婁高中,譚 毅
基于PSO-BP神經(jīng)網(wǎng)絡(luò)的導(dǎo)水裂隙帶高度預(yù)測
婁高中1,譚 毅2,3
(1. 安陽工學(xué)院 土木與建筑工程學(xué)院,河南 安陽 455000;2. 河南理工大學(xué) 能源科學(xué)與工程學(xué)院,河南 焦作 454003;3. 煤炭安全生產(chǎn)與清潔高效利用省部共建協(xié)同創(chuàng)新中心,河南 焦作 454003)
導(dǎo)水裂隙帶高度是西部礦區(qū)保水采煤的理論依據(jù)和關(guān)鍵參數(shù)。近年來,BP神經(jīng)網(wǎng)絡(luò)廣泛應(yīng)用于導(dǎo)水裂隙帶高度預(yù)測,但BP神經(jīng)網(wǎng)絡(luò)存在收斂速度慢、易陷入局部極小等問題。為提高導(dǎo)水裂隙帶高度預(yù)測的準(zhǔn)確性,利用粒子群優(yōu)化算法(PSO)對BP神經(jīng)網(wǎng)絡(luò)的權(quán)值和閾值進(jìn)行優(yōu)化,建立基于PSO-BP神經(jīng)網(wǎng)絡(luò)的導(dǎo)水裂隙帶高度預(yù)測模型。選擇開采厚度、開采深度、工作面傾斜長度、煤層傾角、覆巖結(jié)構(gòu)特征為導(dǎo)水裂隙帶高度主要影響因素,選取22例導(dǎo)水裂隙帶高度實(shí)測數(shù)據(jù)對PSO-BP神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練,將訓(xùn)練后的PSO-BP神經(jīng)網(wǎng)絡(luò)對2例測試樣本的預(yù)測結(jié)果與實(shí)際值進(jìn)行對比,并與BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型及經(jīng)驗(yàn)公式預(yù)測結(jié)果進(jìn)行對比。結(jié)果表明:PSO-BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型的平均相對誤差為1.55%;BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型的平均相對誤差為4.8%,經(jīng)驗(yàn)公式的最小相對誤差為9.4%,PSO-BP神經(jīng)網(wǎng)絡(luò)預(yù)測精度明顯優(yōu)于BP神經(jīng)網(wǎng)絡(luò)和經(jīng)驗(yàn)公式,且絕對誤差和相對誤差變化較穩(wěn)定,可以有效預(yù)測導(dǎo)水裂隙帶高度。
粒子群優(yōu)化算法;BP神經(jīng)網(wǎng)絡(luò);導(dǎo)水裂隙帶高度;影響因素;預(yù)測模型
隨著我國能源消費(fèi)結(jié)構(gòu)的逐年優(yōu)化,2020年煤炭在能源消費(fèi)中的比例下降到56.7%。但原煤產(chǎn)量較2019年增長0.9%,達(dá)到38.4億t,在當(dāng)前及未來一段時(shí)間內(nèi)煤炭依然是我國的主體能源。隨著我國中東部礦區(qū)淺部煤炭資源的逐年枯竭與開采深度及難度的增加,我國煤炭資源開采的重心已轉(zhuǎn)向西部。西部主要礦區(qū)位于黃河流域的干旱半干旱地區(qū),水資源匱乏,年蒸發(fā)量數(shù)倍于年降水量,且煤炭高強(qiáng)度開采不可避免地破壞水資源。為實(shí)現(xiàn)煤炭資源開采與水資源承載能力間的平衡,必須進(jìn)行保水采煤[1]。導(dǎo)水裂隙帶高度是保水采煤的理論依據(jù)和關(guān)鍵參數(shù),因此,準(zhǔn)確預(yù)測導(dǎo)水裂隙帶高度對于西部礦區(qū)煤炭資源開采以及水資源保護(hù)具有重要意義[2-3]。
目前,國內(nèi)外學(xué)者主要采用經(jīng)驗(yàn)公式[4-5]、理論分析[6-7]、數(shù)值模擬與相似模擬[8]、現(xiàn)場實(shí)測[9-10]等方法對導(dǎo)水裂隙帶高度進(jìn)行研究。導(dǎo)水裂隙帶高度影響因素較多,具有復(fù)雜、難定量、非線性的特點(diǎn),BP神經(jīng)網(wǎng)絡(luò)具有自學(xué)習(xí)和自適應(yīng)、較強(qiáng)的非線性映射能力和泛化能力等優(yōu)點(diǎn),李振華等[11]、施龍青等[12]建立了基于BP神經(jīng)網(wǎng)絡(luò)的導(dǎo)水裂隙帶高度預(yù)測模型,取得了較好的預(yù)測結(jié)果。但BP神經(jīng)網(wǎng)絡(luò)存在收斂速度慢、易陷入局部極小等問題,對導(dǎo)水裂隙帶高度預(yù)測精度有一定影響。
