国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

轉(zhuǎn)化思想在數(shù)學(xué)解題教學(xué)中的運用

2021-09-22 09:28:17邵寬云
小學(xué)科學(xué)·教師版 2021年2期
關(guān)鍵詞:加數(shù)長方形平行四邊形

邵寬云

從辯證法中我們可以得知,事物之間具有普遍聯(lián)系的特點,且在一定條件下矛盾雙方是能相互轉(zhuǎn)化的。同樣,在小學(xué)數(shù)學(xué)教學(xué)中,當(dāng)學(xué)生不能直接用自己掌握的知識解答題目時,就需要將問題的形式進(jìn)行轉(zhuǎn)化,從而使其變成較容易就能解答的問題形式,這種解題思想叫作轉(zhuǎn)化思想。因此,在小學(xué)數(shù)學(xué)教學(xué)中,教師應(yīng)充分重視轉(zhuǎn)化思想的滲透,為學(xué)生解題能力的提升奠定基礎(chǔ)。

一、了解學(xué)生知識儲備情況,在教學(xué)中滲透轉(zhuǎn)化思想

教師可創(chuàng)設(shè)問題情境,喚醒學(xué)生運用轉(zhuǎn)化思想解決問題的已有經(jīng)驗,引導(dǎo)學(xué)生利用簡單的轉(zhuǎn)化策略,將原問題轉(zhuǎn)化成一個新問題,通過對新問題求解,使原問題得以解決。以平行四邊形的面積計算為例,首先,師生共同讀懂教材,復(fù)習(xí)長方形的面積計算公式,并且計算出長方形的面積。義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2011年版)第58頁認(rèn)為,課程教師指導(dǎo)下或自主學(xué)習(xí)中所獲得的經(jīng)驗和體驗,就是“四基”當(dāng)中的基本數(shù)學(xué)活動經(jīng)驗。所以,本節(jié)課讓學(xué)生利用數(shù)方格的方法得出平行四邊形的面積,然后讓學(xué)生大膽地猜測平行四邊形的面積,接下來讓學(xué)生動手驗證所猜測的平行四邊形的面積公式是否正確,通過動手操作不斷發(fā)現(xiàn)、解決問題,在與同伴的交流中深入理解思考的合理性。師:發(fā)現(xiàn)割補(bǔ)時該怎樣剪?生:從平行四邊形的一條高剪下去,再平移,補(bǔ)成了一個長方形。師:不沿著高剪下去,隨便剪一刀行嗎?生:不行,因為不沿著平行四邊形的高剪下去,沒辦法拼成長方形,就算不出平行四邊形的面積了。師:把平行四邊形轉(zhuǎn)化成長方形,平行四邊形的面積轉(zhuǎn)化之后的大小呢?生:面積大小不變。教師引導(dǎo)學(xué)生仔細(xì)觀察、對比平行四邊形的底、高、面積與長方形的長、寬、面積之間的對應(yīng)關(guān)系,從而推導(dǎo)出平行四邊形的面積計算公式,用英文字母表示為S=ah。學(xué)生通過動手操作,運用未知與已知的互化關(guān)系,把未知的平行四邊形化為已學(xué)過的長方形的圖形,經(jīng)過4人小組討論,然后再集體討論,共同強(qiáng)調(diào)一定要從平行四邊形的高剪下去。利用割補(bǔ)法很形象直觀地把抽象的平行四邊形轉(zhuǎn)化成直觀的長方形,讓學(xué)生從中找出平行四邊形的面積和長方形的面積之間的本質(zhì)聯(lián)系,學(xué)生既思路清晰,又提高了數(shù)學(xué)語言的表達(dá)能力,讓轉(zhuǎn)化的數(shù)學(xué)思想這個隱形翅膀更加穩(wěn)固了。

二、設(shè)計對比形式的習(xí)題,找到相同的解題方法

設(shè)計對比形式的數(shù)學(xué)習(xí)題,把比較復(fù)雜的習(xí)題采用對比、轉(zhuǎn)化的形式出現(xiàn),讓學(xué)生在對比練習(xí)中找到相同的最一般的解題方法。大多數(shù)學(xué)生在解決稍復(fù)雜的方程的時候,都感到束手無策,原因在于對方程解題方法的積累還不夠扎實。學(xué)生到了六年級,在遇到解決稍復(fù)雜的方程的時候,還是出現(xiàn)了解方程困難的現(xiàn)象。比如我設(shè)計了這樣一組對比形式的解方程習(xí)題:2+x=6;2+2x=6;2+(x-5)=6;2+(x+1)=6;2+x÷0.5=6。把這5題的方程式子排列對齊,讓學(xué)生認(rèn)真仔細(xì)觀察:這組方程數(shù)據(jù)在計算上有什么相同的特點和不同的特點呢?相同的地方是,第一個加數(shù)都是2,和都是6,因此第二部分都可以看成一個整體,都是處在第二個加數(shù)的位置,給它加上框,統(tǒng)統(tǒng)轉(zhuǎn)化成一個大的x,于是從第二個到第五個方程都可以轉(zhuǎn)化成第一個方程了。計算方法是相同的:第一步都是先把第一個加數(shù)2減掉,方程兩邊同時減去2得4,也就是第二個加數(shù)位置的這個整體的得數(shù)都是4;第二步再根據(jù)這個整體的實際運算符號的逆運算,再一次在方程兩邊同時削掉第二個加數(shù)這個整體的實際數(shù)字,如+3-3互相逆運算轉(zhuǎn)化相抵消,×3÷3相抵消,目的是使方程的左邊只剩下一個未知數(shù)x,從而得到方程的解。

