袁煥鑫,蔡康毅,吳楊威,杜新喜
(武漢大學(xué)土木建筑工程學(xué)院巖土與結(jié)構(gòu)工程安全湖北省重點(diǎn)實(shí)驗(yàn)室,湖北,武漢 430072)
自攻螺釘連接具有安裝便捷、成本低廉等優(yōu)點(diǎn),是冷彎薄壁型鋼結(jié)構(gòu)中普遍采用的一種連接形式,其受剪性能對(duì)冷彎薄壁型鋼結(jié)構(gòu)的整體性能具有重要影響[1?3]。國(guó)內(nèi)外學(xué)者對(duì)自攻螺釘連接已開(kāi)展了較多研究:李元齊等[1]、石宇等[4]和郝際平等[5]分別對(duì)鋼板與鋼板、鋼板與非鋼板之間的自攻螺釘連接進(jìn)行了試驗(yàn)研究,得到了多種幾何與材料因素對(duì)連接受剪承載力和失效模式的影響規(guī)律;Roy等[6]、Huynh等[7?8]通過(guò)試驗(yàn)探究了自攻螺釘連接的受剪性能,同時(shí)建立了合理的有限元模型;Moen等[9]完成了冷成型鋼結(jié)構(gòu)中自攻螺釘連接的受剪試驗(yàn),提出了一種受剪變形理論模型,但未建立完整的數(shù)學(xué)表達(dá),無(wú)法用于連接的荷載-變形關(guān)系預(yù)測(cè)。從當(dāng)前公開(kāi)發(fā)表的文獻(xiàn)來(lái)看,由于自攻螺釘連接的工作機(jī)理復(fù)雜,存在材料損傷和接觸變化等問(wèn)題,目前對(duì)其受剪性能尤其是剪力作用下的荷載-變形關(guān)系的研究仍有不足。已有研究主要通過(guò)開(kāi)展試驗(yàn)或數(shù)值模擬,獲得自攻螺釘連接的荷載-變形曲線并作出定性或定量判斷,并未對(duì)其受力機(jī)理進(jìn)行深入研究,缺乏合理實(shí)用的剛度計(jì)算公式或變形力學(xué)模型。
對(duì)13組薄鋼板自攻螺釘連接試件開(kāi)展受剪試驗(yàn),借助有限元軟件ABAQUS/Explicit建立自攻螺釘連接精細(xì)有限元模型,并基于受剪試驗(yàn)和有限元模擬得到的荷載-變形關(guān)系曲線提出簡(jiǎn)化力學(xué)模型,為新型冷彎薄壁型鋼結(jié)構(gòu)構(gòu)件[10?11]和結(jié)構(gòu)體系的開(kāi)發(fā)提供研究基礎(chǔ)。
自攻螺釘連接試件采用6類S350和S550薄鋼板,鋼板厚度范圍為0.4 mm~2.5 mm;采用2種六角凸緣自鉆自攻螺釘ST4.8×19和ST5.5×19,見(jiàn)表1。為探究板件厚度和螺釘直徑對(duì)自攻螺釘連接受剪性能的影響,依據(jù)歐洲標(biāo)準(zhǔn)ECCS TC7 TWG 7.10[12]設(shè)計(jì)單釘連接試件13組,均為單剪連接。各組試件按圖1所示代號(hào)標(biāo)識(shí),每組均包含3個(gè)相同試件。為保證螺釘與板件之間的連接可靠,應(yīng)使螺釘從較薄板件一側(cè)鉆入,故規(guī)定所有試件釘帽側(cè)板件厚度tc不得大于釘尖側(cè)板件厚度tt。同時(shí),由于本試驗(yàn)主要關(guān)注螺釘連接區(qū)域的失效情況,應(yīng)避免螺釘連接發(fā)生端部撕裂,故所有試件螺釘端距均設(shè)為30 mm。
表1 試件幾何尺寸Table 1 Geometric dimensions of specimens
圖1 試件示意圖/mmFig.1 Diagram of specimens