粒子群優(yōu)化算法(Particle Swarm Optimization,PSO)是基于群體智能的優(yōu)化算法,算法結(jié)構(gòu)簡單,易于實(shí)現(xiàn),具有良好的全局尋優(yōu)能力,在各種工程中廣泛應(yīng)用。邵良杉等[13]采用PSO優(yōu)化最小二乘支持向量機(jī)(LSSVM)的核函數(shù)和正則化參數(shù),建立了瓦斯?jié)B透率的PSO-LSSVM預(yù)測模型,取得較高精度的預(yù)測結(jié)果;毛志勇等[14]采用自適應(yīng)粒子群優(yōu)化算法(APSO)優(yōu)化加權(quán)最小二乘支持向量機(jī)(WLS- SVM)的組合參數(shù)(、),建立含瓦斯煤滲透率的APSO-WLS-SVM預(yù)測模型,預(yù)測精度優(yōu)于WLS- SVM預(yù)測模型。
考慮到BP神經(jīng)網(wǎng)絡(luò)存在的問題,筆者利用PSO良好的全局尋優(yōu)能力對BP神經(jīng)網(wǎng)絡(luò)的權(quán)值與閾值進(jìn)行優(yōu)化,建立導(dǎo)水裂隙帶高度與開采厚度、開采深度、工作面傾斜長度、煤層傾角、覆巖結(jié)構(gòu)特征等主要影響因素間的PSO-BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型,以期提高導(dǎo)水裂隙帶高度預(yù)測準(zhǔn)確性。
BP神經(jīng)網(wǎng)絡(luò)是一種按誤差逆向傳播算法訓(xùn)練的多層前饋網(wǎng)絡(luò),是應(yīng)用最廣泛的神經(jīng)網(wǎng)絡(luò)模型之一。BP神經(jīng)網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)包括輸入層、隱含層和輸出層。單隱含層的BP神經(jīng)網(wǎng)絡(luò)可以實(shí)現(xiàn)以任意精度近似非連續(xù)函數(shù),因此,本文擬采用單隱含層的BP神經(jīng)網(wǎng)絡(luò)。
BP神經(jīng)網(wǎng)絡(luò)包括數(shù)據(jù)的前向傳播和誤差的反向傳播2個(gè)過程,當(dāng)輸出層結(jié)果與期望結(jié)果有差別時(shí),則進(jìn)行誤差信號的反向傳播,通過2個(gè)過程的反復(fù)迭代,使網(wǎng)絡(luò)的輸出接近期望輸出。
誤差的反向傳播是從輸出層開始逐層計(jì)算各層神經(jīng)元的輸出誤差,根據(jù)梯度下降法,按誤差函數(shù)的負(fù)梯度方向修正隱含層與輸出層的權(quán)值與閾值[16],使修正后的網(wǎng)絡(luò)最終輸出盡可能接近期望輸出。
粒子群優(yōu)化算法(PSO)是由J. Kennedy和R. C. Eberhart提出的一種群體智能算法[17]。PSO首先在可行解空間初始化一定種群規(guī)模的粒子以及每個(gè)粒子的位置和速度,每個(gè)粒子對應(yīng)待求問題的一個(gè)潛在最優(yōu)解,并根據(jù)適應(yīng)度函數(shù)確定其適應(yīng)度;粒子在解空間中進(jìn)行迭代搜索時(shí)跟蹤2個(gè)極值,一個(gè)是粒子自身搜索到的最優(yōu)解,稱為個(gè)體極值,另一個(gè)是粒子群體目前搜索到的最優(yōu)解,稱為全局極值;之后粒子更新自身的速度和位置,直至搜索到全局最優(yōu)解或達(dá)到最大迭代次數(shù),算法結(jié)束。
式(2)中粒子速度更新由3部分組成,第1部分表示自身先前速度;第2部分表示粒子個(gè)體的認(rèn)知能力,即向個(gè)體最優(yōu)解逼近的趨勢;第3部分表示粒子間的信息共享和合作,即向群體最優(yōu)解逼近的趨勢。其中第1部分中慣性權(quán)重決定粒子先前速度對當(dāng)前速度的影響,較大時(shí),粒子能在全局范圍搜索到較優(yōu)值,全局收斂性能強(qiáng);較小時(shí),粒子能在全局較優(yōu)值附近范圍精細(xì)搜索,局部收斂性能強(qiáng)。為實(shí)現(xiàn)PSO全局收斂性能與局部收斂性能之間的平衡,可以對進(jìn)行動態(tài)調(diào)整。目前應(yīng)用廣泛的是線性遞減策略[13],如下式:
式中:1為初始權(quán)重;2為終止權(quán)重;為最大迭代次數(shù)。