三、在課后訓(xùn)練中滲透轉(zhuǎn)化思想

在小學(xué)數(shù)學(xué)課堂教學(xué)中轉(zhuǎn)化思想,是一種滲透、隱含的活動,是學(xué)生學(xué)習(xí)轉(zhuǎn)化思想的過程,屬于一種理論學(xué)習(xí)。而要想讓學(xué)生養(yǎng)成用轉(zhuǎn)化思想解答數(shù)學(xué)問題的習(xí)慣,僅僅依靠課堂上的理論學(xué)習(xí)是遠(yuǎn)遠(yuǎn)不夠的,需要學(xué)生在課后通過做大量的習(xí)題訓(xùn)練以有效鞏固理論知識,并切實提高自身用數(shù)學(xué)轉(zhuǎn)化思想解決實際問題的能力。這就需要數(shù)學(xué)教師全面了解學(xué)生的數(shù)學(xué)基礎(chǔ)、學(xué)習(xí)習(xí)慣、個性特點等情況,然后結(jié)合本節(jié)課教學(xué)內(nèi)容,恰當(dāng)設(shè)計訓(xùn)練題目,使得學(xué)生在解題訓(xùn)練中可歸納與總結(jié)出轉(zhuǎn)化思想的應(yīng)用經(jīng)驗與技巧,最終將數(shù)學(xué)轉(zhuǎn)化思想內(nèi)化為自身的一種能力。需要注意的是,教師在設(shè)計課后訓(xùn)練習(xí)題時,應(yīng)遵循學(xué)生的認(rèn)知規(guī)律,使得每一類型的學(xué)生都能找到適合自己的訓(xùn)練習(xí)題,并且各種題目都有具體的轉(zhuǎn)化步驟與方法,讓學(xué)生可從思想觀點與解法方面去把握,然后構(gòu)建出解題思路,最終將其內(nèi)化成自身的一種解題思想。比如,在學(xué)習(xí)完北師大版小學(xué)數(shù)學(xué)《除數(shù)是小數(shù)的除法》有關(guān)內(nèi)容后,教師就可為學(xué)生設(shè)計這樣的習(xí)題:“某社區(qū)廣場的寬是20米,長是30米;花園的寬是2米,長是3米;地磚的寬是0.2米,寬是0.3米。求鋪滿廣場需要多少塊地磚?鋪滿花園需要多少塊地磚?”在實際的計算訓(xùn)練過程中,學(xué)生會總結(jié)出將小數(shù)轉(zhuǎn)化為整數(shù)時的具體步驟,并掌握如何確保商不變的方法,最終在具體應(yīng)用中更牢固掌握轉(zhuǎn)化思想的應(yīng)用技巧。

總之,在數(shù)學(xué)教學(xué)過程中,教師要將轉(zhuǎn)化思想滲透到方方面面,逐漸培養(yǎng)學(xué)生的轉(zhuǎn)化思想,讓學(xué)生學(xué)會利用轉(zhuǎn)化思想解決復(fù)雜的數(shù)學(xué)問題,提高其思維能力和邏輯能力。

猜你喜歡
加數(shù)長方形平行四邊形
和與差的變化規(guī)律
分解加數(shù)
我愛長方形
平行四邊形在生活中的應(yīng)用
“平行四邊形”創(chuàng)新題
對一道平行四邊形題的反思
判定平行四邊形的三個疑惑
分類數(shù) 不出錯
巧替換 妙解答
不計算也能比大小
大新县| 茶陵县| 隆回县| 永川市| 永胜县| 林周县| 勃利县| 阿拉善左旗| 云龙县| 广河县| 宝山区| 阳曲县| 灵宝市| 黄平县| 双辽市| 信丰县| 潮州市| 比如县| 祥云县| 云南省| 泾源县| 格尔木市| 安泽县| 土默特左旗| 凤阳县| 宜章县| 临澧县| 永泰县| 泽州县| 潞西市| 万宁市| 鞍山市| 台东市| 上蔡县| 景洪市| 准格尔旗| 武威市| 泉州市| 汉川市| 溆浦县| 常德市|