趙鐘南,許洋鋮,吳燕清,譚青青,康躍明,王 耀
井下瞬變電磁儀硬件對(duì)致災(zāi)水體分辨能力的評(píng)估
趙鐘南1,2,許洋鋮1,2,吳燕清1,2,譚青青1,2,康躍明1,2,王 耀3
(1. 重慶大學(xué) 煤礦災(zāi)害動(dòng)力學(xué)與控制國(guó)家重點(diǎn)實(shí)驗(yàn)室,重慶 400044;2. 重慶大學(xué) 資源與安全學(xué)院,重慶 400044;3. 重慶郵電大學(xué) 先進(jìn)制造工程學(xué)院,重慶 400065)
井下瞬變電磁隨掘探測(cè)技術(shù)是探測(cè)掘進(jìn)面前方致災(zāi)水體的有效方法,從硬件方面評(píng)估儀器對(duì)致災(zāi)水體的分辨能力,是儀器能夠在井下正確使用的重要手段。通過(guò)比較二次場(chǎng)絕對(duì)差和儀器分辨率、疊加后背景噪聲之間的大小關(guān)系,分析含水致災(zāi)體識(shí)別的硬件條件和評(píng)估依據(jù);提出從硬件方面評(píng)估井下瞬變電磁對(duì)致災(zāi)水體分辨能力的計(jì)算方法:根據(jù)致災(zāi)水體結(jié)構(gòu)建立三維地質(zhì)模型,推導(dǎo)梯形波關(guān)斷與負(fù)階躍波關(guān)斷二次場(chǎng)感應(yīng)電壓的關(guān)系,在GPU上采用全空間三維有限差分并行算法計(jì)算了致災(zāi)水體二次場(chǎng)響應(yīng);測(cè)量某瞬變電磁儀的關(guān)斷時(shí)間和綜合噪聲,根據(jù)致災(zāi)水體的硬件分辨依據(jù),從硬件方面評(píng)估井下瞬變電磁儀對(duì)導(dǎo)水陷落柱、充水采空區(qū)的分辨能力。為井下瞬變電磁探測(cè)儀器的研制和現(xiàn)場(chǎng)準(zhǔn)確探測(cè)提供技術(shù)參考,具有重大的研究意義。
瞬變電磁;致災(zāi)水體;分辨能力;FDTD;并行計(jì)算
礦井水害[1-3]是煤礦開(kāi)采面臨的第二大災(zāi)害。隨著開(kāi)采深度的增加,掘進(jìn)面和回采面距離奧灰含水層越來(lái)越近,不僅面臨采空水的威脅,底板奧灰水的威脅也相應(yīng)增加。實(shí)時(shí)、準(zhǔn)確查明充水采空區(qū)、導(dǎo)水陷落柱等含水致災(zāi)體,是煤礦隱蔽致災(zāi)地質(zhì)因素動(dòng)態(tài)智能探測(cè)技術(shù)的重要研究?jī)?nèi)容[4-6]。
井下瞬變電磁隨掘探測(cè)技術(shù)是掘進(jìn)面前方致災(zāi)水體的有效探測(cè)方法[7-8]。準(zhǔn)確評(píng)估瞬變電磁儀對(duì)致災(zāi)水體的分辨能力,不僅可以準(zhǔn)確判定儀器是否能夠探測(cè)到待測(cè)目標(biāo)體,還可以定量劃分儀器的有效探測(cè)范圍,為儀器設(shè)計(jì)和使用提供數(shù)據(jù)支持。
