時立波 裴龍飛 陳玲 張寶千 竇寶存 顏廷帥
摘 要:以3葉1心期油菜(Brassica napus L.)為試驗材料,研究了外源乙酰丙酸鉀根施對鹽堿土中生長的油菜的生物量、元素含量(K、Na、K/Na)以及鹽堿土pH、水溶性Na含量和鹽分含量的影響。結果表明,乙酰丙酸鉀對油菜生物量(鮮重值、干重值、含水率)無顯著影響,但能顯著降低油菜葉片中的Na含量,提高K/Na比率,增強油菜抗鹽能力;乙酰丙酸鉀對鹽堿土pH、交換性Na含量和鹽分無顯著影響,對鹽堿土無改良作用。
關鍵詞:油菜;乙酰丙酸鉀;抗鹽堿
中圖分類號 S63 文獻標識碼 A文章編號 1007-7731(2021)15-0103-03
Effects of Exogenous Root Application of Potassium Levulinate on Growth and Indexes of Salinity Soil
SHI Libo1 et al.
(1Sinochem Agriculture Holdings, Shandong Branch, Jinan 250199, China)
Abstract: Brassica napus L. was used as material to study the biomass and element content (K, Na, K/Na) of rape and pH, soluable Na and salinity of saline-alkaline soil by exogenous potassium levulinate. The results showed that potassium levulinate had no significant effect on rape biomass (fresh weight value, dry weight value, water content). Potassium levulinate significantly reduced soluable Na content and increased K/Na ratio in rap leaves, Potassium levulinate could reduce the absorption of salt. Salt capacity; potassium levulinate has no significant effect on pH, soluable Na content and salinity of saline-alkaline soil, potassium levulinate has no effect on the improvement of saline-alkali soil.
Key words: Brassica napus L.; Potassium levulinate; Salt-tolerant
土壤鹽堿化威脅著土地利用率和作物產(chǎn)量,是當前我國農(nóng)業(yè)生產(chǎn)中普遍面臨的難題[1,2]。土壤鹽堿化使作物處于脅迫條件下,對作物產(chǎn)生的影響主要表現(xiàn)在以下2個方面:一方面,土壤鹽堿化造成光合減弱[3-5]、滲透脅迫[6,7]、離子毒害[8-10]等問題;另一方面,土壤堿化造成一些金屬離子如Fe2+、Mg2+、Ca2+等因土壤pH升高而沉積,伴隨著無機陰離子的減少,使礦質營養(yǎng)的吸收受阻[11,12]。
施加外源物質是緩解鹽堿脅迫的一種有效方式。目前,越來越多對鹽堿脅迫下作物生長具有緩解作用的外源物質被發(fā)現(xiàn),較常用的有以下4類:一是滲透調節(jié)物質如甜菜堿、糖類等[13-15];二是與降低膜透性有關的物質如水楊酸、腐殖酸等[16-20];三是提高作物抗氧化能力的物質如硅、γ?氨基丁酸等[21-23];四是作物生長調節(jié)劑如茉莉酸、細胞分裂素等[24,25]。
乙酰丙酸鉀作為一種低分子量有機酸,可以促進作物生長,提高作物產(chǎn)量[26];作為一種有機鉀肥,乙酰丙酸鉀具有提高作物品質和抗逆能力的作用[27]。但乙酰丙酸鉀作為抗鹽堿劑的研究還未見報道。為此,本研究以油菜(Brassica napus L.)為試驗材料,探究了乙酰丙酸鉀根施對作物增強抗鹽堿脅迫以及改良鹽堿土的效果。
1 材料與方法
1.1 供試材料與試驗設計 供試材料為3葉1心期油菜,選取8株長勢一致的健壯幼苗,將根系表面基質用去離子水洗凈后定植于花盆中(花盆直徑34cm,高度23cm,每盆裝濱海鹽堿土5.0kg),定植后每盆澆定根水500mL。待幼苗開始生長后,將幼苗隨機分為2組,分別用500mL去離子水和50mg/L乙酰丙酸鉀溶液澆灌油菜,每7d處理1次,共處理3次,第3次處理10d后收獲。
1.2 測定項目及方法 作物鮮重和干重使用天平測定;作物K和Na含量用H2SO4-H2O2消煮,ICP-AES測定;土壤pH用5∶1水土比浸提,酸度計法測定;土壤交換性Na含量用NH4OAC-NH4OH浸提,火焰光度法測定;土壤鹽分用殘渣烘干法測定[28]。
1.3 數(shù)據(jù)處理 試驗數(shù)據(jù)采用Microsoft Excel 2013進行處理,采用SPSS 22.0進行統(tǒng)計分析和差異顯著性檢驗。
2 結果與分析
2.1 乙酰丙酸鉀根施對油菜鮮重、干重和含水率的影響 由表1可知,乙酰丙酸鉀處理對油菜鮮重、干重和含水率的影響與對照無顯著性差異,說明乙酰丙酸鉀根施對油菜生物量的影響不大。
2.2 乙酰丙酸鉀根施對油菜K、Na和K/Na的影響 由表2可知,乙酰丙酸鉀處理K含量與對照無顯著差異,乙酰丙酸鉀處理Na含量顯著低于對照,乙酰丙酸鉀處理K/Na顯著高于對照,說明乙酰丙酸鉀根施提高了油菜拒Na能力。