PSO-BP神經(jīng)網(wǎng)絡(luò)實(shí)質(zhì)是將BP神經(jīng)網(wǎng)絡(luò)的權(quán)值和閾值映射為PSO粒子,通過對粒子速度和位置的更新迭代優(yōu)化權(quán)值和閾值,從而提高BP神經(jīng)網(wǎng)絡(luò)的收斂速度和預(yù)測精度。PSO-BP神經(jīng)網(wǎng)絡(luò)預(yù)測的具體步驟如下:
①初始化BP神經(jīng)網(wǎng)絡(luò)和粒子群優(yōu)化算法參數(shù)根據(jù)樣本數(shù)據(jù),確定BP神經(jīng)網(wǎng)絡(luò)輸入層、隱含層、輸出層的節(jié)點(diǎn)個(gè)數(shù)、、;設(shè)置粒子群種群規(guī)模,學(xué)習(xí)因子1、2,最大迭代次數(shù),初始權(quán)重與終止權(quán)重1、2。
②建立BP神經(jīng)網(wǎng)絡(luò)權(quán)值、閾值與PSO中粒子維數(shù)的映射關(guān)系 對于單隱含層的BP神經(jīng)網(wǎng)絡(luò),粒子的維數(shù)=×+×++。
③計(jì)算適應(yīng)度 種群粒子的優(yōu)劣由適應(yīng)度函數(shù)確定,適應(yīng)度函數(shù)采用BP神經(jīng)網(wǎng)絡(luò)實(shí)際輸出與期望輸出間的均方誤差平方和表示。
④更新個(gè)體極值與全局極值 根據(jù)適應(yīng)度函數(shù),比較粒子當(dāng)前與上一時(shí)刻的適應(yīng)度值,如果當(dāng)前適應(yīng)度更好,進(jìn)行個(gè)體極值的更新;同樣,比較粒子群體當(dāng)前與上一時(shí)刻的適應(yīng)度值,如果優(yōu)于上一時(shí)刻,進(jìn)行全局極值的更新。
⑤粒子速度與位置的更新 根據(jù)式(2)、式(3)更新粒子速度和位置。
⑥判斷PSO算法是否滿足結(jié)束條件如果PSO算法達(dá)到最大迭代次數(shù)或誤差小于期望誤差,算法結(jié)束,輸出最優(yōu)解;如不滿足,返回步驟③。
⑦將最優(yōu)解賦給BP神經(jīng)網(wǎng)絡(luò)的權(quán)值和閾值利用PSO優(yōu)化后的權(quán)值與閾值,進(jìn)行BP神經(jīng)網(wǎng)絡(luò)的訓(xùn)練與預(yù)測。
PSO-BP神經(jīng)網(wǎng)絡(luò)預(yù)測流程如圖1所示。
圖1 PSO-BP神經(jīng)網(wǎng)絡(luò)流程
1)開采厚度
一般情況下,當(dāng)其他因素一定時(shí),開采厚度越大,導(dǎo)水裂隙帶高度越大,與開采厚度近似呈線性或分式函數(shù)關(guān)系[11]。王曉振等[19]認(rèn)為在關(guān)鍵層控制作用下,導(dǎo)水裂隙帶高度隨開采厚度的增加呈臺階式突變,當(dāng)關(guān)鍵層控制的巖層厚度越大,臺階突變越明顯;當(dāng)開采厚度的增加不超過導(dǎo)水裂隙帶高度產(chǎn)生臺階落差范圍時(shí),導(dǎo)水裂隙帶高度不隨著開采厚度的增加而增加。
2) 開采深度
煤層開采后,上覆巖層在礦山壓力作用下產(chǎn)生移動和破壞,從而形成導(dǎo)水裂隙帶。根據(jù)礦壓理論,煤層開采深度為25~2 700 m時(shí),礦山壓力隨著開采深度的增大而增加,上覆巖層移動和破壞程度越劇烈,導(dǎo)水裂隙帶高度發(fā)育越大[7]。
抽濾階段:在消化殘?jiān)屑尤?5 ml 20%磺基水楊酸,在室溫放置30 min,將燒杯中的殘留物進(jìn)行真空抽濾,最終將酶解液定容,并測定還原糖含量。
3) 工作面傾斜長度
對于我國廣泛應(yīng)用的走向長壁開采工作面,在覆巖破壞未達(dá)到充分采動時(shí),導(dǎo)水裂隙帶高度隨工作面傾斜長度的增加呈臺階狀或分式函數(shù)增長,當(dāng)工作面傾斜長度達(dá)到該地質(zhì)采礦條件下的臨界長度時(shí),覆巖破壞達(dá)到充分采動,導(dǎo)水裂隙帶高度不再受工作面傾斜長度的影響[20]。
4)煤層傾角
隨著煤層傾角的增大,導(dǎo)水裂隙帶在傾斜方向上的形態(tài)由馬鞍形向拋物線形和橢圓形轉(zhuǎn)變,同時(shí)影響導(dǎo)水裂隙帶高度,當(dāng)煤層傾角小于45°時(shí),導(dǎo)水裂隙帶高度隨著煤層傾角增大而增大,當(dāng)煤層傾角為45°~60°時(shí),導(dǎo)水裂隙帶高度隨傾角的增大而減小[21]。
5)覆巖結(jié)構(gòu)特征