對(duì)于瞬變電磁對(duì)目標(biāo)體的分辨能力,雷康信等[9]以相對(duì)異常表征分辨能力為依據(jù),研究了電性源瞬變電磁分辨能力和偏移距、觀測(cè)時(shí)間的關(guān)系;陳衛(wèi)營(yíng)等[10]以二次場(chǎng)的相對(duì)誤差為判斷依據(jù),研究了電性源地–井瞬變電磁的旁側(cè)分辨能力;武軍杰等[11]以反演結(jié)果中對(duì)低阻層是否有顯示,且以幾何、物性參數(shù)與理論模型的誤差大小為判斷依據(jù),研究瞬變電磁對(duì)深部低阻層的分辨能力;CHANG Jianghao等[12-13]比較了地表和地井瞬變電磁方法的分辨能力,發(fā)現(xiàn)井下的分辨能力優(yōu)于地表;嵇艷鞠等[14]以二次場(chǎng)感應(yīng)電壓是否低于接收系統(tǒng)分辨率為判斷依據(jù),研究了全波形時(shí)間域航空電磁探測(cè)的分辨率。
以上研究在評(píng)估瞬變電磁對(duì)目標(biāo)地質(zhì)體的分辨能力方面起到了十分積極的作用。在井下瞬變電磁隨掘探測(cè)中[15],二次場(chǎng)感應(yīng)電壓絕對(duì)差與接收系統(tǒng)分辨率、疊加后背景噪聲之間的大小關(guān)系,是儀器能從大地背景中分辨出致災(zāi)水體的硬件條件和前提條件。只有當(dāng)二次場(chǎng)的絕對(duì)差被儀器準(zhǔn)確分辨時(shí),才可通過(guò)反演解釋探查出含水致災(zāi)體。筆者將從絕對(duì)差和儀器分辨率、疊加后背景噪聲出發(fā),從硬件方面評(píng)估井下瞬變電磁對(duì)致災(zāi)水體分辨能力的計(jì)算方法:從硬件方面定義儀器能夠探測(cè)出致災(zāi)水體的評(píng)估依據(jù),推導(dǎo)井下瞬變電磁對(duì)全空間三維致災(zāi)水體分辨能力的評(píng)估計(jì)算方法,并在GPU上通過(guò)并行三維有限差分計(jì)算某瞬變電磁儀對(duì)導(dǎo)水陷落柱、充水采空區(qū)的分辨能力。
如圖1所示,當(dāng)探測(cè)前方地層不含致災(zāi)水體時(shí),接收線圈中總感應(yīng)電壓rb()為一次場(chǎng)感應(yīng)電壓p()與含煤地層二次場(chǎng)感應(yīng)電壓g()之和。
當(dāng)探測(cè)前方地層含有致災(zāi)水體時(shí),接收線圈中總場(chǎng)感應(yīng)電壓rw()為一次場(chǎng)感應(yīng)電壓p()、含水地層二次場(chǎng)感應(yīng)電壓w()之和。
由式(1)和式(2)聯(lián)合:
式中:o()為含水地層總場(chǎng)感應(yīng)電壓rw()與未含水地層總場(chǎng)感應(yīng)電壓rb()的絕對(duì)差。
設(shè)瞬變電磁儀的接收分辨率為rs,只有o()大于rs時(shí),致災(zāi)水體引起的二次場(chǎng)變化才能被儀器準(zhǔn)確捕捉到,后期才有可能通過(guò)反演解釋,分辨出含水致災(zāi)體,即:
在井下探測(cè)時(shí),接收系統(tǒng)采集到的信號(hào)中還包含工頻干擾、環(huán)境白噪聲、儀器本底白噪聲的背景噪聲,設(shè)經(jīng)過(guò)雙極性疊加壓制的背景噪聲為n()。只有o()高于n()時(shí),二次場(chǎng)的變化才不會(huì)被噪聲淹沒(méi)。
因此,在井下瞬變電磁隨掘動(dòng)態(tài)探測(cè)中,瞬變電磁儀能分辨出致災(zāi)水體的硬件條件、前提條件和評(píng)估依據(jù)為:
為從硬件方面評(píng)估計(jì)算井下瞬變電磁儀對(duì)致災(zāi)水體的分辨能力,首先,根據(jù)三維地質(zhì)模型建立數(shù)值模擬模型[16],采用三維有限差分算法[17-18]計(jì)算出rw()、rb()、o(),在實(shí)驗(yàn)室測(cè)出發(fā)射電流關(guān)斷時(shí)間、接收系統(tǒng)分辨率、背景噪聲等參數(shù),最后根據(jù)式(6),從硬件方面判斷儀器是否能分辨出致災(zāi)水體。計(jì)算過(guò)程如圖2所示。
