王文波 錢龍
摘? ?要:針對(duì)母體腹部混合心電信號(hào)中胎兒心電信號(hào)微弱、包含諸多噪聲,難以清晰提取的問題,本文提出了一種基于奇異值分解(SVD)、平滑窗(SW)技術(shù)和最小二乘支持向量機(jī)(LSSVM)的胎兒心電提取新方法. 首先,利用SVD從單通道母體腹部心電信號(hào)中重構(gòu)分解矩陣,估計(jì)出母體心電參考信號(hào),并利用SW方法對(duì)估計(jì)出的母體心電參考信號(hào)進(jìn)行平滑處理;然后,利用LSSVM建立非線性估計(jì)模型,通過該模型和平滑后的母體心電參考信號(hào)估計(jì)出腹部信號(hào)中的母體心電成分,并采用布谷鳥搜索算法(CS)優(yōu)化LSSVM的超參數(shù);最后,將腹部混合信號(hào)與CS-LSSVM模型估計(jì)出的母體心電成分相減,即可獲得初步胎兒心電信號(hào),為了進(jìn)一步消除干擾,對(duì)初步獲取的胎兒心電信號(hào)再進(jìn)行SW-SVD操作,從而獲得較為清晰的胎兒心電信號(hào). 采用Daisy數(shù)據(jù)集進(jìn)行實(shí)驗(yàn),結(jié)果表明,本文所提出的方法在可視化對(duì)比分析和四個(gè)統(tǒng)計(jì)評(píng)價(jià)指標(biāo)上均優(yōu)于其他三種經(jīng)典方法,可從腹部混合信號(hào)中提取出更清晰的胎兒心電信號(hào).
關(guān)鍵詞:胎兒心電信號(hào);奇異值分解;平滑窗;最小二乘支持向量機(jī);布谷鳥搜索算法
中圖分類號(hào):R331? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼:A
A New Technology for Extracting Fetal ECG Signals
from Single-channel Maternal Abdominal ECG Signals
WANG Wenbo QIAN long
(College of Science,Wuhan University of Science and Technology,Wuhan 430065,China)
Abstract:Aiming at the problems that the fetal electrocareliogram(ECG) signal in the mixed ECG signal of the mother's abdomen is weak,contains a lot of noise,and is difficult to be extracted clearly,this paper proposes a method based on singular value decomposition (SVD),smooth window (SW) technology and least square support vector machine (LSSVM) new method of fetal ECG extraction. Firstly,SVD is used to reconstruct the decomposition matrix from the single-channel maternal abdominal ECG signal in order to estimate the maternal ECG reference signal,and the SW method is used to smooth the estimated maternal ECG reference signal;then,LSSVM is used to establish a non-linear estimation model,the maternal ECG component in the abdominal signal is estimated through the model and the smoothed maternal ECG reference signal,and the cuckoo search algorithm(CS) is used to optimize the hyperparameters of LSSVM. Finally,the mixed abdominal signal is subtracted from the maternal ECG component estimated by the CS-LSSVM model so as to obtain the preliminary fetal ECG signal. To further eliminate the interference,the SW-SVD operation is performed on the initially obtained fetal ECG signal,thereby obtaining a clearer fetal ECG signal. Experiments with Daisy data set show that the method proposed in this paper is superior to the other three classic methods in visual comparative analysis and four statistical evaluation indicators,and can extract clearer fetal ECG signals from the mixed abdominal signals.
Key words:fetal ECG signal;singular value decomposition;smooth window;least squares support vector machine;cuckoo search algorithm
據(jù)統(tǒng)計(jì),全世界每年發(fā)生260多萬例死產(chǎn),其中45%以上病例發(fā)生于孕婦分娩期間,因此產(chǎn)前胎兒健康檢測(cè)具有重要的生理學(xué)意義[1]. 通過在孕婦分娩前對(duì)胎兒心電信號(hào)進(jìn)行檢測(cè),并分析其波形,可以高效評(píng)估胎兒在子宮內(nèi)的生長(zhǎng)發(fā)育情況,從而降低圍產(chǎn)兒的死亡率和發(fā)病率[2-3]. 目前,多采用無創(chuàng)的非入侵式檢測(cè)方法對(duì)胎兒健康進(jìn)行檢查[4-5].
