解芳 翟長生 燕松山 胡瑞 許春霞
摘 要:為了改善高速軋機(jī)軸承熱噴涂層的微觀組織性能,采用感應(yīng)重熔技術(shù)對(duì)GCr15軸承鋼表面預(yù)制備的高能火焰噴涂Ni60A涂層進(jìn)行感應(yīng)重熔處理,并利用金相顯微鏡、掃描電鏡、X射線衍射儀、顯微硬度計(jì)對(duì)感應(yīng)重熔前后涂層的孔隙率、微觀組織、顯微硬度等進(jìn)行對(duì)比研究,探討感應(yīng)重熔對(duì)涂層以及界面微觀組織、顯微硬度的影響。結(jié)果表明,高能火焰噴涂鎳基涂層的孔隙率高達(dá)5.09%,且表面孔洞缺陷較多,涂層與基體結(jié)合的界面處存在較明顯的界面裂紋和孔隙缺陷,呈現(xiàn)典型的機(jī)械結(jié)合,界面結(jié)合特性較差;而經(jīng)感應(yīng)重熔后其涂層組織致密,孔隙率僅為0.27%,涂層缺陷明顯減少,與基體結(jié)合的界面處呈現(xiàn)出強(qiáng)冶金融合特性,且涂層中硬質(zhì)相數(shù)量顯著增多,涂層及界面的顯微硬度均得到較大提升。因此,感應(yīng)重熔技術(shù)可改善涂層的表面組織性能,在高速軋機(jī)軸承表面強(qiáng)化方面有一定的應(yīng)用價(jià)值。
關(guān)鍵詞:材料表面與界面;感應(yīng)重熔;高速軋機(jī)軸承;鎳基涂層:微觀組織
中圖分類號(hào):TG174.4?? 文獻(xiàn)標(biāo)識(shí)碼:A
doi:10.7535/hbkd.2021yx04004
收稿日期:2021-03-25;修回日期:2021-05-28;責(zé)任編輯:馮 民
基金項(xiàng)目:國家自然科學(xué)基金(51605230,51765044);河南省高等學(xué)校重點(diǎn)科研項(xiàng)目(21A460021);河南省高等學(xué)校青年骨干教師培養(yǎng)計(jì)劃項(xiàng)目(2016GGJS-148)
第一作者簡(jiǎn)介:解 芳(1981—),女,江蘇濱海人,副教授,博士,主要從事摩擦學(xué)理論及其工業(yè)應(yīng)用方面的研究。
E-mail:xiefang811222@163.com
解芳,翟長生,燕松山,等.感應(yīng)重熔對(duì)高速軋機(jī)軸承熱噴涂層微觀組織性能的影響[J].河北科技大學(xué)學(xué)報(bào),2021,42(4):345-351.XIE Fang,ZHAI Changsheng,YAN Songshan, et al.Effect of induction remelting on microstructure and properties of hot spraying coating for high speed rolling mill bearings[J].Journal of Hebei University of Science and Technology,2021,42(4):345-351.
Effect of induction remelting on microstructure and properties of hot spraying coating for high speed rolling mill bearings
XIE Fang1,ZHAI Changsheng1,2,YAN Songshan3,HU Rui4,XU Chunxia4
(1.School of Intelligent Manufacturing,Nanyang Institute of Technology,Nanyang,Henan 473004,China;2.Henan Hangong Machinery Remanufacturing Technology Company Limited,Nanyang,Henan 473000,China;3.School of Mechanical and Electronic Engineering,Wuhan University of Technology,Wuhan,Hubei 430070,China;4.School of Mechanical and Electrical Engineering,Nanchang Institute of Technology,Nanchang,Jiangxi 330029,China)
Abstract:In order to improve the microstructure and properties of hot spraying coating for bearing of high speed rolling mill,induction remelting was carried out on the Ni60A coating which was prepared on the surface of GCr15 Bearing Steel by high energy flame spraying.The porosity,microstructure and microhardness of the coating before and after induction remelting were analyzed comparatively by metallographic microscope,scanning electron microscope,X-ray diffractometer and microhardness tester.The effect of induction remelting on the microstructure and microhardness of the coating and interface was investigated.The results show that the porosity of nickel based coating prepared by high energy flame spraying is as high as 5.09%,and there are many surface pore defects,as well as there are obvious interface cracks and pore defects at the interface between the coating and the substrate,showing typical mechanical bonding and poor interface bonding properties.However,after the induction remelting,the microstructure of the coating is dense,the porosity is only 0.27%,the defects of the coating are obviously reduced,and the bonding interface between the coating and the substrate shows strong metallurgical fusion characteristics.Additionally,the amount of hard phase in the coating increases significantly,and the microhardness of the coating and interface is greatly improved.Therefore,the induction remelting process can not only improve the surface quality of hot spraying coating for high-speed rolling mill bearings,but also improve the interface bonding characteristics of the coating.The application of induction remelting technology can improve the coating surface structure property,and it may be used in the surface strenthening of high-speed rolling mill bearings for some point.