依據(jù)中國(guó)標(biāo)準(zhǔn)GB/T 228.1?2010[13]的要求,為每種規(guī)格的薄鋼板加工3個(gè)相同材性試樣。采用50 kN電子萬(wàn)能試驗(yàn)機(jī)開(kāi)展單調(diào)拉伸試驗(yàn),得到的工程應(yīng)力-應(yīng)變關(guān)系曲線繪于圖2中,匯總得出的材料力學(xué)性能指標(biāo)見(jiàn)表2,各指標(biāo)取同組材性試樣試驗(yàn)結(jié)果平均值。由材性試驗(yàn)結(jié)果可以看出:S350鋼材存在明顯的屈服平臺(tái)和應(yīng)變硬化階段,而S550鋼材沒(méi)有明顯的應(yīng)變硬化階段。
表 2 薄鋼板材料力學(xué)性能Table 2 Material properties of thin steel sheets
圖2 薄鋼板應(yīng)力-應(yīng)變關(guān)系曲線Fig.2 Stress-strain relationship curves of thin steel sheets
采用300 kN萬(wàn)能試驗(yàn)機(jī)開(kāi)展自攻螺釘連接受剪試驗(yàn),試驗(yàn)裝置如圖3所示。由試驗(yàn)可獲得螺釘連接的荷載-變形曲線和失效模式,其中,試驗(yàn)荷載由試驗(yàn)機(jī)力傳感器測(cè)得,試驗(yàn)變形取平行對(duì)稱布置于試件兩側(cè)的位移計(jì)的平均測(cè)值。位移計(jì)通過(guò)連接桿和上、下夾具固定在試件上,夾具間距l(xiāng)g設(shè)為150 mm。由于螺釘連接的試驗(yàn)荷載最大不超過(guò)10 kN,該荷載作用下板件的拉伸變形可忽略不計(jì),故位移計(jì)測(cè)得變形可視為螺釘連接區(qū)域的變形。為避免出現(xiàn)荷載偏心,在試驗(yàn)機(jī)夾頭與試件之間增設(shè)填充板,在釘尖側(cè)板件一端的填充板與釘帽側(cè)板件的厚度相同且相對(duì)位置一致,反之亦然。試驗(yàn)采用位移控制加載,加載速率為1.0 mm/min。當(dāng)試驗(yàn)荷載下降至峰值荷載的75%或試驗(yàn)變形超過(guò)15 mm時(shí),判定試件失效。試驗(yàn)開(kāi)始前,使用螺旋測(cè)微器分別測(cè)量試件的釘帽側(cè)、釘尖側(cè)板件厚度各3次,并取其平均值;正式加載前,對(duì)試驗(yàn)機(jī)進(jìn)行平衡清零。
圖3 試驗(yàn)裝置Fig.3 Test setup
自攻螺釘連接失效模式可歸為5類[12],每類失效模式分別對(duì)應(yīng)不同的失效特征,見(jiàn)表3,以此為依據(jù)分類判斷試件的失效模式。統(tǒng)計(jì)試件的釘帽側(cè)、釘尖側(cè)板件厚度實(shí)測(cè)值tc、tt及對(duì)應(yīng)的失效模式SExp,匯總于表4中??梢园l(fā)現(xiàn):本試驗(yàn)的13組自攻螺釘連接試件呈現(xiàn)出板件孔壁承壓失效、螺釘剪切失效和螺釘拔出失效三種破壞模式,且螺釘拔出失效一定伴隨著板件孔壁承壓失效。由于螺釘連接的試驗(yàn)荷載較小,試件未發(fā)生板件凈截面受拉失效。同時(shí),由于試件預(yù)留了足夠的螺釘端距,試件未發(fā)生板件端部剪切失效。
表3 失效模式分類Table 3 Classification of failure modes
表4 試驗(yàn)與模擬結(jié)果Table 4 Experimental and simulated results
典型的失效破壞照片如圖4所示,分別分析這三種模式的失效破壞機(jī)理。對(duì)于板件孔壁承壓失效,板件的螺釘孔由于單側(cè)孔壁受壓變形而沿傳力方向伸長(zhǎng),隨著試驗(yàn)荷載逐漸增大,孔壁受壓側(cè)板件材料不斷壓縮堆積形成褶皺,螺釘孔持續(xù)伸長(zhǎng)直至發(fā)生最終破壞,在此過(guò)程中,板件還會(huì)發(fā)生面外翹曲且翹曲程度逐漸增大,直至臨近破壞,其翹曲程度會(huì)有所減小。對(duì)于螺釘拔出失效,初始時(shí)螺釘受剪力作用開(kāi)始傾斜,隨著試驗(yàn)荷載不斷增大,螺釘傾斜程度逐漸提高,且板件之間開(kāi)始形成間隙并不斷擴(kuò)大,直至發(fā)生破壞。對(duì)于螺釘剪切失效,試件在加載過(guò)程中無(wú)明顯變化,但由于螺釘被剪斷而發(fā)生突然破壞。