非入侵式檢測(cè)方法是使用多導(dǎo)聯(lián)置電極技術(shù)分別記錄孕婦胸部和腹壁混合信號(hào),然后將胎兒心電信號(hào)從孕婦腹壁混合信號(hào)中分離出來. 然而由腹壁電極所采集的信號(hào)普遍包含較多的噪聲:導(dǎo)聯(lián)電極干擾、母體心電活動(dòng)干擾、基線漂移[6]等,因此,如何有效抑制各種噪聲從而分離出純凈的胎兒心電信號(hào)成為一個(gè)國(guó)內(nèi)外學(xué)者研究的熱點(diǎn)問題.
為了消除各種背景干擾和母體心電成分,國(guó)內(nèi)外學(xué)者已經(jīng)提出了一系列從腹壁混合信號(hào)中獲取胎兒心電信號(hào)的方法:盲源提取技術(shù)[7-8]是假設(shè)各個(gè)源信號(hào)未知的情況下,只提取出胎兒心電信號(hào),但該技術(shù)對(duì)時(shí)間延遲周期的依賴性較大,其性能具有局限性;獨(dú)立成分分析(Independent Component Analysis,ICA)技術(shù)[9]在假定各信號(hào)成分統(tǒng)計(jì)獨(dú)立的基礎(chǔ)上建立ICA模型,該算法一般采用梯度法對(duì)分離矩陣自適應(yīng)尋優(yōu),且需要嚴(yán)格設(shè)定初始分離矩陣和步長(zhǎng),使得該技術(shù)容易陷入局部最優(yōu),導(dǎo)致分離的胎兒心電信號(hào)精度不高[10];自適應(yīng)濾波法[11]計(jì)算量小且易于收斂,但該算法不能有效提取出母體心電和胎兒心電重合部分的胎兒心電信號(hào);小波分解技術(shù)[12]涉及到小波基和其他參數(shù)的選擇,對(duì)于不同的數(shù)據(jù),參數(shù)選擇較為困難,因此該方法適用性較低,不能用于實(shí)時(shí)提取;匹配濾波法[13]需要保持信號(hào)之間同一波形形態(tài),對(duì)濾波器的選擇較為困難;支持向量機(jī)技術(shù)[14]和人工神經(jīng)網(wǎng)絡(luò)[15-16]技術(shù)在胎兒心電提取方法中得到了較多的應(yīng)用,這些方法將傳統(tǒng)統(tǒng)計(jì)學(xué)作為基礎(chǔ),以經(jīng)驗(yàn)風(fēng)險(xiǎn)最小化原則進(jìn)行學(xué)習(xí),存在著泛化能力弱、結(jié)構(gòu)設(shè)計(jì)較難、易陷入局部最優(yōu)等問題. 以上這些方法都是建立在復(fù)雜導(dǎo)聯(lián)多通道信號(hào)采集的基礎(chǔ)上,然而多通道記錄數(shù)據(jù)會(huì)要求在孕婦體表放置更多的電極,這可能會(huì)引起孕婦的身體不適從,并間接影響心電信號(hào)的提取效果. 因此這些方法的臨床使用價(jià)值非常有限.
隨著胎兒心電提取方法的不斷深入研究,采用單通道腹壁混合心電信號(hào)進(jìn)行胎兒心電提取的方法成為主流. 這些方法以自適應(yīng)噪聲消除技術(shù)[17]、奇異值分解技術(shù)[18]、模板去除技術(shù)[19]和卡爾曼濾波技術(shù)[20]等為基礎(chǔ),從單通道腹壁混合心電信號(hào)中分離出胎兒心電信號(hào). 但現(xiàn)有的單通道胎兒心電提取方法仍存在一定的不足:模板去除技術(shù)很難從腹壁混合心電信號(hào)中消除噪聲和母體心電成分[21],導(dǎo)致提取效果較差;奇異值分解技術(shù)分解出來的矩陣往往解釋性較弱且分解矩陣隨時(shí)間越來越大,對(duì)存貯空間有較大的需求[22];卡爾曼濾波技術(shù)的計(jì)算復(fù)雜度較高,并且在胎兒心電與母體心電重疊的部分,該技術(shù)將失去其提取作用[23];自適應(yīng)噪聲消除技術(shù)通常需要訓(xùn)練特定的濾波器參數(shù)[24],該方法的臨床實(shí)用性較低.