上覆巖層具有分層特征,根據(jù)上覆巖層的巖性,按從直接頂?shù)交卷數(shù)捻樞颍矌r結(jié)構(gòu)特征可以分為堅(jiān)硬–堅(jiān)硬、堅(jiān)硬–軟弱、軟弱–堅(jiān)硬、軟弱–軟弱4種類型。堅(jiān)硬–堅(jiān)硬型覆巖下沉量小,垮落空間幾乎全靠垮落巖塊碎脹充填,垮落過程發(fā)育最充分,而且覆巖斷裂后不易閉合和恢復(fù)隔水能力,導(dǎo)水裂隙帶高度發(fā)育最大;軟弱–軟弱型覆巖隨采隨垮,垮落過程發(fā)育最不充分,導(dǎo)水裂隙帶高度發(fā)育最??;一般情況下,軟弱–堅(jiān)硬型覆巖較堅(jiān)硬–軟弱型覆巖垮落過程充分。因此,導(dǎo)水裂隙帶高度由小至大對應(yīng)的覆巖結(jié)構(gòu)特征為軟弱–軟弱、堅(jiān)硬–軟弱、軟弱–堅(jiān)硬、堅(jiān)硬–堅(jiān)硬,在定量分析中分別量化取值0.2、0.4、0.6、0.8[11]。
根據(jù)選擇的導(dǎo)水裂隙帶高度主要影響因素,收集了國內(nèi)部分礦區(qū)導(dǎo)水裂隙帶高度實(shí)測樣本數(shù)據(jù)[4,22-24],見表1。
表1 導(dǎo)水裂隙帶高度實(shí)測樣本數(shù)據(jù)
根據(jù)BP神經(jīng)網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu),PSO的維數(shù)=5×10+10×1+10+1=71;種群規(guī)模較小時(shí),算法收斂速度快,較大時(shí),算法尋優(yōu)能力好,但收斂速度慢,一般情況下取值10~50,本次種群規(guī)模=30;初始權(quán)重1和終止權(quán)重2分別為0.9、0.4;學(xué)習(xí)因子1=2=1.49;最大迭代次數(shù)=100。
PSO-BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型建立涉及大量計(jì)算,為提高效率,采用Matlab 2014b軟件,調(diào)用神經(jīng)網(wǎng)絡(luò)工具箱函數(shù)進(jìn)行編程。根據(jù)已確定的參數(shù),建立基于PSO-BP神經(jīng)網(wǎng)絡(luò)的導(dǎo)水裂隙帶高度預(yù)測模型。
為了保證基于PSO-BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型的預(yù)測能力,將表1中的樣本數(shù)據(jù)分為2類,一類作為訓(xùn)練樣本,一類作為測試樣本。訓(xùn)練樣本和測試樣本的個(gè)數(shù)沒有定論,一般情況下,訓(xùn)練樣本個(gè)數(shù)越多,網(wǎng)絡(luò)的訓(xùn)練能力隨之提高,網(wǎng)絡(luò)預(yù)測能力也會提高;測試樣本的個(gè)數(shù)至少為2個(gè)[26-27]?;诖?,本次選擇表1中的前22組數(shù)據(jù)作為訓(xùn)練樣本,對PSO-BP神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練;選擇后2組數(shù)據(jù)作為測試樣本,用來驗(yàn)證訓(xùn)練后的網(wǎng)絡(luò)的預(yù)測能力。
適應(yīng)度值是判斷預(yù)測模型預(yù)測結(jié)果是否達(dá)到預(yù)期精度的指標(biāo)之一[28]。本次適應(yīng)度函數(shù)選擇均方誤差平方和,如下式:
基于PSO-BP神經(jīng)網(wǎng)絡(luò)的預(yù)測模型的適應(yīng)度值變化曲線如圖2所示。從圖2可以看出,隨著迭代次數(shù)的增加,適應(yīng)度值從0.45快速下降為0.04,收斂速度快,且PSO-BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型的預(yù)測結(jié)果與期望值十分接近,優(yōu)化效果顯著,表明基于PSO-BP神經(jīng)網(wǎng)絡(luò)的預(yù)測模型是有效可行的。
圖2 適應(yīng)度值變化曲線
為定量評價(jià)基于PSO-BP神經(jīng)網(wǎng)絡(luò)的導(dǎo)水裂隙帶高度預(yù)測模型的可靠性,采用訓(xùn)練后的PSO-BP神經(jīng)網(wǎng)絡(luò)對2個(gè)測試樣本進(jìn)行預(yù)測,預(yù)測結(jié)果見表2;然后將預(yù)測結(jié)果與實(shí)際值進(jìn)行對比,以絕對誤差、相對誤差2個(gè)指標(biāo)表示,對比結(jié)果見表2。
