江蘇省常熟市花溪小學 徐夢君
華羅庚先生曾說過,學生在數(shù)學表達上要:“想得清楚,說得明白,寫得干凈?!钡杂写蟛糠謹?shù)學教師弱化兒童在數(shù)學課堂上的表達,認為兒童的表達能力只需要語文學科關注就可以了。實際上,語言是思維的“外殼”,思維是語言的“內核”。當下,圍繞數(shù)學學科素養(yǎng)的研究很多,其中就有研究提出:教育教學的核心是學生發(fā)展,數(shù)學教學的核心是思維發(fā)展。我認為欲善其核心素養(yǎng)之事,必敲其思維發(fā)展之門;欲啟其思維發(fā)展之門,必尋其數(shù)學表達之鑰。
在學科框架中,所謂“表達”指的是:把自己內化的知識以能夠傳遞給接收對象的形式來表現(xiàn)的過程,分為書面表達和口頭表達。另外,每一門學科都有自己特有的語言用來表達其內容,數(shù)學語言可歸結為文字語言、符號語言和圖形語言,而數(shù)學表達正是以這些豐富的表達形式為載體進行學習研究活動。如在蘇教版三上“平移和旋轉”一課中,學生語言表述“我們可以把火車車廂的運動看作平移”“我們可以把電風扇的運動看作旋轉”后,教師可繼續(xù)引導學生用動作、符號表征平移和旋轉現(xiàn)象,幫助學生深刻體會兩種運動方式的本質特征。
1.內容的規(guī)范性
數(shù)學語言要求用詞精確、簡練,具有邏輯性強的特征,所以一些定理內容方面特別要求語言規(guī)范、敘述確切、高度概括。例如,蘇教版四上“商不變的規(guī)律”教學中:
?
學生填完表格后,教師立即引導學生進行橫向豎向的比較。學生會發(fā)現(xiàn)這些算式的商都是5,第2個算式中的被除數(shù)和除數(shù)同時都乘以了2,第3個算式中的被除數(shù)和除數(shù)同時都乘以了4。經過學生初步的發(fā)現(xiàn)交流后,啟發(fā)學生猜想一下:除法算式中,什么時候商會一直是5,不會變呢?學生會大膽猜想道:被除數(shù)和除數(shù)都乘以5,被除數(shù)和除數(shù)都乘以10……接著學生通過計算證明自己猜想的正確性,并與同桌一起概括說一說這是怎樣的規(guī)律。學生初步小結:“被除數(shù)和除數(shù)乘以相同的數(shù),商不變?!苯處熣埜魑粚W生仔細琢磨一下這條規(guī)律是否考慮周全了。仔細的學生就會想到數(shù)學中特別的一個數(shù)字——“0”,如果除數(shù)乘以了0,新的除法算式的除數(shù)會變成0,但在除法算式中規(guī)定除數(shù)是不能為0的,所以需要補充一個條件——0除外。
教師一層層設疑,學生一絲絲剝繭,隨著課程的推進,思維逐漸深入,形成精練而嚴密的商不變規(guī)律,借助教師這樣的提問和追問,既凸顯出商不變規(guī)律的關鍵詞,又鍛煉了孩子縝密的數(shù)學思維。
2.形式的多樣性
語言的準確性體現(xiàn)著思維的周密性,語言的層次性體現(xiàn)著思維的邏輯性,而語言的多樣性體現(xiàn)著思維的豐富性。兒童對于同一事物的表達也肯定是琳瑯滿目、精彩紛呈。例如,蘇教版四下“用數(shù)對確定位置”,當孩子體會到用“第4列第3行”這樣的書寫方式表達事物的位置太麻煩了,便產生各種簡化的表達需求:3列2行、3/2、3L2H、3.2、3→2等。這里生成了數(shù)字、文字、標點、英文、符號、箭頭等多種答案,孩子創(chuàng)造性的表達方式,實際上就是孩子創(chuàng)新思維在起作用,有利于孩子數(shù)學核心素養(yǎng)的發(fā)展。
3.主體的多元性
同桌或幾人小組合作交流表達是一種有效的鍛煉學生表達能力的方法,多人集思廣益,各抒己見。另外,個人的表達也極其重要,能夠培養(yǎng)兒童獨立思考的能力,課堂上孩子舉手回答問題更能提高兒童的信心,增強勇氣,還能得到教師專業(yè)的指導。
史寧中教授認為:數(shù)學核心素養(yǎng)主要體現(xiàn)在情境與問題、知識與技能、思維與表達、交流與反思的綜合運用能力上??梢?,提升學生的數(shù)學核心素養(yǎng)客觀上要求鍛煉孩子的數(shù)學表達力。這就告訴我們:在課堂上,教師要敢“放”——放手交流、放手探究、放手表達,建立師生平等活躍的學習氛圍,激發(fā)孩子學習數(shù)學的興趣?!案嬖V我,我會忘記;做給我看,我會記??;讓我參與,我會完全理解,還會創(chuàng)造?!边@句話其實說出了多少兒童的心聲啊。
學生在數(shù)學學習中通常要進行數(shù)學概念、判斷、推理、定理或法則的表達。如:這一道混合四則運算的運算順序是怎樣的呢?