為了解決上述問題并提取更為清晰的胎兒心電信號(hào),本文提出了一種利用單通道腹壁混合信號(hào)進(jìn)行胎兒心電信號(hào)分離的新方法,該方法只需記錄一次孕婦腹壁混合信號(hào),極大降低了信號(hào)的電極干擾且可以進(jìn)行長(zhǎng)期監(jiān)測(cè). 該方法的具體思路為:首先,將平滑窗(Smooth Window,SW)技術(shù)與SVD技術(shù)相結(jié)合(SW-SVD),用來估計(jì)孕婦腹壁混合信號(hào)中的母體心電成分,采用估計(jì)的母體心電信號(hào)代替母體胸部信號(hào);然后,將SW-SVD方法估計(jì)的母體心電信號(hào)作為輸入信號(hào),利用最小二乘支持向量機(jī)(Least squares support vector machine,LSSVM)構(gòu)造輸入信號(hào)和腹壁混合信號(hào)中母體心電成分的最佳映射模型,并采用布谷鳥優(yōu)化算法(cuckoo search,CS)優(yōu)化LSSVM的關(guān)鍵超參數(shù);最后,將CS-LSSVM映射模型得到最佳母體心電信號(hào)與腹壁混合信號(hào)相減,即可分離出初步的胎兒心電信號(hào),對(duì)初步獲取的胎兒心電信號(hào)再次使用SW-SVD技術(shù)進(jìn)一步消除母體心電的干擾,最終得到更為純凈的胎兒心電信號(hào). 實(shí)驗(yàn)結(jié)果表明,與傳統(tǒng)的歸一化最小均方誤差(Normalized least mean squares,NLMS)、長(zhǎng)短時(shí)記憶(Long short term memory,LSTM)網(wǎng)絡(luò)以及LSSVM方法相比,文中所提出的方法具有更強(qiáng)的抗噪聲能力和泛化能力,可以得到更為清晰的胎兒心電信號(hào).
1? ?胎兒心電信號(hào)提取原理
2? ?SW-SVD技術(shù)
2.1? ?SVD原理
2.2? ?SVD提取母體心電參考信號(hào)
2.3? ?均值濾波
3? ?基于CS優(yōu)化的LSSVM
3.1? ?LSSVM原理
3.2? ?CS算法
3.3? ?CS優(yōu)化的LSSVM母體心電信號(hào)估計(jì)模型
4? ?實(shí)驗(yàn)與結(jié)果
4.1? ?模型評(píng)價(jià)標(biāo)準(zhǔn)
4.2? ?實(shí)驗(yàn)數(shù)據(jù)和實(shí)驗(yàn)方法
本文實(shí)驗(yàn)數(shù)據(jù)選取DaISy數(shù)據(jù)集進(jìn)行研究,并與NLMS[43]、LSTM方法[44]和LSSVM方法進(jìn)行對(duì)比實(shí)驗(yàn). DaISy數(shù)據(jù)庫(kù)(Database for the Identification of Systems)由Lieven De Lathauwer提供[45],心電數(shù)據(jù)采樣頻率為250 Hz,記錄時(shí)長(zhǎng)為10 s,各通道心電數(shù)據(jù)長(zhǎng)度為2 500,采用電極放置法從孕婦體表獲取的八導(dǎo)聯(lián)(ch1~ch8)心電信號(hào),ch1~ch5導(dǎo)聯(lián)記錄孕婦腹部混合信號(hào),ch6~ch8 導(dǎo)聯(lián)記錄孕婦胸部信號(hào). 考慮模型運(yùn)算復(fù)雜度、計(jì)算時(shí)長(zhǎng)和提取性能,選擇前1 500點(diǎn)數(shù)據(jù)作為訓(xùn)練數(shù)據(jù)集,剩余1 000點(diǎn)數(shù)據(jù)作為測(cè)試數(shù)據(jù)集. NLMS方法中,迭代步長(zhǎng)設(shè)為0.005,迭代次數(shù)設(shè)為 1 000. LSTM方法中隱藏層神經(jīng)元選為30個(gè),迭代次數(shù)設(shè)為400,學(xué)習(xí)率取為r = 0.01. 傳統(tǒng)LSSVM方法中選擇徑向基函數(shù)作為核函數(shù),核函數(shù)參數(shù)σ和懲罰系數(shù)C的取值分別為σ2= 3,C = 50.