同時(shí),為公平驗(yàn)證基于PSO-BP神經(jīng)網(wǎng)絡(luò)的導(dǎo)水裂隙帶高度預(yù)測模型的優(yōu)越性,建立基于BP神經(jīng)網(wǎng)絡(luò)的預(yù)測模型并選擇導(dǎo)水裂隙帶高度經(jīng)驗(yàn)公式對測試樣本進(jìn)行預(yù)測。其中基于BP神經(jīng)網(wǎng)絡(luò)的預(yù)測模型的參數(shù)與PSO-BP神經(jīng)網(wǎng)絡(luò)的相應(yīng)參數(shù)一致;2個(gè)測試樣本所在工作面采煤方法為綜放,覆巖巖性為中硬,導(dǎo)水裂隙帶高度經(jīng)驗(yàn)公式[22]如下:
式中:li為導(dǎo)水裂隙帶高度,m;為采高,m。
基于BP神經(jīng)網(wǎng)絡(luò)的導(dǎo)水裂隙帶高度預(yù)測模型和導(dǎo)水裂隙帶高度經(jīng)驗(yàn)公式的預(yù)測結(jié)果、絕對誤差、相對誤差見表2。
表2 PSO-BP神經(jīng)網(wǎng)絡(luò)、BP神經(jīng)網(wǎng)絡(luò)及經(jīng)驗(yàn)公式預(yù)測結(jié)果
根據(jù)表2中預(yù)測結(jié)果對比可知:
(1) PSO-BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型的最大絕對誤差為1.6 m,最大相對誤差為1.9%;BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型的最大絕對誤差為4.2 m,最大相對誤差為5.6%;導(dǎo)水裂隙帶高度經(jīng)驗(yàn)公式的最大絕對誤差為101.0 m,最大相對誤差達(dá)到121.7%,遠(yuǎn)遠(yuǎn)大于PSO-BP神經(jīng)網(wǎng)絡(luò)與BP神經(jīng)網(wǎng)絡(luò);經(jīng)驗(yàn)公式最小絕對誤差為7.0 m,最小相對誤差為9.4%,也明顯大于PSO-BP神經(jīng)網(wǎng)絡(luò)與BP神經(jīng)網(wǎng)絡(luò)。表明PSO-BP神經(jīng)網(wǎng)絡(luò)與BP神經(jīng)網(wǎng)絡(luò)預(yù)測結(jié)果相比較經(jīng)驗(yàn)公式的預(yù)測結(jié)果均更接近實(shí)測值,預(yù)測導(dǎo)水裂隙帶高度時(shí)應(yīng)盡可能全面考慮其主要影響因素。
(2) PSO-BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型的平均絕對誤差為1.25 m,平均相對誤差為1.55%;BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型的平均絕對誤差為3.75 m,平均相對誤差為4.8%;PSO-BP神經(jīng)網(wǎng)絡(luò)的絕對誤差與相對誤差均明顯優(yōu)于BP神經(jīng)網(wǎng)絡(luò),且絕對誤差與相對誤差變化較小。表明經(jīng)PSO優(yōu)化后的BP神經(jīng)網(wǎng)絡(luò)克服了收斂速度慢、易陷入局部極小的問題,預(yù)測準(zhǔn)確性大大改善且更加穩(wěn)定,可以有效預(yù)測導(dǎo)水裂隙帶高度。
a.采用粒子群優(yōu)化算法(PSO)對BP神經(jīng)網(wǎng)絡(luò)的權(quán)值與閾值進(jìn)行優(yōu)化,根據(jù)選取的導(dǎo)水裂隙帶高度影響因素以及樣本數(shù)據(jù),建立基于PSO-BP神經(jīng)網(wǎng)絡(luò)的預(yù)測模型,解決BP神經(jīng)網(wǎng)絡(luò)收斂速度慢、易陷入局部極小等問題,提高了導(dǎo)水裂隙帶高度的預(yù)測精度。
b.以訓(xùn)練后的PSO-BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型對測試樣本進(jìn)行預(yù)測,預(yù)測結(jié)果與實(shí)際值的平均相對誤差為1.55%,BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型的平均相對誤差為4.8%,經(jīng)驗(yàn)公式的最小相對誤差為9.4%。基于PSO-BP神經(jīng)網(wǎng)絡(luò)的導(dǎo)水裂隙帶高度預(yù)測模型準(zhǔn)確性高、穩(wěn)定性好,可有效應(yīng)用于導(dǎo)水裂隙帶高度預(yù)測。
[1] 范立民,馬雄德,蔣澤泉,等. 保水采煤研究30年回顧與展望[J]. 煤炭科學(xué)技術(shù),2019,47(7):1–30.