Keywords:
material surface and interface;induction remelting;bearing of high speed rolling mill;nickel based coating;microstructure
高速軋機(jī)軸承是中國重點(diǎn)發(fā)展的高端軸承之一,其在高摩擦磨損和重載沖擊的條件下工作,工況環(huán)境十分惡劣,是高速軋機(jī)的主要易損件[1-2]。隨著用戶對(duì)軋制產(chǎn)品質(zhì)量要求的提高,軋機(jī)軋制力與軋制速度不斷增加,對(duì)軋機(jī)軸承的性能也提出了更高要求。因此,提高高速軋機(jī)軸承的可靠性與壽命是軋機(jī)軸承制造業(yè)急需解決的關(guān)鍵問題?,F(xiàn)有研究表明,起源于軸承表面或亞表面的裂紋、磨損、腐蝕等損傷,是影響高速軋機(jī)軸承可靠性和壽命的關(guān)鍵因素[3-6]。如何改善高速軋機(jī)軸承的表面組織結(jié)構(gòu),增加高速軋機(jī)軸承的表面硬度和耐磨性,是提高其可靠性和壽命需要突破的技術(shù)難題[7-9]。
熱噴涂層的重熔技術(shù)是提高軸承等零部件表面性能的有效方法之一[10-11]。目前,常用的重熔技術(shù)主要包括鎢極氬弧重熔[12-13]、電子束重熔[14-15]、激光重熔[16-17]、感應(yīng)重熔[18-19]等。上述幾種重熔技術(shù)均可以改善熱噴涂層的耐磨、耐蝕、抗氧化等性能。然而,鎢極氬弧重熔難以對(duì)低熔點(diǎn)和易蒸發(fā)的金屬(如鉛、錫、鋅)表面涂層進(jìn)行重熔;電子束重熔受到真空室空間的限制,僅適用于加工尺寸較小的零部件;激光重熔的生產(chǎn)效率較低,且生產(chǎn)成本較高,不適用于大型零部件的表面強(qiáng)化;而感應(yīng)重熔技術(shù)加工效率高,引起的金屬基體熱損傷和變形小,特別適用于大型柱狀零部件的表面強(qiáng)化[11]。
基于此,為了探討利用感應(yīng)重熔技術(shù)對(duì)高速軋機(jī)軸承進(jìn)行表面強(qiáng)化的可行性,本文采用感應(yīng)重熔技術(shù)對(duì)GCr15軸承鋼表面預(yù)制備的高能火焰噴涂Ni60A涂層進(jìn)行感應(yīng)重熔處理,研究感應(yīng)重熔對(duì)高速軋機(jī)軸承熱噴涂層微觀組織性能的影響,為感應(yīng)重熔技術(shù)在高速軋機(jī)軸承表面的強(qiáng)化應(yīng)用提供理論依據(jù)。
1 試樣制備與試驗(yàn)方法
1.1 試樣制備
本試驗(yàn)的涂層材料為武漢漢工智造新材料科技有限公司研制的NF201材料[20],該材料為鎳基自熔性合金粉末,SEM形貌如圖1所示。由圖1可知:該粉末呈圓球形狀,粒度分布為45~106 μm,流動(dòng)性好,易控制送粉量,適宜自動(dòng)噴涂操作。
利用高能火焰噴涂設(shè)備[21],在經(jīng)過表面噴砂粗糙活化處理的高速軋機(jī)軸承的GCr15鋼基體上制備厚度為1 mm的涂層,高能火焰噴涂工藝參數(shù)見表1。