4.3? ?實(shí)驗(yàn)結(jié)果比較
4.3.1? ?母體心電參考信號(hào)的可視化提取結(jié)果
選取Daisy數(shù)據(jù)集中的五個(gè)腹部心電信號(hào)進(jìn)行單通道胎兒心電信號(hào)的提取,五個(gè)通道的信號(hào)波形如圖4所示. 為了去除基線漂移對(duì)信號(hào)的影響,本文對(duì)母體心電參考信號(hào)做了Savitzky-Golay(S-G)平滑濾波操作;然后利用第二節(jié)中所提出的SW-SVD技術(shù),提取母體心電參考信號(hào),提取結(jié)果如圖7所示. 通過對(duì)比圖4和圖5的五通道信號(hào)可知,利用SW和SVD結(jié)合的技術(shù)可以從腹壁混合心電信號(hào)中提取出清晰的母體心電參考信號(hào).
4.3.2? ?胎兒心電信號(hào)提取結(jié)果的可視化對(duì)比分析
本文將ch1和ch2兩個(gè)腹部通道信號(hào)作為可視化結(jié)果分析,并與目前傳統(tǒng)的NLMS、LSTM和LSSVM方法進(jìn)行對(duì)比實(shí)驗(yàn),實(shí)驗(yàn)可視化對(duì)比結(jié)果如圖6和圖7所示.
圖6和圖7顯示了四種胎兒心電信號(hào)提取方法在ch1和ch2兩個(gè)通道上的可視化結(jié)果,可以看出本文提出的方法明顯優(yōu)于其他三種方法,基本上可以提取出所有的胎兒QRS波,且有效避免了母體心電和其他噪聲的干擾.
4.3.3? ?胎兒心電信號(hào)提取結(jié)果的統(tǒng)計(jì)指標(biāo)分析
為了定量研究CS-LSSVM方法的提取效果,本文采用Se、PPV、ACC和F1四個(gè)指標(biāo)來分析[12,13]. 選擇DaISy數(shù)據(jù)集中 ch1~ch5 共5個(gè)通道孕婦腹壁心電數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,該數(shù)據(jù)集中每個(gè)通道記錄有22個(gè)胎兒心電QRS波,在測(cè)試集數(shù)據(jù)中每個(gè)通道有9個(gè)QRS波,本文統(tǒng)計(jì)5個(gè)通道共45個(gè)胎兒心電QRS波. 四種方法的統(tǒng)計(jì)分析結(jié)果如表1所示.