圖4 失效破壞照片F(xiàn)ig.4 Failure photos
對(duì)比表4各試件組的失效模式可以看出:當(dāng)螺釘直徑與釘帽側(cè)板件厚度之比d/tc接近2.3時(shí),板件與螺釘之間存在有效嵌固,而螺釘?shù)臋M截面面積不足,自攻螺釘連接試件發(fā)生螺釘剪切失效;當(dāng)d/tc接近或大于7.8時(shí),釘帽側(cè)板件厚度較小易撕裂,試件發(fā)生板件孔壁承壓失效;當(dāng)d/tc介于4.8~6.0時(shí),板件與螺釘之間難以形成有效嵌固,板件螺釘孔易伸長(zhǎng)且螺釘易被拔出,試件發(fā)生板件孔壁承壓失效與螺釘拔出失效。
對(duì)同組試件相同變形對(duì)應(yīng)荷載取平均值,可以繪制荷載-變形平均曲線,如圖5所示。各試件組峰值荷載Fu,Exp及其對(duì)應(yīng)變形Δu,Exp匯總于表4中。由圖5(a)、圖5(b)和圖5(c)對(duì)比板件厚度的影響可知:當(dāng)自攻螺釘連接試件發(fā)生板件孔壁承壓失效與螺釘拔出失效時(shí),其初始剛度、受剪承載力和延性隨板件厚度的增大而提高;當(dāng)連接的失效模式隨著釘帽側(cè)板件厚度的增大由板件孔壁承壓失效與螺釘拔出失效轉(zhuǎn)變?yōu)槁葆敿羟惺r(shí),其初始剛度隨之提高,但受剪承載力和延性隨之降低。由圖5(d)對(duì)比螺釘直徑的影響可知:當(dāng)試件發(fā)生板件孔壁承壓失效與螺釘拔出失效時(shí),其初始剛度、受剪承載力隨螺釘直徑的增大而提高,但延性基本不變;當(dāng)試件發(fā)生螺釘剪切失效(如FF1X、FF1Y試件組)時(shí),其受剪承載力和延性隨螺釘直徑的增大而提高,但初始剛度基本不變。
圖5 受剪試驗(yàn)的荷載-變形曲線Fig.5 Load-deformation curves from shear tests
自攻螺釘連接的受剪變形實(shí)質(zhì)上是板件與自攻螺釘發(fā)生材料漸進(jìn)失效直至破壞的過(guò)程,存在材料損傷和接觸變化等問(wèn)題。采用ABAQUS/Explicit建立自攻螺釘連接精細(xì)有限元模型并開(kāi)展非線性準(zhǔn)靜態(tài)分析。有限元模型由釘帽側(cè)板件、釘尖側(cè)板件、釘帽螺桿和螺紋共四個(gè)部件組成,如圖6所示。釘帽側(cè)和釘尖側(cè)板件的長(zhǎng)度取受剪試驗(yàn)的板件重疊區(qū)域長(zhǎng)度。在建模時(shí),自攻螺釘?shù)膸缀纬叽鐓⒄罩袊?guó)標(biāo)準(zhǔn)GB/T 15856.5?2002[14],同時(shí)簡(jiǎn)化其次要特征,保留其關(guān)鍵特征,具體操作為:將螺桿簡(jiǎn)化為圓柱體,考慮釘帽承壓面內(nèi)凹;考慮4圈螺旋向螺紋,且螺距與實(shí)際一致。
圖6 模型部件Fig.6 Parts of model
0.4 mm、0.5 mm和0.6 mm三種厚度的S350鋼板在受剪試驗(yàn)中表現(xiàn)出明顯的材料損傷破壞特征,建模時(shí)考慮板件的彈性性能、塑性性能和損傷性能;2.5 mm厚S350鋼板、0.8 mm和1.0 mm厚S550鋼板的材料損傷破壞特征不明顯,僅考慮彈性性能和塑性性能。板件彈性性能采用表2中的彈性模量E和泊松比ν來(lái)描述。板件塑性性能分別由修正前、后的Ludwik本構(gòu)模型擬合板件的真實(shí)應(yīng)力-真實(shí)塑性應(yīng)變?cè)囼?yàn)曲線來(lái)描述:修正前的Ludwik本構(gòu)模型適用于無(wú)明顯屈服平臺(tái)的材料,見(jiàn)式(1);修正后的Ludwik本構(gòu)模型適用于有明顯屈服平臺(tái)的材料,見(jiàn)式(2)。