為了研究感應(yīng)重熔對(duì)高速軋機(jī)軸承熱噴涂層微觀組織性能的影響,利用自主研制的高效智能感應(yīng)重熔系統(tǒng),對(duì)制備的高能火焰噴涂鎳基涂層進(jìn)行感應(yīng)重熔[20],感應(yīng)重熔過程中,涂層材料的預(yù)熱溫度為300 ℃,重熔溫度為1 012 ℃,精度為±3 ℃。重熔完成后,空冷至室溫。
1.2 試驗(yàn)方法
1)利用線切割電火花機(jī)床將高能火焰噴涂鎳基涂層在感應(yīng)重熔前后的2種涂層試樣切割成斷面為7 mm×7 mm和表面為10 mm×7 mm的試樣;利用XQ-1型金相試樣鑲嵌機(jī)對(duì)試樣進(jìn)行鑲嵌,經(jīng)砂紙打磨后,使用金剛石拋光膏將試樣拋至鏡面,按體積比3∶1將濃鹽酸和濃硝酸配制成腐蝕劑對(duì)試樣進(jìn)行腐蝕處理。
2)采用LEXT OLS4100奧林巴斯激光共焦顯微鏡觀察上述2種涂層表面及斷面的微觀組織,計(jì)算涂層表面的孔隙率。
3)采用德國布魯克D8型XRD衍射儀對(duì)2種涂層試樣的物相組成進(jìn)行測(cè)定,掃描速度為2°/min,掃描范圍為30°~80°,步長為0.02°。
4)采用FEI Quanta 650 FEG掃描電鏡觀察涂層的微觀組織形貌,并利用X射線能譜儀進(jìn)行EDS分析。
5)利用Innovatest Falcon 50維氏顯微硬度儀測(cè)試涂層試樣斷面顯微硬度。
2 結(jié)果與討論
2.1 噴涂粉末及涂層的物相組成
HG201噴涂粉末及高能火焰噴涂鎳基涂層在感應(yīng)重熔前后的XRD圖譜見圖2。由圖2可知,HG201粉末以Ni,Cr3Si,NiB,Ni3Si2,Cr3Ni5Si2,Ni2Si和Ni16Cr6Si7等非硬質(zhì)相為主,并存在著少量的Fe23(C,B)6,Cr7C3硬質(zhì)相,如圖2 a)所示。經(jīng)過高能火焰噴涂后(感應(yīng)重熔前),涂層中出現(xiàn)了Fe3(C,B)6,F(xiàn)e7C3,Cr7C3等硼化物和碳化物硬質(zhì)相,以及Fe5SiB2,F(xiàn)eSi2,Ni4B3等非硬質(zhì)相,而原噴涂粉末中NiB,Cr3Ni5Si2非硬質(zhì)相消失,如圖2 b)所示,說明高能火焰噴涂促進(jìn)了粉末的部分熔化,形成了新的物相體系。對(duì)高能火焰噴涂鎳基涂層進(jìn)一步進(jìn)行感應(yīng)重熔后,其物相以Ni固溶體及Fe7C3,F(xiàn)e23(C,B)6,(Cr,F(xiàn)e)7C3,Cr7C3,CrB4硬質(zhì)相為主,并存在著少量的Ni3Si2,Ni4B3,Cr3Ni5Si2非硬質(zhì)相,如圖2 c)所示,由此可見感應(yīng)重熔促進(jìn)了硬質(zhì)相的增加。
2.2 感應(yīng)重熔前后鎳基涂層的金相組織
圖3 a)、圖3 b)所示分別為感應(yīng)重熔前后高能火焰噴涂鎳基涂層的表面金相組織圖。由圖3可知:感應(yīng)重熔前,高能火焰噴涂鎳基涂層的表面含有較多尺寸較大的孔洞、氧化夾雜和裂紋缺陷,分別如圖3 a)中箭頭1,2,3所示。感應(yīng)重熔后,高能火焰噴涂鎳基涂層的表面組織變得非常致密,僅存在少量尺寸相對(duì)較小的孔洞,如圖3 b)中箭頭4所示,而幾乎未見裂紋缺陷。