由表 1 可知,CS-LSSVM心電信號(hào)提取方法在五個(gè)導(dǎo)聯(lián)上的胎兒心電信號(hào)提取效果最好,該方法可以提取到42個(gè)胎兒心電QRS波,誤檢和漏檢的胎兒心電個(gè)數(shù)相對(duì)較少,只有4個(gè)QRS波被誤檢且漏檢個(gè)數(shù)為3個(gè),模型準(zhǔn)確率ACC高達(dá)85.71%,靈敏度Se為93.33%,精確度PPV達(dá)到91.30%,且總體概率F1為 92.31%,四項(xiàng)統(tǒng)計(jì)指標(biāo)均為最高. NLMS方法能夠提取到40個(gè)胎兒心電QRS波,誤檢個(gè)數(shù)為12個(gè),漏檢的胎兒心電為5個(gè),模型準(zhǔn)確率ACC為70.18%,四項(xiàng)評(píng)價(jià)指標(biāo)都不及本文提出的方法. 這是由于NLMS方法對(duì)胎兒心電信號(hào)適應(yīng)性不強(qiáng),尤其在母體心電與胎兒心電重疊部分,對(duì)胎兒心電的識(shí)別率較低. LSTM 方法可以提取到30個(gè)胎兒心電QRS波,在四項(xiàng)心電提取性能指標(biāo)分析中,其ACC只有51.72%,四項(xiàng)評(píng)價(jià)指標(biāo)均為最低,這是由于LSTM存在泛化能力弱,易陷入局部極值,導(dǎo)致該模型漏檢和誤檢較多. LSSVM方法可以提取到40個(gè)胎兒心電QRS波,誤檢11個(gè),漏檢5個(gè),并且ACC為71.43%,Se為88.89%,PPV為78.43%,F(xiàn)1為83.33%. 由于LSSVM方法的超參數(shù)很難人工取到最優(yōu)值,導(dǎo)致該方法提取性能低于CS-LSSVM. 通過上述的對(duì)比可見,CS-LSSVM心電提取方法在四項(xiàng)指標(biāo)上均優(yōu)于其他三種心電提取方法. 可見利用CS算法先對(duì)LSSVM模型的關(guān)鍵超參數(shù)進(jìn)行尋優(yōu)處理,然后構(gòu)建CS-LSSVM母體心電信號(hào)估計(jì)模型,并經(jīng)過SW-SVD操作可以有效提高胎兒心電信號(hào)提取性能.
5? ?結(jié)? ?論
在本文的研究中,提出了一種利用單通道母體腹部混合心電信號(hào)提取胎兒心電信號(hào)的新方法. 該方法以LSSVM模型為基礎(chǔ)構(gòu)建CS-LSSVM母體心電信號(hào)提取模型,采用CS算法對(duì)LSSVM模型的超參數(shù)進(jìn)行尋優(yōu)處理,有效提高了模型的預(yù)測(cè)性能,減小了人為確定超參數(shù)的影響. 并且結(jié)合平滑窗口和奇異值分解技術(shù),建立母體心電參考信號(hào),有效避免了至少記錄一個(gè)母體胸部心電信號(hào)的局限性. 文中選取DaISy數(shù)據(jù)集進(jìn)行對(duì)比實(shí)驗(yàn),實(shí)驗(yàn)表明,相比于傳統(tǒng)的NLMS、LSTM 和 LSSVM方法,本文提出的CS-LSSVM心電提取方法表現(xiàn)出更優(yōu)的性能,能夠提取出42個(gè)清晰的胎兒心電信號(hào)QRS波,誤檢和漏檢的胎兒心電較少,為產(chǎn)前胎兒健康檢測(cè)提供了新思路,具有較好的臨床應(yīng)用價(jià)值.
參考文獻(xiàn)
[1]? ? ZHANG Y,YU S. Single-lead noninvasive fetal ECG extraction by means of combining clustering and principal components analysis[J]. Medical & Biological Engineering & Computing,2020,58(2):419—432.
[2]? ? 韋雯雯,李曉蘭,于震,等. 多普勒超聲技術(shù)在妊娠期高血壓孕婦妊娠結(jié)局中的應(yīng)用[J].安徽醫(yī)科大學(xué)學(xué)報(bào),2020,55(9):1466—1468.WEI W W,LI X L,YU Z,et al. The application of Doppler ultrasound in evaluating the pregnancy outcome of pregnant women with HDP[J]. Journal of Anhui Medical University,2020,55(9):1466—1468. (In Chinses)
[3]? ? BARNETT S B,MAULIK D. Guidelines and recommendations for safe use of Doppler ultrasound in perinatal applications[J]. Journal of Maternal-Fetal Medicine,2001,10(2):75—84.
[4]? ? VULLINGS R,PETERS C H,SLUIJTER R J,et al. Dynamic segmentation and linear prediction for maternal ECG removal in antenatal abdominal recordings[J]. Physiological Measurement,2009,30(3):291—307.