2.3 乙酰丙酸鉀根施對鹽堿土pH、交換性Na含量和交換性鹽總量的影響 由表3可知,乙酰丙酸鉀處理與對照處理鹽堿土pH、交換性Na含量、鹽分無顯著性差異,說明乙酰丙酸根施對鹽堿指標無影響。
3 討論
鹽脅迫條件下,作物通常是吸收鈉離子的同時抑制鉀離子的吸收[29-31],高K/Na選擇性是衡量作物耐鹽性的重要指標[32],許多鹽生作物K/Na比隨脅迫強度的增大而增高[33,34]。因此,Na含量和K/Na是判定作物抗鹽堿能力的重要指標。本試驗中,外源乙酰丙酸鉀處理使得油菜Na含量增加,K/Na比率降低,外源乙酰丙酸鉀提高了油菜的拒鹽能力。
鹽堿土改良的主要原理是將可交換性Na+從土壤膠體上替換下來,然后灌溉水移出多余鹽分,簡而言之,洗鹽排鹽是改良鹽堿土的重要途徑[35-36]。本試驗中,外源乙酰丙酸鉀對鹽堿土交換性Na含量和鹽分無顯著影響,乙酰丙酸鉀無將交換性Na+從土壤膠體置換下來的作用。同時,外源乙酰丙酸對鹽堿土含量無顯著性影響,說明乙酰丙酸鉀對鹽堿土無改良作用。
綜上,外源乙酰丙酸鉀作為一種抗鹽堿劑,根施提高了作物抗鹽堿脅迫能力。
參考文獻
[1]Wang J,Yao L,Li B,et al.Comparative Proteomic Analysis of Cultured Suspension Cells of the Halophyte Halogeton glomeratus by iTRAQ Provides Insights into Response Mechanisms to Salt Stress[J].Frontiers in Plant Science,2016,7(30):110.
[2]楊勁松.中國鹽漬土研究的發(fā)展歷程與展望[J].土壤學報,2008,45(5):837-845.
[3]Kalaji H M,Jajoo A,Oukarroum A,et al.Chlorophylla,fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions[J].Acta Physiologiae Plantarum,2016,38(4):102.
[4]Yu J,Chen S,Zhao Q,et al.Physiological and Proteomic Analysis of Salinity Tolerance in Puccinellia tenuiflora[J].Journal of Proteome Research,2011,10(9):3852-3870.
[5]Grieve C M.Leaf and spikelet primordia initiation in salt-stressed wheat[J].Crop Science,1993,33(6):1286-1294.
[6]Tavakkoli E,F(xiàn)atehi F,Coventry S,et al.Additive effects of Na+ and Cl? ions on barley growth under salinity stress.J Exp Bot[J].Journal of Experimental Botany,2011,62.
[7]閆永慶,劉興亮,王崑,等.白刺對不同濃度混合鹽堿脅迫的生理響應[J].植物生態(tài)學報,2010,34(10):1213-1219.
[8]Shaheen H L,Iqbal M,Azeem M,et al.K-priming positively modulates growth and nutrient status of salt-stressed cotton (Gossypium hirsutum) seedlings[J].Archives of Agronomy & Soil Science,2016,62(6):759-768.
[9]Li R,Shi F,F(xiàn)ukuda K.Interactive effects of various salt and alkali stresses on growth,organic solutes,and cation accumulation in a halophyte Spartina alterniflora (Poaceae).[J].Environmental & Experimental Botany,2010,68(1):66-74.
[10]Dai L Y,Zhang L J,Jiang S J,et al.Saline and alkaline stress genotypic tolerance in sweet sorghum is linked to sodium distribution[J].Acta Agriculturae Scandinavica,2014,64(6):471-481.
[11]郭瑞,李峰,周際,等.亞麻響應鹽、堿脅迫的生理特征[J].植物生態(tài)學報,2016,40(1):69-79.
[12]Capula-Rodríguez R,Valdez-Aguilar L A,Cartmill D L,et al.Supplementary Calcium and Potassium Improve the Response of Tomato (Solanum lycopersicum L.) to Simultaneous Alkalinity,Salinity,and Boron Stress[J].Communications in Soil Science & Plant Analysis,2016,47(4):505-511.