圖2 從硬件方面評(píng)估井下瞬變電磁儀對(duì)致災(zāi)水體的分辨能力計(jì)算流程
井下瞬變電磁隨掘探測(cè)采用多匝小回線發(fā)射[19],磁探頭接收。由于多匝線圈電感影響,發(fā)射電流不是理想情況下的階躍關(guān)斷,而是類似于梯形波關(guān)斷,如圖3所示。
圖3 梯形波發(fā)射電流
發(fā)射電流和其激發(fā)的二次磁場(chǎng)2(t)的關(guān)系如下:
式中:()為梯形波發(fā)射電流;i2()為全空間沖擊脈沖電流二次磁場(chǎng)。根據(jù)法拉第電磁感應(yīng)定律,接收探頭中二次感應(yīng)電壓t()為:
式中:r為接收探頭等效接收面積;()為單位階躍函數(shù);為時(shí)間;0為關(guān)斷開(kāi)始時(shí)間;1為完全關(guān)斷時(shí)間;0為真空磁導(dǎo)率;off為關(guān)斷時(shí)間;s2()為正階躍電流二次磁場(chǎng)。
根據(jù)正階躍電流二次磁場(chǎng)與負(fù)階躍電流二次磁場(chǎng)–s2()關(guān)系式[20]:
將式(9)代入式(8)得:
由式(10)可以得出,梯形波關(guān)斷二次感應(yīng)電壓在數(shù)值上等于0時(shí)刻負(fù)階躍電流產(chǎn)生的二次磁場(chǎng)與1時(shí)刻負(fù)階躍電流產(chǎn)生的二次磁場(chǎng)的代數(shù)和。只需要計(jì)算出全空間三維地質(zhì)模型的負(fù)階躍電流二次磁場(chǎng)–s2(),再結(jié)合發(fā)射電流關(guān)斷時(shí)間和接收探頭的等效面積,即可得到t()。
將含煤地層劃分為多個(gè)Yee氏網(wǎng)格,為計(jì)算方便,位于模型中央的發(fā)射回線采用方向水平磁偶極子等效。為提高計(jì)算機(jī)內(nèi)存的利用率,采用均勻網(wǎng)格和非均勻網(wǎng)格結(jié)合的方式:如圖4a所示,在源附近采用均勻網(wǎng)格,距離源遠(yuǎn)的區(qū)域采用非均勻網(wǎng)格。Yee晶胞如圖4b所示。
根據(jù)顯式三維有限差分迭代原理:在空間和時(shí)間上采用二階差分,t1/2時(shí)刻磁場(chǎng)與t1/2時(shí)刻磁場(chǎng)、t時(shí)刻電場(chǎng)有關(guān),t+1時(shí)刻電場(chǎng)與t時(shí)刻電場(chǎng)、t1/2時(shí)刻磁場(chǎng)有關(guān)。則迭代公式[21]為:
圖4 網(wǎng)格剖分示意圖及Yee晶胞格式
式中:為電場(chǎng)強(qiáng)度;為磁場(chǎng)強(qiáng)度;為電導(dǎo)率;為介電常數(shù);為磁導(dǎo)率;為虛擬介電常數(shù);、、分別為軸、軸、軸坐標(biāo)值;為計(jì)算時(shí)刻;下標(biāo)、、表示方向。由于源在計(jì)算區(qū)域中央,為保證晚期的計(jì)算精度,引入磁場(chǎng)零散定理,并從兩邊網(wǎng)格往中間,由、方向磁場(chǎng)逐步迭代計(jì)算方向磁場(chǎng),如式(16)所示?