圖7 板件塑性本構(gòu)關(guān)系曲線Fig.7 Plastic constitutive relationship curves of steel sheets
圖8 板件損傷本構(gòu)關(guān)系曲線Fig.8 Damage consitutive relationship curves of steel sheets
參照自攻螺釘生產(chǎn)廠商提供的螺釘受拉、受剪試驗(yàn)數(shù)據(jù),螺釘?shù)膹椥阅A咳?06 GPa,泊松比取0.3,屈服強(qiáng)度取950 MPa,抗拉強(qiáng)度取1050 MPa,斷后伸長(zhǎng)率取1%。
有限元模型采用八節(jié)點(diǎn)線性縮減積分實(shí)體單元C3D8R??紤]到模型對(duì)網(wǎng)格尺寸的敏感度較高,網(wǎng)格尺寸通過(guò)試算對(duì)比來(lái)確定。在板件厚度方向,為避免積分點(diǎn)縮減可能導(dǎo)致的“沙漏”效應(yīng),單元數(shù)量不少于2個(gè);在垂直板件厚度方向的平面內(nèi),單元尺寸取0.5 mm。以CE1X試件為例,按上述要求進(jìn)行網(wǎng)格劃分共得到15318個(gè)單元,如圖9所示。
圖9 單元網(wǎng)格劃分Fig.9 Meshed elements
在螺桿和螺紋之間設(shè)置捆綁約束,其余部件之間定義通用接觸。通用接觸的定義包括接觸表面對(duì)和接觸屬性。按圖10定義接觸表面對(duì),其中單元表面對(duì)是指定義了損傷屬性的單元自身與自身之間、自身與其他單元之間的表面對(duì)。按法向硬接觸和切向庫(kù)倫摩擦接觸來(lái)定義接觸屬性,幾何表面對(duì)的摩擦系數(shù)取0.25,單元表面對(duì)的摩擦系數(shù)取4.00。在釘尖側(cè)板件設(shè)置固定約束,在釘帽側(cè)板件設(shè)置速度和位移約束。速度約束采用點(diǎn)耦合的方式施加在沿板件長(zhǎng)度方向的平動(dòng)自由度上,并通過(guò)光滑型幅值曲線控制加載速率,其余方向的位移自由度均被約束限制。加載速率取200 mm/s,時(shí)間步長(zhǎng)取0.04 s。
圖10 接觸表面對(duì)Fig.10 Contact pairs
將有限元模擬所得的失效模式SFE、峰值荷載Fu,FE及其對(duì)應(yīng)變形Δu,FE、模擬與試驗(yàn)的荷載-變形上升段曲線對(duì)比得到的Pearson相關(guān)系數(shù)rFE-Exp匯總于表4中。圖11和圖12分別給出了部分試件組模擬與試驗(yàn)的荷載-變形曲線對(duì)比和失效模式對(duì)比。從表4可以看出:有限元計(jì)算得出的峰值荷載值與試驗(yàn)結(jié)果接近,其平均比值為0.96,標(biāo)準(zhǔn)差為0.11,但其對(duì)應(yīng)變形的模擬值與試驗(yàn)值存在一定偏差,平均值為0.80;模擬與試驗(yàn)荷載-變形上升段曲線的相關(guān)度較高,相關(guān)系數(shù)的平均值為0.94;模擬與試驗(yàn)失效模式基本一致。因此,所建立的自攻螺釘連接精細(xì)有限元模型能夠比較準(zhǔn)確地模擬受剪試驗(yàn)過(guò)程,有限元模型的可靠性得到驗(yàn)證。