[5]? ? 蒲秀娟,曾孝平,陳悅君,等. 基于徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)的胎兒心電提取[J]. 重慶大學(xué)學(xué)報(bào),2009,32(1):111—115.PU X J,ZENG X P,CHEN Y J,et al. Fetal electrocardiogram extraction based on radial basis function neural networks[J]. Journal of Chongqing University,2009,32(01):111—115. (In Chinses)
[6]? ? 賈文娟 楊春蘭,鐘果程,等. 基于自適應(yīng)線性神經(jīng)網(wǎng)絡(luò)的胎兒心電信號(hào)提取[J]. 北京生物醫(yī)學(xué)工程,2010,29(6):575—580.JIA W J,YANG C L,ZHONG G C,et al. Fetal ECG signals extraction based on adaptive linear neural network[J]. Beijing Biomedical Engineering,2010,29(6):575—580. (In Chinses)
[7]? ? 化希耀,蘇博妮. 胎兒心電提取方法研究綜述[J]. 微型機(jī)與應(yīng)用,2015,34(3):21—23.HUA X Y,SU B N. A review of fetal electrocardiogram extraction method[J]. Microcomputer and Application,2015,34(3):21—23. (In Chinses)
[8]? ? 茍梅梅,黃華. 基于分塊擴(kuò)展Infomax算法的胎兒心電分離[J].中國(guó)組織工程研究,2012,16(26):4877—4880.GOU M M,HUANG H. Block-extend Infomax algorithms in fetal electrocardiogram extraction[J]. Chinese Journal of? Tissue Engineering Research,2012,16(26):4877—4880. (In Chinses)
[9]? ? 李朝蘭,方濱,李慧杰,等. 應(yīng)用自相關(guān)和獨(dú)立分量分析的胎兒心電信號(hào)提取[J]. 中國(guó)醫(yī)學(xué)物理學(xué)雜志,2016,33(8):838—843.LI C L,F(xiàn)ANG B,LI H J,et al. Fetal electrocardiogram signal extraction based on autocorrelation and independent component analysis[J]. Chinese Journal of Medical Physics,2016,33(8):838—843. (In Chinses)
[10]? 袁麗,吳水才,袁延超. 胎兒心電提取算法研究綜述[J]. 中國(guó)醫(yī)療設(shè)備,2017,32(6):114—117.YUAN L,WU S C,YUAN Y C. Review of fetal electrocardiogram extraction method research[J]. China Medical Devices,2017,32(6):114—117.(In Chinese)
[11]? 袁麗,吳水才,袁延超,等. 一種變步長(zhǎng)LMS算法提取胎兒心電[J]. 2中國(guó)醫(yī)療設(shè)備,2018,33(3):14—21.?YUAN L,WU S C,YUAN Y C. A kind of variable step size LMS algorithm for extracting fetal ECG[J]. China Medical Devices,2018,33(3):14—21. (In Chinses)
[12]? SUTHA P,JAYANTHI V. Fetal electrocardiogram extraction and analysis using adaptive noise cancellation and wavelet transformation techniques[J]. Journal of Medical Systems,2018,42(1):21.
[13]? DESSI A,PANI D,RAFFO L. An advanced algorithm for fetal heart rate estimation from non-invasive low electrode density recordings[J]. Physiological Measurement,2014,35(8):1621—1636.
[14]? 柴建樸.基于支持向量機(jī)的睡眠分期算法研究及應(yīng)用實(shí)現(xiàn)[D].成都:電子科技大學(xué),2018.CHAI J P. A research of sleep staging algorithm based on support vector machine and the implementation of application[D]. Chengdu:University of Electronic Science and Technology,2018.(In Chinses)
[15]? VAPNIK V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks,1999,10(5):988—999.
[16]? 袁延超,吳水才,袁麗,等. 基于BP神經(jīng)網(wǎng)絡(luò)的胎兒心電提取算法研究[J]. 生物醫(yī)學(xué)工程與臨床,2018,22(3):257—243.YUAN Y C,WU S C,YUAN L,et al. Research of fetal electrocardiogram extraction algorithm based on BP neural network[J]. Biomedical Engineering and Clinical Medicine,2018,22(3):257—243. (In Chinses)
[17]? SWARNALATHA R,PRASAD D V. A novel technique for extraction of FECG using multi stage adaptive filtering[J]. Journal of Applied Sciences,2010,10(4):319—324.
[18]? ZIANI S,JBARI A,BELLARBI L,et al. Blind maternal-fetal ECG separation based on the time-scale image TSI and SVD - ICA methods[J]. Procedia Computer Science,2018,134:322—327.