FAN Limin,MA Xiongde,JIANG Zequan,et al. Review and thirty years prospect of research on water-preserved coal mining[J]. Coal Science and Technology,2019,47(7):1–30.
[2] 徐智敏,高尚,崔思源,等. 哈密煤田生態(tài)脆弱區(qū)保水采煤的水文地質(zhì)基礎(chǔ)與實(shí)踐[J]. 煤炭學(xué)報(bào),2017,42(1):80–87.
XU Zhimin,GAO Shang,CUI Siyuan,et al. Hydro-geological basic and practice for water-preserved mining in ecologically vulnerable area:A case study in Hami coalfield[J]. Journal of China Coal Society,2017,42(1):80–87.
[3] 范立民. 保水采煤面臨的科學(xué)問題[J]. 煤炭學(xué)報(bào),2019,44(3):667–674.
FAN Limin. Some scientific issues in water-preserved coal mining[J]. Journal of China Coal Society,2019,44(3):667–674.
[4] 婁高中,郭文兵,高金龍. 基于量綱分析的非充分采動導(dǎo)水裂縫帶高度預(yù)測[J]. 煤田地質(zhì)與勘探,2019,47(3):147–153.
LOU Gaozhong,GUO Wenbing,GAO Jinlong. Prediction of the height of water flowing fractured zone under subcritical mining based on dimensional analysis[J]. Coal Geology & Exploration,2019,47(3):147–153.
[5] 國家安全監(jiān)管總局,國家煤礦安監(jiān)局,國家能源局,等. 建筑物、水體、鐵路及主要井巷煤柱留設(shè)與壓煤開采規(guī)范[M]. 北京:煤炭工業(yè)出版社,2017.
State Administration of Work Safety,National Coal Mine Safety Administration,National Energy Administration,et al. Specifications for coal pillar retention and compressed coal mining in buildings,water bodies,railways and main shafts[M]. Beijing:China Coal Industry Publishing House,2017.
[6] 許家林,朱衛(wèi)兵,王曉振. 基于關(guān)鍵層位置的導(dǎo)水裂隙帶高度預(yù)計(jì)方法[J]. 煤炭學(xué)報(bào),2012,37(5):762–769.
XU Jialin,ZHU Weibing,WANG Xiaozhen. New method to predict the height of fractured water-conducting zone by location of key strata[J]. Journal of China Coal Society,2012,37(5):762–769.
[7] 施龍青,辛恒奇,翟培合,等. 大采深條件下導(dǎo)水裂隙帶高度計(jì)算研究[J]. 中國礦業(yè)大學(xué)學(xué)報(bào),2012,41(1):37–41.
SHI Longqing,XIN Hengqi,ZHAI Peihe,et al. Calculating the height of water flowing fracture zone in deep mining[J]. Journal of China University of Mining & Technology,2012,41(1):37–41.
[8] 徐智敏,孫亞軍,高尚,等. 干旱礦區(qū)采動頂板導(dǎo)水裂隙的演化規(guī)律及保水采煤意義[J]. 煤炭學(xué)報(bào),2019,44(3):767–776.
XU Zhimin,SUN Yajun,GAO Shang,et al. Law of mining induced water conduction fissure in arid mining area and its significance in water-preserved coal mining[J]. Journal of China Coal Society,2019,44(3):767–776.
[9] 李超峰,虎維岳,王云宏,等. 煤層頂板導(dǎo)水裂縫帶高度綜合探查技術(shù)[J]. 煤田地質(zhì)與勘探,2018,46(1):101–107.
LI Chaofeng,HU Weiyue,WANG Yunhong,et al. Comprehensive detection technique for coal seam roof water flowing fractured zone height[J]. Coal Geology & Exploration,2018,46(1):101–107.
[10] 郭文兵,婁高中,趙保才. 蘆溝煤礦軟硬交互覆巖放頂煤開采導(dǎo)水裂縫帶高度研究[J]. 采礦與安全工程學(xué)報(bào),2019,36(3):519–526.
GUO Wenbing,LOU Gaozhong,ZHAO Baocai. Study on the height of water-conductive fracture zone in alternate overburden of soft and hard with top coal caving mining in Lugou coal mine[J]. Journal of Mining & Safety Engineering,2019,36(3):519–526.
[11] 李振華,許延春,李龍飛,等. 基于BP神經(jīng)網(wǎng)絡(luò)的導(dǎo)水裂隙帶高度預(yù)測[J]. 采礦與安全工程學(xué)報(bào),2015,32(6):905–910.