圖12 模擬與試驗(yàn)的失效模式對(duì)比Fig.12 Comperison between simulated and experimental failure modes
基于驗(yàn)證可靠的有限元模型,借助Python編程語(yǔ)言實(shí)現(xiàn)模型的參數(shù)化,調(diào)整關(guān)鍵控制參數(shù)的取值并進(jìn)行計(jì)算分析,從而生成大量的荷載-變形曲線數(shù)據(jù),用來(lái)建立自攻螺釘連接受剪力學(xué)模型??刂茀?shù)包括板件厚度(0.4 mm、0.5 mm、0.6 mm、0.8 mm、1.0 mm、1.2 mm、1.5 mm、2.0 mm、2.5 mm和3.0 mm共計(jì)10種)和螺釘直徑(4.2 mm、4.8 mm、5.5 mm和6.3 mm共計(jì)4種)。規(guī)定釘帽側(cè)板件厚度不得大于釘尖側(cè)板件厚度,板件材料屬性按第2.1節(jié)取值。有限元模擬得到的荷載-變形曲線共計(jì)220組,統(tǒng)計(jì)各組曲線的幾何與材料參數(shù)(螺釘直徑、釘帽側(cè)和釘尖側(cè)板件的厚度以及抗拉強(qiáng)度)和受剪性能參數(shù)(峰值荷載及其對(duì)應(yīng)變形、失效模式)。匯總試驗(yàn)和模擬得到的失效模式,進(jìn)而分析其受螺釘直徑與釘帽側(cè)、釘尖側(cè)板件厚度之比的影響,如圖13所示。
圖13 失效模式分析Fig.13 Analysis of failure modes
由圖13可以發(fā)現(xiàn):當(dāng)螺釘直徑與釘帽側(cè)板件厚度之比d/tc<4.0時(shí),連接發(fā)生螺釘剪切失效;當(dāng)d/tc>8.0時(shí),連接發(fā)生板件孔壁承壓失效與螺釘拔出失效;當(dāng)d/tc介于4.0~8.0時(shí),三類失效模式均可能發(fā)生。由于自攻螺釘連接發(fā)生螺釘剪切失效時(shí)的荷載-變形曲線數(shù)據(jù)離散性較高,以下主要對(duì)板件厚度介于0.4 mm~3.0 mm、螺釘直徑與釘帽側(cè)板件厚度之比d/tc不小于4.0的自攻螺釘連接的荷載-變形關(guān)系建立受剪力學(xué)模型。
自攻螺釘連接的受剪力學(xué)模型可類比本構(gòu)模型分為彈性性能、塑性性能和損傷性能。其中,彈性性能采用初始剛度k0來(lái)描述;塑性性能采用荷載-變形上升段曲線來(lái)描述;損傷性能采用損傷起始判據(jù)和損傷演化法則共同描述,將損傷起始點(diǎn)對(duì)應(yīng)變形作為損傷起始判據(jù),由荷載-變形下降段曲線計(jì)算得到損傷演化法則。參考Hassanieh等[17]提出的鋼木螺釘連接漸近線模型,建立三段式受剪力學(xué)模型,見(jiàn)式(5)。
式中:Fu、Δu分別為峰值荷載及其對(duì)應(yīng)變形,兩者滿足式(6);k0為初始剛度;Fp為趨近荷載??梢园l(fā)現(xiàn):該受剪力學(xué)模型包括曲線上升段、峰值平行段和由上升段經(jīng)對(duì)稱縮放變換得到的曲線下降段,為得出該模型的完整數(shù)學(xué)表達(dá),需分別建立初始剛度k0、趨近荷載Fp和峰值荷載Fu的計(jì)算公式。
分析自攻螺釘連接的受剪機(jī)理可知:連接的變形主要由兩部分組成,分別是由于螺釘?shù)钠絼?dòng)和轉(zhuǎn)動(dòng)引起的板件壓縮變形以及由于板件的平動(dòng)引起的螺釘剪切變形。以下將具體分析這兩部分變形,從而建立初始剛度k0的計(jì)算公式。
圖14為板件壓縮變形時(shí)的受力簡(jiǎn)圖,螺釘被視為剛體,板件作為線彈性體,忽略釘帽的撬力作用和螺紋的嵌固作用,且假定板件在孔壁承壓處近似滿足材料力學(xué)中的平截面假定和單向受力假定。