[19]? COSTA J D Jr,DE SEIXAS J M,MIRANDA DE S?魣 A M F L. A template subtraction method for reducing electrocardiographic artifacts in EMG signals of low intensity[J]. Biomedical Signal Processing and Control,2019,47:380—386.
[20]? PANIGRAHY D,SAHU P K. Extraction of fetal electrocardiogram (ECG) by extended state Kalman filtering and adaptive neuro-fuzzy inference system (ANFIS) based on single channel abdominal recording[J]. Sadhana,2015,40(4):1091—1104.
[21]? TSUI S Y,LIU C S,LIN C W. Modified maternal ECG cancellation for portable fetal heart rate monitor[J]. Biomedical Signal Processing and Control,2017,32:76—81.
[22]? ZHAN N N,YONG J. A novel technique for fetal ECG extraction using single-channel abdominal recording[J]. Sensors,2017,17(3):457.
[23]? PAQUET-DURAND O,YOUSEFI DARANI A,HITZMANN B.Online state prediction of S. cerevisiae cultivation purely based on ethanol gas sensors and an extended Kalman filter[J]. Chemie Ingenieur Technik,2020,92(9):1222.
[24]? 洪少春. 基于LMS改進(jìn)算法的自適應(yīng)濾波器在胎兒心電監(jiān)測(cè)中的應(yīng)用[J]. 邵陽學(xué)院學(xué)報(bào)(自然科學(xué)版),2007,(3):24—28.HONG S C. The research about adaptive filter based on the improvement of the LMS algorithm and its effect on FECG[J]. Journal of Shaoyang University (Natural Science Edition),2007,4(3):24—28. (In Chinses)
[25]? 蒲秀娟,曾孝平,韓亮,等. 基于經(jīng)驗(yàn)?zāi)J椒纸夂妥钚《酥С窒蛄繖C(jī)的胎兒心電信號(hào)提取[J]. 四川大學(xué)學(xué)報(bào)(工程科學(xué)版),2010,42(6):158—165.?PU X J,ZENG X P,HAN L,et al. Extraction of fetal electrocardiogram signal using empirical mode decomposition and least squares support vector machines[J]. Journal of Sichuan University (Engineering Science Edition),2010,42(6):158—165. (In Chinses)
[26]? ASSALEH K. Extraction of fetal electrocardiogram using adaptive neuro-fuzzy inference systems[J]. IEEE Transactions on Biomedical Engineering,2007,54(1):59—68.
[27]? 曾兆山,沈海斌,陸昊俊. 基于SVD-LSSVM的單導(dǎo)聯(lián)胎兒心電提取算法[J]. 電子技術(shù),2016,45(4):4—8.ZENG Z S,SHEN H B,LU H J. Fetal ECG extraction using single lead based on SVD -LSSVM method[J]. Electronic Technology,2016,45(4):4—8. (In Chinses)
[28]? 陳甸甸,趙治棟. 基于奇異值和相異度的心電身份識(shí)別方法[J].計(jì)算機(jī)仿真,2016,33(2):427—432.CHEN D D,ZHAO Z D. Identification method of ECG signal based on SVD and dissimilarity analysis[J]. Computer? ? ?Simulation,2016,33(2):427—432. (In Chinses)
[29]? DAAMOUCHE A,HAMAMI L,ALAJLAN N,et al. A wavelet optimization approach for ECG signal classification[J]. Biomedical Signal Processing and Control,2012,7(4):342—349.