孩子會想到用“先”“然后”“最后”這樣的承接關系連詞表述運算順序。再如:你能表明題目中的數(shù)量關系嗎?孩子可以用語言說,也可以用文字寫,還可以畫示意圖、線段圖,各種表達都能促進孩子對條件和問題的理解。
教師要保持親近兒童、和藹可親的態(tài)度,以平等、尊重、關愛的原則對待每一位孩子。創(chuàng)設溫馨的學習環(huán)境,使兒童能放下包袱,愿意發(fā)表自己最真實的想法,每個孩子都敢說了,不一樣的見解和想法就會發(fā)生摩擦和碰撞,在爭論中孩子會對問題有更深刻的理解。
在小學數(shù)學教學中,教師設計兒童喜聞樂見的,符合兒童學習水平的問題情境,能引起兒童的興趣,讓兒童產生表達的沖動。例如,蘇教版五上“認識負數(shù)”,結合學生的已有生活經驗,教師讓學生嘗試著把看到“-3℃”的地方畫出來。
展示學生作品:
冰箱和溫度計上的“-3℃”是大多數(shù)學生會想到的例子,教師選取有代表性的3幅學生作品,置于投影儀上進行展示、比較和討論,特別是后面兩幅作品的對比,學生發(fā)現(xiàn)了兩處相同點:都有一些小橫線,都有“-1”“-2”“-3”的數(shù)字。還有不同之處:“-1”“-2”“-3”這些數(shù)字的排序相反,說明學生在生活中無法切身體會“0是區(qū)分正、負數(shù)的界限”,所以這是我們這堂課需要著力突破的。另外,生3的作品有一個很有意思的地方,左邊也畫了一根小短橫,學生就是想表達“-3和0有著密切關系”,順著學生的數(shù)學直覺繼續(xù)用畫圖的方式進行表達。
教師先出示新圖1 ,學生由于“0℃”的缺席很難確定哪一條刻度線表示-3℃,所以教師在圖2中選擇其中一條刻度線作為0℃,生1認為上面第三根是-3℃,生2認為下面第三根是-3℃,通過交流學生體會到負數(shù)應該比0小,所以-3℃應該在0℃的下面。但一定是生2所指的位置嗎?那還不一定呢,因為一小格不一定代表1℃,也有可能2℃,也有可能3℃,都有可能。
圖1
圖2
圖3
在這一有邏輯、富內涵、多層次的教學環(huán)節(jié)中,教師既運用畫圖的表征方法讓學生表達對-3℃的理解,在學生的生成作品基礎之上,教師又借助語言表達將“負數(shù)的標準”“負數(shù)位于0刻度線的哪一側”“一小格代表幾”這幾個重難點進行探索,有效幫助學生理解負數(shù)。
有研究表明,兒童的語言、行為以及性格易受教師潛移默化的影響。因此在教學中,教師要注意自己的表達,要力求做到普通話標準,語言敘述精練,用詞措辭準確。教師書寫字體要是兒童學習的楷體,字跡清楚,解題格式規(guī)范無誤。
根據(jù)教學內容類型的不同,注意有針對性地鍛煉兒童的語言。如計算教學,要求算理表述有條有理,為什么小數(shù)加法的豎式要小數(shù)點對齊,為什么這一位除不夠要在商的這一位上寫0,兒童清晰的表達體現(xiàn)其深入理解掌握的程度;概念教學,語言表述要準確嚴謹,將豐富的感性的材料通過對比分析,綜合概括出本質屬性,并通過語言表述;圖形教學,推導公式要連續(xù)完整,每一步都要有理有據(jù);解決問題的策略教學,思路表述要簡明精練,學習《解決問題的策略——從條件想起》時,學生會用“根據(jù)已知條件A和B求出D,把D當成一個新的條件,再根據(jù)C和D求出問題的結果”這樣的語言,學習畫圖的策略只需學生“畫數(shù)學”,說清思路,不必計算結果。
兒童數(shù)學表達能力的提升是長期的、不斷去經歷去體驗、日積月累的過程。這一過程的實現(xiàn)需要教師不斷呵護、鼓勵、指導。也正是在這樣的過程中,學生才能扎實獲得知識,切實提升能力,充實學習狀態(tài)。