通過(guò)式(11)—式(16),即可迭代計(jì)算出任意時(shí)刻、任意點(diǎn)的負(fù)階躍電流二次磁場(chǎng)。
在負(fù)階躍關(guān)斷早期,電磁場(chǎng)變化劇烈,不適宜用三維有限差分計(jì)算??筛鶕?jù)電磁波完全在發(fā)射源所在層中傳播的距離和速度,采用均勻全空間磁偶極子二次場(chǎng)解析式來(lái)計(jì)算早期初始場(chǎng)[20]:
式中:s2為初始電場(chǎng);s2為初始磁場(chǎng);為磁偶極距;為收發(fā)距;為定義的函數(shù);ini為關(guān)斷后很短的時(shí)間;max為電磁波完全在發(fā)射源所在層中傳播的距離。
在迭代過(guò)程中需遵循Courant穩(wěn)定條件,限制人工位移電流項(xiàng):
式中:Δt為當(dāng)前時(shí)刻迭代時(shí)間步長(zhǎng);Δmin為計(jì)算空間中最小網(wǎng)格步長(zhǎng)。
為了防止人工位移電流在擴(kuò)散方程中占主導(dǎo)作用,限制迭代時(shí)間步長(zhǎng)Δmax:
式中:min為計(jì)算空間中最小電導(dǎo)率。邊界采用Dirichlet邊界條件,6個(gè)邊界都設(shè)置為0。
利用時(shí)域有限差分各個(gè)網(wǎng)格電磁場(chǎng)計(jì)算的相互獨(dú)立性,采用GPU并行處理技術(shù)提高數(shù)值建模的計(jì)算速度。GPU并行計(jì)算在NVIDA Tesla T4 顯卡上執(zhí)行(如圖5a),此顯卡擁有16 GB顯存,2 560個(gè)CUDA核心,適合于并行計(jì)算。對(duì)于本文采用的538×539×539網(wǎng)格模型,迭代12 000次,若采用CPU計(jì)算,計(jì)算一個(gè)模型需要240 h;而采用GPU并行計(jì)算,時(shí)間僅為26 h,大幅縮短了計(jì)算時(shí)間。
程序平臺(tái)采用Matlab2019。用Matlab的內(nèi)置函數(shù)gpuArry函數(shù),將CPU上的數(shù)據(jù)轉(zhuǎn)移到各個(gè)GPU核上并行運(yùn)算。為了提高計(jì)算速度,采用single函數(shù)將數(shù)據(jù)轉(zhuǎn)變成單精度函數(shù),最后將GPU上的數(shù)據(jù)用gather函數(shù)調(diào)回到CPU上進(jìn)行處理。計(jì)算過(guò)程中GPU一直處于滿負(fù)荷狀態(tài),如圖5b所示。
圖5 NVIDA Tesla T4顯卡和GPU運(yùn)行狀態(tài)
以某井下瞬變電磁儀為例,為計(jì)算儀器對(duì)導(dǎo)水陷落柱、充水采空區(qū)的分辨能力,首先需測(cè)量?jī)x器的關(guān)斷時(shí)間、背景噪聲、分辨率。
圖6a為儀器設(shè)備實(shí)物圖及測(cè)試過(guò)程。發(fā)射天線邊長(zhǎng)2 m,共10匝,電阻1.1 Ω。采用泰克A622電流探頭跨接在天線上,測(cè)量發(fā)射電流關(guān)斷時(shí)間。發(fā)射電流幅值為2.8 A,關(guān)斷時(shí)間為12 μs(圖6b)。
圖6 某瞬變電磁儀關(guān)斷時(shí)間測(cè)試
數(shù)據(jù)采集采用24位分辨率、50 kHz采樣率芯片。由于地面室內(nèi)電磁噪聲比井下掘進(jìn)頭噪聲大,且井下探測(cè)時(shí),掘進(jìn)機(jī)不工作,故基本上沒(méi)有電磁噪聲干擾,因此,本文以室內(nèi)電磁噪聲為背景噪聲。在室內(nèi)接入礦用本安型天線,直接測(cè)量疊加后噪聲(圖7a),此時(shí)考慮了分辨率和背景噪聲的影響,當(dāng)絕對(duì)差大于綜合噪聲,即可分辨出目標(biāo)體。圖7b為接收天線接入儀器,并經(jīng)過(guò)256次疊加后的綜合噪聲。由圖中可以看出,綜合噪聲小于10 μV。
圖7 某瞬變電磁儀綜合噪聲測(cè)試
采用以上方法,從硬件方面評(píng)估某井下瞬變電磁儀對(duì)充水陷落柱、充水采空區(qū)的分辨能力。模型參數(shù)見(jiàn)表1。
表1 模型參數(shù)
基于以上模型參數(shù),設(shè)置了538×539×539個(gè)網(wǎng)格數(shù)進(jìn)行計(jì)算,且網(wǎng)格特征為中間均勻、兩邊非均勻。儀器參數(shù)見(jiàn)表2。