LI Zhenhua,XU Yanchun,LI Longfei,et al. Forecast of the height of water flowing fractured zone based on BP neural networks[J]. Journal of Mining & Safety Engineering,2015,32(6):905–910.
[12] 施龍青,黃紀(jì)云,韓進(jìn),等. 導(dǎo)水裂隙帶高度預(yù)測的PCA-BP模型[J]. 中國科技論文,2019,14(5):471–475.
SHI Longqing,HUANG Jiyun,HAN Jin,et al. PCA-BP model for height prediction of water conducting fracture zone[J]. China Science paper,2019,14(5):471–475.
[13] 邵良杉,馬寒. 煤體瓦斯?jié)B透率的PSO-LSSVM預(yù)測模型[J]. 煤田地質(zhì)與勘探,2015,43(4):23–26.
SHAO Liangshan,MA Han. Model of coal gas permeability prediction based on PSO-LSSVM[J]. Coal Geology & Exploration,2015,43(4):23–26.
[14] 毛志勇,黃春娟,路世昌,等. 基于APSO-WLS-SVM的含瓦斯煤滲透率預(yù)測模型[J]. 煤田地質(zhì)與勘探,2019,47(2):66–71.
MAO Zhiyong,HUANG Chunjuan,LU Shichang,et al. Model of gas-bearing permeability prediction based on APSO- WLS-SVM[J]. Coal Geology & Exploration,2019,47(2):66–71.
[15] 溫正,孫華克. MATLAB智能算法[M]. 北京:清華大學(xué)出版社,2017.
WEN Zheng,SUN Huake. MATLAB smart algorithm[M]. Beijing:Tsinghua University Press,2017.
[16] 呂偉才,黃暉,池深深,等. 概率積分預(yù)計(jì)參數(shù)的神經(jīng)網(wǎng)絡(luò)優(yōu)化算法[J]. 測繪科學(xué),2019,44(9):35–41.
LYU Weicai,HUANG Hui,CHI Shenshen,et al. Neural network optimization algorithm for the prediction parameters of probability integral method[J]. Science of Surveying and Mapping,2019,44(9):35–41.
[17] 錢鋒. 粒子群算法及其工業(yè)應(yīng)用[M]. 北京:科學(xué)出版社,2013.
QIAN Feng. Particle swarm algorithm and its industrial application[M]. Beijing:Science Press,2013.
[18] 王雨虹,劉璐璐,付華,等. 基于改進(jìn)BP神經(jīng)網(wǎng)絡(luò)的煤礦沖擊地壓預(yù)測方法研究[J]. 煤炭科學(xué)技術(shù),2017,45(10):36–40.
WANG Yuhong,LIU Lulu,F(xiàn)U Hua,et al. Study on predicted method of mine pressure bump based on improved BP neural network[J]. Coal Science and Technology,2017,45(10):36–40.
[19] 王曉振,許家林,韓紅凱,等. 頂板導(dǎo)水裂隙高度隨采厚的臺階式發(fā)育特征[J]. 煤炭學(xué)報(bào),2019,44(12):3740–3749.
WANG Xiaozhen,XU Jialin,HAN Hongkai,et al. Stepped development characteristic of water flowing fracture height with variation of mining thickness[J]. Journal of China Coal Society,2019,44(12):3740–3749.
[20] 郭文兵,婁高中. 覆巖破壞充分采動程度定義及判別方法[J]. 煤炭學(xué)報(bào),2019,44(3):755–766.
GUO Wenbing,LOU Gaozhong. Definition and distinguishing method of critical mining degree of overburden failure[J]. Journal of China Coal Society,2019,44(3):755–766.
[21] 尹尚先,徐斌,徐慧,等. 綜采條件下煤層頂板導(dǎo)水裂縫帶高度計(jì)算研究[J]. 煤炭科學(xué)技術(shù),2013,41(9):138–142.
YIN Shangxian,XU Bin,XU Hui,et al. Study on height calculation of water conducted fractured zone caused by fully mechanized mining[J]. Coal Science and Technology,2013,41(9):138–142.
[22] 胡炳南,張華興,申寶宏. 建筑物、水體、鐵路及主要井巷煤柱留設(shè)與壓煤開采指南[M]. 北京:煤炭工業(yè)出版社,2017.
HU Bingnan,ZHANG Huaxing,SHEN Baohong. Guidelines for coal pillar retention and compressed coal mining in buildings,water bodies,railways and main shafts[M]. Beijing:China Coal Industry Publishing House,2017.
[23] 王正帥,鄧喀中,譚志祥. 導(dǎo)水裂縫帶高度預(yù)測的模糊支持向量機(jī)模型[J]. 地下空間與工程學(xué)報(bào),2011,7(4):723–727.
WANG Zhengshuai,DENG Kazhong,TAN Zhixiang. Height prediction of water fractured zone based on fuzzy SVM[J]. Chinese Journal of Underground Space and Engineering,2011,7(4):723–727.