圖14 板件壓縮變形Fig.14 Compressive deformation of steel sheets
圖14中的符號(hào)含義如下:Δc、Δc,T分別為釘帽側(cè)板件的總變形、平動(dòng)變形;Δt、Δt,T分別為釘尖側(cè)板件的總變形、平動(dòng)變形;θR為螺釘?shù)霓D(zhuǎn)動(dòng)角度;F為剪力;σc、σt分別為釘帽側(cè)、釘尖側(cè)板件孔壁承壓處最大壓應(yīng)力。取圖中釘帽側(cè)和釘尖側(cè)板件為脫離體,分別依據(jù)力平衡方程和本構(gòu)方程建立式(7)、式(8),假定板件變形主要集中在螺釘孔附近的3倍螺釘直徑范圍內(nèi)。
聯(lián)立式(7)、式(8),求解得到釘帽側(cè)、釘尖側(cè)板件的總變形Δc、Δt,見(jiàn)式(9),Δc、Δt還可按式(10)表達(dá)。由此可求得板件壓縮剛度kSh,見(jiàn)式(11)。
圖15所示為連接在發(fā)生螺釘剪切變形時(shí)的受力簡(jiǎn)圖。類似于圖14,該受力簡(jiǎn)圖視板件為剛體,螺釘為線彈性體,同樣忽略螺釘釘帽的撬力作用和螺紋的嵌固作用。
圖15 螺釘剪切變形Fig.15 Shear deformation of screw
圖15中的符號(hào)含義如下:Δs為螺釘剪切變形;F為剪力;τs為螺釘剪切面處的最大剪應(yīng)力。依據(jù)力平衡方程和本構(gòu)方程建立式(12),求解得到螺釘剪切變形Δs,見(jiàn)式(13),由此可求得螺釘剪切剛度kSc,見(jiàn)式(14),式中螺釘剪切模量Gs=Es/2(1+νs)。
假定Ec=Et=Es=E、νc=νt=νs=ν,則式(11)、式(14)可簡(jiǎn)化為式(15)、式(16),式中剪切模量G=E/2(1+ν)。由此可建立初始剛度k0的計(jì)算公式,見(jiàn)式(17)。
對(duì)于趨近荷載Fp和峰值荷載Fu,可認(rèn)為與中國(guó)規(guī)范GB 50018?2002[18]第6.1.7.2條文自攻螺釘連接受剪承載力計(jì)算公式存在線性相關(guān)。故按式(18)~式(20)建立趨近荷載Fp和峰值荷載Fu的計(jì)算公式。
式中,fu,c為釘帽側(cè)板件抗拉強(qiáng)度。需要注意的是,式(20)有別于規(guī)范公式,其采用抗拉強(qiáng)度實(shí)測(cè)值代替設(shè)計(jì)值,且不考慮抗力分項(xiàng)系數(shù)。
借助數(shù)據(jù)分析繪圖軟件Origin及其腳本語(yǔ)言Labtalk編寫(xiě)腳本對(duì)各計(jì)算公式的系數(shù)進(jìn)行標(biāo)定,各系數(shù)取值匯總于表5中。由表5可知:所建立的三段式受剪力學(xué)模型能夠較好地預(yù)測(cè)自攻螺釘連接的荷載-變形受剪關(guān)系。
表5 三段式模型系數(shù)取值Table 5 Coefficient values of three-stage model
考慮到單個(gè)自攻螺釘連接的受剪承載性能與多釘連接存在顯著差異[1],且實(shí)際工程中往往采用多釘連接(螺釘數(shù)目大于2),故建立的三段式受剪力學(xué)模型還應(yīng)考慮群釘效應(yīng)的影響。群釘效應(yīng)修正系數(shù)ψ參考JGJ 227?2011[19]第6.2.1.3條文的多釘連接折減系數(shù)來(lái)計(jì)算,見(jiàn)式(21)??紤]群釘效應(yīng)修正后的三段式模型由式(5)變換為式(22)。相應(yīng)地,第3.3節(jié)推導(dǎo)得到的初始剛度k0、趨近荷載Fp和峰值荷載Fu也需要考慮群釘效應(yīng)修正系數(shù)ψ的影響。
式中,n為螺釘數(shù)目。