表2 儀器參數(shù)
充水陷落柱大小為20 m×20 m×100 m,電阻率為1 Ω·m。計(jì)算了大小相同、與發(fā)射源距離不同的陷落柱的二次場(chǎng)感應(yīng)電壓衰減曲線、與層狀背景大地二次場(chǎng)感應(yīng)電壓的絕對(duì)差(圖8)。
圖8 陷落柱模型
由圖9可知,當(dāng)充水陷落柱與發(fā)射源距離增加時(shí),其二次場(chǎng)感應(yīng)電壓衰減曲線逐漸與層狀背景大地的二次場(chǎng)感應(yīng)電壓衰減曲線重合。隨時(shí)間增加,充水陷落柱感應(yīng)電壓與層狀背景大地感應(yīng)電壓之差由負(fù)變正,然后逐漸趨于0。
由圖10可知,充水陷落柱與發(fā)射源的距離在80 m內(nèi)時(shí),在有效探測(cè)時(shí)間內(nèi),二次場(chǎng)感應(yīng)電壓絕對(duì)差大于綜合噪聲,儀器硬件上能夠分辨出該充水陷落柱。當(dāng)充水陷落柱距離發(fā)射源80 m以外時(shí),在整個(gè)探測(cè)時(shí)間內(nèi),二次場(chǎng)絕對(duì)差值都小于儀器分辨率,儀器硬件上無(wú)法分辨出該充水陷落柱。
采空區(qū)大小為200 m×1 000 m×6 m,電阻率為1 Ω·m(圖11)。計(jì)算了大小相同、與發(fā)射源距離不同的采空區(qū)的二次場(chǎng)感應(yīng)電壓衰減曲線、與層狀背景大地二次場(chǎng)感應(yīng)電壓的絕對(duì)差。
圖9 不同距離下充水陷落柱與線圈感應(yīng)電壓衰減曲線
圖10 充水陷落柱與線圈不同距離下二次場(chǎng)絕對(duì)差
圖11 采空區(qū)模型
由圖12—圖13可知,當(dāng)充水采空區(qū)與發(fā)射源距離增加時(shí),其二次場(chǎng)感應(yīng)電壓衰減曲線逐漸與層狀背景大地的二次場(chǎng)感應(yīng)電壓衰減曲線重合。隨時(shí)間增加,充水采空區(qū)感應(yīng)電壓與層狀背景大地感應(yīng)電壓之差由負(fù)變正,然后逐漸趨于0。充水采空區(qū)與發(fā)射源的距離在65 m內(nèi)時(shí),在有效探測(cè)時(shí)間內(nèi),二次場(chǎng)感應(yīng)電壓絕對(duì)差大于綜合噪聲,儀器硬件上能夠分辨出該充水采空區(qū)。當(dāng)充水采空區(qū)距離發(fā)射源65 m以外時(shí),在整個(gè)探測(cè)時(shí)間內(nèi),二次場(chǎng)絕對(duì)差值都小于儀器分辨率,儀器硬件上無(wú)法分辨出該充水采空區(qū)。
圖12 不同距離下充水采空區(qū)與線圈感應(yīng)電壓衰減曲線
圖13 不同距離下充水采空區(qū)與線圈二次場(chǎng)絕對(duì)差
a.在儀器硬件方面,井下瞬變電磁儀器對(duì)致災(zāi)水體探測(cè)能力的前提條件:一是背景層狀大地和含致災(zāi)水體大地二次場(chǎng)感應(yīng)電壓絕對(duì)差大于瞬變電磁儀器自身的分辨率;二是二次場(chǎng)感應(yīng)電壓絕對(duì)差大于背景噪聲。
b.提出了從硬件方面評(píng)估井下瞬變電磁儀對(duì)致災(zāi)水體的分辨能力的方法:建立三維致災(zāi)水體地質(zhì)模型,采用全空間三維有限差分并行算法計(jì)算二次場(chǎng)感應(yīng)電壓,將其與背景場(chǎng)感應(yīng)電壓相減,分析二次場(chǎng)絕對(duì)差和儀器分辨率、疊加后背景噪聲之間的關(guān)系,確定能否分辨出致災(zāi)水體。
c.評(píng)估了某井下瞬變電磁儀對(duì)20 m×20 m× 100 m,電阻率為1 Ω·m的充水陷落柱在文中所述地質(zhì)背景下的有效探測(cè)距離為80 m左右;對(duì)200 m× 1 000 m×6 m,電阻率為1 Ω?m的充水采空區(qū)在文中所述地質(zhì)背景下的有效探測(cè)距離為65 m左右。
[1] 范立民,孫魁,李成,等. 榆神礦區(qū)煤礦防治水的幾點(diǎn)思考[J].煤田地質(zhì)與勘探,2021,49(1):182–188.
FAN Limin,SUN Kui,LI Cheng,et al. Thoughts on mine water control and treatment in Yushen mining area[J]. Coal Geology & Exploration,2021,49(1):182–188.