[30]? 趙學(xué)智,陳統(tǒng)堅(jiān),葉邦彥. 基于奇異值分解的銑削力信號(hào)處理與銑床狀態(tài)信息分離[J]. 機(jī)械工程學(xué)報(bào),2007(6):169—174.ZHAO X Z,CHEN T J,YE B Y. Milling force signal processing and milling machine state information separation based on singular value decomposition[J]. Journal of Mechanical Engineering,2007(6):169—174. (In Chinses)
[31]? 周祥,詹寧波,高磊,等. 一種自適應(yīng)最小均方算法提取胎兒心電信號(hào)的方法研究[J]. 醫(yī)療衛(wèi)生裝備,2014,35(10):47—49.ZHOU X,ZHAN N B,GAO L,et al. Extracting fetal ECG by modified adaptive method [J]. Medical and Health Equipment,2014,35(10):47—49. (In Chinses)
[32]? 祁樹剛,張啟超. 均值濾波和中值濾波對(duì)InSAR影像預(yù)處理的影響研究[J]. 測(cè)繪與空間地理信息,2020,43(S1):131—133,136.QI S G,ZHANG Q C. Study on the influence of mean filter and median filter on InSAR image preprocessing [J]. Surveying and Spatial Geographic Information,2020,43(S1):131—133,136. (In Chinses)
[33]? VO K,LE T,RAHMANI A M,et al. An efficient and robust deep learning method with 1-D octave convolution to extract fetal electrocardiogram[J]. Sensors,2020,20(13):3757.
[34]? 卜朝暉,周斌,尹曉晶,等. 基于擴(kuò)展卡爾曼濾波和奇異值分解算法的單通道胎兒心電提取方法[J].中國(guó)生物醫(yī)學(xué)工程學(xué)報(bào),2019,38(6):662—671.BU Z H,ZHOU B,YIN X J,et al. Fetal ECG extraction from single-channel abdominal ECG based on EKF combined with SVD[J]. Chinese Journal of Biomedical Engineering,2019,38(6):662—671. (In Chinses)
[35]? SHARMA T,SHARMA K K.QRS complex detection in ECG signals using the synchrosqueezed wavelet transform[J]. IETE Journal of Research,2016,62(6):885—892.
[36]? KANJILAL P P,PALIT S,SAHA G. Fetal ECG extraction from single-channel maternal ECG using singular value decomposition[J]. IEEE Transactions on Biomedical Engineering,1997,44(1):51—59.
[37]? SIVARAM M,LYDIA E L,PUSTOKHINA I V,et al. An optimal least square support vector machine based earnings prediction of blockchain financial products[J]. IEEE Access,2020,8:120321—120330.
[38]? 劉曉東,孫麗君,陳天飛. 布谷鳥算法的收斂性分析及性能比較[J/OL]. 計(jì)算機(jī)科學(xué)與探索:1-15[2020-09-23].http://kns.cnki.net/kcms/detail/11.5602.TP.20200721.1546.014.html.LIU X D,SUN L J,CHEN T F. Convergence Analysis an-d Performance Comparison of Cuckoo Search Algorithm[J/OL]. Computer Science and Exploration::1-15[2020-09-23].http://kns.cnki.net/kcms/detail/11.5602.TP.20200721.1546.014.html. (In Chinses)
[39]? SHETTY R P,SATHYABHAMA A,PAI P S. An efficient online sequential extreme learning machine model based on feature selection and parameter optimization using cuckoo search algorithm for multi-step wind speed forecasting[J]. Soft Computing,2021,25(2):1277—1295.
[40]? BOHAT V K,ARYA K V. An effective gbest-guided gravitational search algorithm for real-parameter optimization and its application in training of feedforward neural networks[J]. Knowledge-Based Systems,2018,143:192—207.
[41]? PANDA S,MISHRA D,BISWAL B B. An approach for design optimization of 3R manipulator using Adaptive Cuckoo Search algorithm[J]. Mechanics Based Design of Structures and Machines,2020,48(6):773—798.
[42]? ANSI/AAMI/ISO EC57 (1998/(R) 2008). Testing and Reporting Performance Results of Cardiac Rhythm and ST-Segment Measurement Algorithms;American National Standards Institute:New York,NY,USA,2008.
[43]? BERSHAD N J,JOSE C M,BERMUDEZ. A switched variable step size NLMS adaptive filter[J]. Digital Signal Processing,2020,101:102730.
[44]? CHEN,GONG Z,LI Q,et al. Hierarchical LSTM with char-subword-word tree-structure representation for Chinese named entity recognition[J]. Science China. Information Sciences,2020,63(10):1—15.
[45]? DE LATHAUWER? L. DaIsy:database for the identification of systems:Biomedical systems [EB/OL]. (2000-10-10)[2017-8-18]. http://homes.esat.kuleuven.be/~smc/daisy/.