[13]李新梅,孫丙耀,談建中,等.根施甜菜堿對鹽脅迫下桑樹幼苗生理生化反應的影響[J].蠶業(yè)科學,2006,32(3):414-417.
[14]張士功,高吉寅,宋景芝.鹽分脅迫條件下甜菜堿對小麥幼苗體內Na+、K+和Cl-的含量及其分布的影響[J].西北植物學報,1999,19(2):278-283.
[15]趙瑩,楊克軍,李佐同,等.外源糖浸種緩解鹽脅迫下玉米種子萌發(fā)[J].應用生態(tài)學報,2015,26(9):2735-2742.
[16]Mohammad Y,Aiman H S,Barket A,et al.Effect of salicylic acid on salinity-induced changes in Brassica juncea.[J].植物學報(英文版),2008,50(9):1096.
[17]Xu Q,Xu X,Zhao Y,et al.Salicylic acid,hydrogen peroxide and calcium-induced saline tolerance associated with endogenous hydrogen peroxide homeostasis in naked oat seedlings[J].Plant Growth Regulation,2008,54(3):249-259.
[18]Kumara G D K,Xia Y P,Zhu Z J,et al.Effects of exogenous salicylic acid on antioxidative enzyme activities and physiological characteristics in gerbera (Gerbera jamesonii L.) grown under NaCl stress[J].Journal of Zhejiang University,2010,36:591-601.
[19]高同國,袁紅莉,榮小煥,等.鹽脅迫下黃腐酸對大豆種子萌發(fā)及抗氧化酶活性的影響[J].腐植酸,2016(3):22-25.
[20]金萍,陶波,滕春紅,等.腐殖酸提高大豆抗鹽堿能力的生理機制初探[J].東北農(nóng)業(yè)大學學報,2006,37(2):229-231.
[21]向麗霞,胡立盼,胡曉輝,等.外源γ-氨基丁酸調控甜瓜葉綠體活性氧代謝應對短期鹽堿脅迫[J].應用生態(tài)學報,2015,26(12):3746-3752.
[22]Liang X,F(xiàn)ang S,Ji W,et al.The Positive Effects of Silicon on Rice Seedlings Under Saline-Alkali Mixed Stress[J].Communications in Soil Science & Plant Analysis,2015,46(17):2127-2138.
[23]Li Y T,Zhang W J,Cui J J,et al.Silicon nutrition alleviates the lipid peroxidation and ion imbalance of Glycyrrhiza uralensis,seedlings under salt stress[J].Acta Physiologiae Plantarum,2016,38(4):96.
[24]Ding H,Lai J,Wu Q,et al.Jasmonate complements the function of Arabidopsis lipoxygenase3 in salinity stress response[J].Plant Science,2016,244:1-7.
[25]Ma X,Zhang J,Huang B.Cytokinin-mitigation of salt-induced leaf senescence in perennial ryegrass involving the activation of antioxidant systems and ionic balance[J].Environmental & Experimental Botany,2016,125:1-11.
[26]徐慧敏,徐福利,李宏智,等.低分子有機酸對辣椒生長發(fā)育及葉片活性氧代謝的影響[J].西北農(nóng)業(yè)學報,2009,18(3):213-217.
[27]徐福利,李軍林,張勁松.有機鉀肥在日光溫室蔬菜上的應用效果研究[J].西北農(nóng)業(yè)學報,2006,15(6):104-106.
[28]南京農(nóng)學院.土壤農(nóng)化分析[M].北京:農(nóng)業(yè)出版社,1980.
[29]王寶山,趙可夫,鄒琦.作物耐鹽機理研究進展及提高作物抗鹽性的對策[J].植物學報,1997(S1):26-31.
[30]Yang C,Chong J,Li C,et al.Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana,during adaptation to salt and alkali conditions[J].Plant & Soil,2007,294(1-2):263-276.
[31]Yang C W,Jianaer A,Li C Y,et al.Comparison of the effects of salt-stress and alkali-stress on photosynthesis and energy storage of an alkali-resistant halophyte Chloris virgata[J].Photosynthetica,2008,46(2):273-278.
[32]Munns R,Tester M.Mechanisms of salinity tolerance.[J].Annual Review of Plant Biology,2008,59(1):651.
[33]Yang C,Shi D,Wang D.Comparative effects of salt and alkali stresses on growth,osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca,(Bge.)[J].Plant Growth Regulation,2008,56(2):179-190.
[34]Yang C W,Wang P,Li C Y,et al.Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat[J].Photosynthetica,2008,46(1):107-114.
[35]徐璐,王志春,趙長巍,等.東北地區(qū)鹽堿土及耕作改良研究進展[J].中國農(nóng)學通報,2011,27(27):23-31.
[36]徐鵬程,冷翔鵬,劉更森,等.鹽堿土改良利用研究進展[J].江蘇農(nóng)業(yè)科學,2014,42(5):293-298.
(責編:張宏民)