[2] FANG Huiming. Hydrochemical characteristics and water hazard control of Tangjiahui Coal Mine,Ordos Basin,NW China[C]// Hubei Zhongke Institute of Geology and Environment Technology,China. Proceedings of the 8th Academic Conference of Geology Resource Management and Sustainable Development. 2020:6.
[3] 虎維岳,趙春虎. 基于充水要素的礦井水害類型三線圖劃分方法[J]. 煤田地質(zhì)與勘探,2019,47(5):1–8.
HU Weiyue,ZHAO Chunhu. Trilinear chart classification method of mine water hazard type based on factors of water recharge[J]. Coal Geology & Exploration,2019,47(5):1–8.
[4] 李超峰. 煤層頂板含水層涌水危險(xiǎn)性評(píng)價(jià)方法[J]. 煤炭學(xué)報(bào),2020,45(增刊1):384–392.
LI Chaofeng. Method for evaluating the possibility of water inrush from coal seam roof aquifer[J]. Journal of China Coal Society,2020,45(Sup.1):384–392.
[5] XU Zhimin,SUN Yajun,GAO Shang,et al. Comprehensive exploration,safety evaluation and grouting of karst collapse columns in the Yangjian coalmine of the Shanxi Province,China[J]. Carbonates and Evaporites,2021,36(1):16.
[6] 李洋,王金平,魏?jiǎn)⒚? 瞬變電磁法在井下工作面頂板導(dǎo)水裂縫探測(cè)中的應(yīng)用[J]. 煤田地質(zhì)與勘探,2018,46(增刊1):66–71.
LI Yang,WANG Jinping,WEI Qiming. Application of transient electromagnetic method for detecting water-conducting crack in the roof of underground working face[J]. Coal Geology & Exploration,2018,46(Sup.1):66–71.
[7] 胡雄武,徐虎,彭蘇萍,等. 煤層采動(dòng)覆巖富水性變化規(guī)律瞬變電磁法動(dòng)態(tài)監(jiān)測(cè)研究[J/OL]. 煤炭學(xué)報(bào),[2021-04-11]. https://doi.org/10.13225/j.cnki.jccs.ST21.8220
HU Xiongwu,XU Hu,PENG Suping,et al. Study on dynamic monitoring of water abundance of overlying strata in coal seam by transient electromagnetic method[J/OL]. Journal of China Coal Society,[2021-04-11]. https://doi.org/10.13225/j.cnki.jccs. ST21.8220
[8] WANG Peng,LI Mingxing,YAO Weihua,et al. Detection of abandoned water-filled mine tunnels using the downhole transient electromagnetic method[J]. Exploration Geophysics,2020,51(3):1–16.