[24] 樊振麗. 納林河復(fù)合水體下厚煤層安全可采性研究[D]. 北京:中國礦業(yè)大學(xué)(北京),2013.
FAN Zhenli. Mining safety research of thick coal seam under aquifers and surface water in Nalinhe mine area[D]. Beijing:China University of Mining and Technology(Beijing),2013.
[25] 曹博,白剛,李輝. 基于PCA-GA-BP神經(jīng)網(wǎng)絡(luò)的瓦斯含量預(yù)測分析[J]. 中國安全生產(chǎn)科學(xué)技術(shù),2015,11(5):84–90.
CAO Bo,BAI Gang,LI Hui. Prediction of gas content based on PCA-GA-BP neural network[J]. Journal of Safety Science and Technology,2015,11(5):84–90.
[26] 韓亮,劉殿書,李紅江,等. 基于Weibull模型的高臺階拋擲爆破爆堆形態(tài)BP神經(jīng)網(wǎng)絡(luò)預(yù)測[J]. 煤炭學(xué)報(bào),2013,38(11):1947–1952.
HAN Liang,LIU Dianshu,LI Hongjiang,et al. BP neural network forecast of blasting muck pile form of high bench cast blasting based on Weibull model[J]. Journal of China Coal Society,2013,38(11):1947–1952.
[27] 臧子婧,吳海波,張平松,等. 基于ABC-BP模型的煤層含氣量預(yù)測[J]. 煤田地質(zhì)與勘探,2021,49(2):152–158.
ZANG Zijing,WU Haibo,ZHANG Pingsong,et al. Prediction of coal seam gas content based on ABC-BP model[J]. Coal Geology & Exploration,2021,49(2):152–158.
[28] 寧永香,崔希民. 礦山邊坡地表變形的PSO-ELM預(yù)測模型[J]. 煤田地質(zhì)與勘探,2020,48(6):201–206.
NING Yongxiang,CUI Ximin. PSO-ELM prediction model for surface deformation of mine slope[J]. Coal Geology & Exploration,2020,48(6):201–206.
Prediction of the height of water flowing fractured zone based on PSO-BP neural network
LOU Gaozhong1, TAN Yi2,3
(1. School of Civil and Architectural Engineering, Anyang Institute of Technology, Anyang 455000, China; 2. School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China; 3. State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China)
Theheight of water flowing fractured zone is the theoretical basis and key parameter of water-preserved mining in western mining areas of China. In recent years, BP neural network has been widely used to predict the height of water flowing fracture zone, but it has such defects as slow convergence speed and a tendency to fall into local minimum. In order to improve the prediction accuracy of the height of water flowing fractured zone, the weight values and thresholds of BP neural network were optimized by particle swarm optimization(PSO), and a prediction model was established based on PSO-BP neural network. Mining thickness, mining depth, inclined length of working face, dip angle of coal seam, overburden structural characteristics were chosen as the main influential factors of the height of water flowing fractured zone, and 22 measured data of the height of water flowing fractured zone were selected to train PSO-BP neural network. Then the trained PSO-BP neural network was used to predict two test samples, and the results were compared with the actual values, and with the predicting results of BP neural network prediction model and empirical formulas. The research results show that the average relative error of PSO-BP neural network prediction model is 1.55%, and that of BP neural network prediction model and the minimum relative error of empirical formulas are 4.8% and 9.4% respectively. The prediction accuracy of PSO-BP neural network is obviously significantly better than BP neural network and empirical formulas, and the variation of its absolute error and relative error are relatively stable, so PSO-BP neural network can effectively predict the height of water flowing fractured zone.
particle swarm optimization; BP neural network; height of water flowing fractured zone; influential factors; prediction model
TD823.83
A
1001-1986(2021)04-0198-07
2021-02-05;
2021-06-09
國家自然科學(xué)基金項(xiàng)目(51774111);河南省科技攻關(guān)項(xiàng)目(212102310406);安陽工學(xué)院博士科研基金項(xiàng)目(BSJ2019028)
婁高中,1988年生,男,河南平頂山人,博士,講師,從事“三下”采煤研究. E-mail:754937725@qq.com
婁高中,譚毅. 基于PSO-BP神經(jīng)網(wǎng)絡(luò)的導(dǎo)水裂隙帶高度預(yù)測[J]. 煤田地質(zhì)與勘探,2021,49(4):198–204. doi: 10.3969/j.issn.1001-1986.2021.04.024
LOU Gaozhong,TAN Yi. Prediction of the height of water flowing fractured zone based on PSO-BP neural network[J]. Coal Geology & Exploration,2021,49(4):198–204. doi: 10.3969/j.issn.1001-1986.2021.04.024
(責(zé)任編輯 周建軍)