera: Tephritidae) [J]. Annals of the Entomological Society of America, 2009, 102(1):70-75.
[31]CHI H, YOU Minsheng, ATLIHAN R, et al. Age-stage, two-sex life table: an introduction to theory, data analysis, and application [J]. Entomologia Generalis, 2020, 40(2): 103-124.
(責(zé)任編輯:楊明麗)