為驗(yàn)證三段式受剪力學(xué)模型的適用性,結(jié)合前期完成的正弦波紋腹板-管翼緣冷彎薄壁鋼箱梁受剪試驗(yàn)[20],開(kāi)展有限元模擬和試驗(yàn)結(jié)果對(duì)比。箱梁試件采用焊接冷彎矩形鋼管作為框架、冷彎波紋鋼板作為腹板,框架與腹板之間通過(guò)自攻螺釘連接。采用有限元軟件ABAQUS/Explicit開(kāi)展非線性準(zhǔn)靜態(tài)分析。矩形管和波紋板的材料屬性分別按第2.1節(jié)中的2.5 mm和0.4 mm厚S350鋼板取值。自攻螺釘連接采用連接單元模擬,單元屬性依據(jù)三段式受剪力學(xué)模型計(jì)算得到的荷載-變形關(guān)系來(lái)定義。箱梁試件自攻螺釘連接的數(shù)量較多,但考慮到系數(shù)ψ的計(jì)算值隨螺釘數(shù)目n的增大逐漸趨于穩(wěn)定,此處近似取n=10,因此群釘效應(yīng)修正系數(shù)ψ取0.7,螺釘連接的荷載-變形關(guān)系如圖16所示。有限元模型其余參數(shù),包括幾何尺寸、邊界條件、單元類型和網(wǎng)格劃分等參照文獻(xiàn)[20]設(shè)定。
圖16 連接荷載-變形關(guān)系曲線Fig.16 Load-deformation relationship curve of connection
對(duì)于梁高h(yuǎn)不同的4類正弦波紋腹板-管翼緣冷彎薄壁鋼箱梁,試驗(yàn)和模擬得到的峰值荷載Pu,Exp、Pu,FE及其對(duì)應(yīng)撓度Du,Exp、Du,FE列于表6中,試驗(yàn)與模擬的荷載-撓度曲線對(duì)比如圖17所示。由結(jié)果對(duì)比可知:有限元模擬結(jié)果與試驗(yàn)結(jié)果吻合良好,因此驗(yàn)證了所建議的三段式受剪力學(xué)模型的適用性。
表6 模擬與試驗(yàn)結(jié)果比較Table 6 Comparison between simulated and experimental results
圖17 模擬與試驗(yàn)的荷載-撓度曲線對(duì)比Fig.17 Comparison between simulated and experimental load-deflection curves
通過(guò)試驗(yàn)研究、有限元模擬和理論分析,探究了薄鋼板自攻螺釘連接的受剪性能,建立了用來(lái)描述自攻螺釘連接荷載-變形關(guān)系的三段式受剪力學(xué)模型,得到以下結(jié)論:
(1)自攻螺釘連接常見(jiàn)的失效模式有板件孔壁承壓失效、螺釘拔出失效和螺釘剪切失效。當(dāng)自攻螺釘連接發(fā)生板件孔壁承壓失效與螺釘拔出失效時(shí),連接的初始剛度、受剪承載力和延性隨板件厚度的增大而提高,初始剛度和受剪承載力隨螺釘直徑的增大而提高;當(dāng)連接發(fā)生螺釘剪切失效時(shí),受剪承載力和延性隨螺釘直徑的增大而提高。
(2)建立了自攻螺釘連接精細(xì)有限元模型。該模型采用Johnson-Cook損傷本構(gòu)和線性損傷積累法則來(lái)定義材料屬性,考慮了螺釘?shù)男蚊蔡卣?,能夠比較準(zhǔn)確地模擬自攻螺釘連接受剪試驗(yàn)過(guò)程。
(3)基于自攻螺釘連接受剪試驗(yàn)和有限元模擬得到的荷載-變形曲線,提出了三段式受剪力學(xué)模型。該力學(xué)模型采用中國(guó)規(guī)范GB 50018?2002[18]的自攻螺釘連接受剪承載力計(jì)算公式,分析了板件壓縮剛度和螺釘剪切剛度的影響,并考慮了螺釘?shù)娜横斝?yīng)修正。通過(guò)與試驗(yàn)數(shù)據(jù)對(duì)比驗(yàn)證了該力學(xué)模型能較好地預(yù)測(cè)自攻螺釘連接受剪的荷載-變形關(guān)系。