[9] 雷康信,薛國(guó)強(qiáng),陳衛(wèi)營(yíng),等. 瞬變電磁法探測(cè)薄層的分辨能力與偏移距關(guān)系[J]. 地球科學(xué)與環(huán)境學(xué)報(bào),2020,42(6):731–736.
LEI Kangxin,XUE Guoqiang,CHEN Weiying,et al. Relationship between the detection capability and offset of transient electromagnetic method for thin layers[J]. Journal of Earth Sciences and Environment,2020,42(6):731–736.
[10] 陳衛(wèi)營(yíng),薛國(guó)強(qiáng). 電性源瞬變電磁對(duì)薄層的探測(cè)能力[J]. 物探與化探,2015,39(4):775–779.
CHEN Weiying,XUE Guoqiang. Detection capability of grounded electric source TEM for thin layer[J]. Geophysical and Geochemical Exploration,2015,39(4):775–779.
[11] 武軍杰,楊毅,張杰,等. TEM對(duì)于深部低阻層的分辨能力模擬分析[J]. 物探化探計(jì)算技術(shù),2014,36(5):547–554.
WU Junjie,YANG Yi,ZHANG Jie,et al. Resolution capability preliminary analysis of deep conductive layer with TEM method[J]. Computing Techniques for Geophysical and Geochemical Exploration,2014,36(5):547–554.
[12] CHANG Jianghao,SU Benyu,MALEKIAN R,et al. Detection of water-filled mining goaf using mining transient electromagnetic method[J]. IEEE Transactions on Industrial Informatics,2019,16(5):1.
[13] CHANG Jianghao,XUE Guoqiang,MALEKIAN R. A comparison of surface-to-coal mine roadway TEM and surface TEM responses to water-enriched bodies[J]. IEEE Access,2019,7:167320–167328.
[14] 嵇艷鞠,欒卉,李肅義,等. 全波形時(shí)間域航空電磁探測(cè)分辨率[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2011,41(3):885–891.
JI Yanju,LUAN Hui,LI Suyi,et al. Resolution of full waveform airborne TEM[J]. Journal of Jilin University(Earth Science Edition),2011,41(3):885–891.
[15] 薛國(guó)強(qiáng),李海,陳衛(wèi)營(yíng),等. 煤礦含水體瞬變電磁探測(cè)技術(shù)研究進(jìn)展[J]. 煤炭學(xué)報(bào),2021,46(1):77–85.
XUE Guoqiang,LI Hai,CHEN Weiying,et al. Progress of transient electromagnetic detection technology for water-bearing bodies in coal mines[J]. Journal of China Coal Society,2021,46(1):77–85.
[16] 王新苗,韓保山,宋燾,等. 智能開(kāi)采工作面三維地質(zhì)模型構(gòu)建及誤差分析[J]. 煤田地質(zhì)與勘探,2021,49(2):93–101.
WANG Xinmiao,HAN Baoshan,SONG Tao,et al. 3D geological model construction and error analysis of intelligent mining working face[J]. Coal Geology & Exploration,2021,49(2):93–101.
[17] 孫懷鳳,程銘,吳啟龍,等. 瞬變電磁三維FDTD正演多分辨網(wǎng)格方法[J]. 地球物理學(xué)報(bào),2018,61(12):5096–5104.
SUN Huaifeng,CHENG Ming,WU Qilong,et al. A multi-scale grid scheme in three–dimensional transient electromagnetic modeling using FDTD[J]. Chinese Journal of Geophysics,2018,61(12):5096–5104.
[18] CHENG Jiulong,XUE Junjie,ZHOU Jin,et al. 2.5-D inversion of advanced detection transient electromagnetic method in full space[J]. IEEE Access,2019,8:1.
[19] 楊海燕,岳建華,李鋒平. 斜階躍電流激勵(lì)下多匝小回線瞬變電磁場(chǎng)延時(shí)特征[J]. 地球物理學(xué)報(bào),2019,62(9):3615–3628.
YANG Haiyan,YUE Jianhua,LI Fengping. The decay characteristics of transient electromagnetic fields stimulated by ramp step current in multi-turn small coil[J]. Chinese Journal of Geophysics,2019,62(9):3615–3628.
[20] 米薩克·N·納比吉安. 勘查地球物理電磁法[M]. 北京:地質(zhì)出版社,1992.
NABIJIAN M N. Exploration geophysical electromagnetic method[M]. Beijing:Geological Publishing House,1992.
[21] 葛德彪,閆玉波. 電磁波時(shí)域有限差分方法[M]. 西安:西安電子科技大學(xué)出版社,2002.
GE Debiao,YAN Yubo. Finite difference time domain method for electromagnetic waves[M]. Xi’an:Xidian University Press,2002.
Evaluation on the resolution ability of underground transient electromagnetic instrument to disaster-causing water bodies
ZHAO Zhongnan1,2, XU Yangcheng1,2, WU Yanqing1,2, TAN Qingqing1,2, KANG Yueming1,2, WANG Yao3
(1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; 2. School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China; 3. College of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)
The downhole transient electromagnetic detection technology is an effective method to detect the disaster-causing water body in front of the tunneling. It is an important means to evaluate the instrument's resolution ability to disaster-causing water from the aspect of hardware for the instrument to be used correctly in underground mines. By comparing the magnitude relationship between the absolute difference of the secondary field, the resolution of the instrument and the background noise after superposition, the hardware conditions and evaluation basis for distinguishing the water-bearing hazards are analyzed. A calculation method for evaluating the resolution ability of underground transient electromagnetic to disaster-causing water body from the aspect of hardware is put forward. A three-dimensional geological model is established based on the structure of the disaster-causing water body, and the relationship between the trapezoidal wave turn-off and the negative step wave turn-off secondary field induced voltage was deduced, and the full-space three-dimensional finite difference parallel was adopted on the GPU. The algorithm calculates the secondary field response of the disaster-causing water body. The turn-off time and background noise of a transient electromagnetic instrument are measured. According to the hardware discrimination basis of the disaster-causing water body, the ability of the underground transient electromagnetic instrument to distinguish water-conducting subsidence column and water-filled goaf was evaluated from the hardware aspect. The development of downhole transient electromagnetic detection instruments and accurate on-site detection provide technical reference, which is of great research significance.
transient electromagnetic; disaster-causing water body; resolution ability; FDTD; parallel computing
P631
A
1001-1986(2021)04-0040-09
2021-04-15;
2021-06-21
國(guó)家重點(diǎn)研發(fā)計(jì)劃課題(2018YFC0807805);煤礦災(zāi)害動(dòng)力學(xué)與控制國(guó)家重點(diǎn)實(shí)驗(yàn)室自主研究項(xiàng)目(2011DA105287-MS201906)
趙鐘南,1997年生,男,浙江湖州人,碩士研究生,研究方向?yàn)榫滤沧冸姶艛?shù)值建模. E-mail:ahjzuzzn@163.com
許洋鋮,1983年生,男,重慶南川人,博士,副研究員,研究方向?yàn)樗沧冸姶盘綔y(cè)技術(shù)及儀器. E-mail:xyc1983@cqu.edu.cn
趙鐘南,許洋鋮,吳燕清,等. 井下瞬變電磁儀硬件對(duì)致災(zāi)水體分辨能力的評(píng)估[J]. 煤田地質(zhì)與勘探,2021,49(4):40–48. doi: 10.3969/j.issn.1001-1986.2021.04.006
ZHAO Zhongnan,XU Yangcheng,WU Yanqing,et al. Evaluation on the resolution ability of underground transient electromagnetic instrument to disaster-causing water bodies[J]. Coal Geology & Exploration,2021,49(4):40–48. doi: 10.3969/j.issn.1001-1986.2021.04.006
(責(zé)任編輯 聶愛(ài)蘭)