圖4 a)、圖4 b)所示分別為感應(yīng)重熔前后高能火焰噴涂鎳基涂層的斷面金相組織圖。由圖4可知:感應(yīng)重熔前,高能火焰噴涂鎳基涂層斷面的界面處存在較明顯的孔隙缺陷和界面裂紋,分別如圖4 a)中箭頭1,2所示,呈現(xiàn)典型的機(jī)械結(jié)合,界面結(jié)合強(qiáng)度較低。如圖4 b)所示,感應(yīng)重熔后,高能火焰噴涂鎳基涂層與基體在界面處發(fā)生融合,形成了緊密的冶金結(jié)合,界面處的孔隙缺陷和界面裂紋顯著減少。
利用Image-proplus6.0金相分析軟件對(duì)上述2種涂層的孔隙率進(jìn)行測(cè)試,結(jié)果如表2所示。由表2可知:感應(yīng)重熔前高能火焰噴涂鎳基涂層的平均孔隙率為5.09%,孔隙率較高;而該涂層經(jīng)過感應(yīng)重熔后其平均孔隙率僅為0.27%,說明對(duì)高能火焰噴涂鎳基涂層進(jìn)行感應(yīng)重熔可以有效降低其孔隙率,減少涂層孔隙缺陷,提高組織致密性。
2.3 感應(yīng)重熔前后鎳基涂層的SEM形貌觀察及EDS分析
圖5為感應(yīng)重熔前后高能火焰噴涂鎳基涂層的表面SEM形貌。由圖5可知:感應(yīng)重熔前高能火焰噴涂鎳基涂層中存在尺寸較大、數(shù)量較多的孔洞和裂紋,如圖5 a)中箭頭1,2,3所示。感應(yīng)重熔后,高能火焰噴涂鎳基涂層中的孔洞及裂紋顯著減少,涂層中主要彌散分布著白亮色組織(Ni固溶體)、黑色組織(碳化物、硼化物等硬質(zhì)相)和灰色組織(Ni,Cr合金的軟質(zhì)共晶組織)[22],分別如圖5 b)中箭頭4,5,6所示。說明感應(yīng)重熔能夠有效促進(jìn)涂層晶粒細(xì)化,使其組織變得更加致密。
圖6為感應(yīng)重熔前后高能火焰噴涂鎳基涂層的斷面SEM形貌。由圖6 a)可知:由于高速火焰射流的沖擊作用,高能火焰噴涂涂層中的顆粒明顯扁平化,界面出現(xiàn)了貫穿裂紋,如圖6 a)中箭頭1所示。噴涂形成的顆粒周圍發(fā)現(xiàn)閉合及連續(xù)的裂紋,如圖6 a)中箭頭2,3,4所示。該斷面SEM形貌再次證明了高能火焰噴涂鎳基涂層的多缺陷特征,且其界面呈現(xiàn)典型的機(jī)械結(jié)合,界面結(jié)合特性較差。由圖6 b)可知,感應(yīng)重熔后的高能火焰噴涂鎳基涂層組織較致密,且其與基體結(jié)合的界面處未發(fā)現(xiàn)明顯的孔洞及界面裂紋等缺陷。這說明感應(yīng)重熔有助于涂層與基體在界面處形成良好的冶金反應(yīng),顯著改善界面的結(jié)合特性。
圖7為感應(yīng)重熔前后高能火焰噴涂鎳基涂層的斷面EDS圖譜。由圖7 a)可知,感應(yīng)重熔前的高能火焰噴涂鎳基涂層中的主元素Ni和GCr15基體組織的主元素Fe在界面處呈現(xiàn)陡降特性,進(jìn)一步驗(yàn)證了高能火焰噴涂過程中基體和涂層沒有在界面處形成融合區(qū),屬于典型的機(jī)械結(jié)合。由圖7 b)可知:高能火焰噴涂鎳基涂層經(jīng)感應(yīng)重熔后,基體一側(cè)以Fe元素為主,涂層一則以Ni,Cr元素為主;從基體向界面過渡時(shí)Fe元素含量逐漸降低,而Ni,Cr元素含量逐漸增加。在基體與涂層的界面結(jié)合處Fe,Ni,Cr元素大量共存,與感應(yīng)重熔前涂層在界面處Fe元素的陡變現(xiàn)象不同,感應(yīng)重熔后的涂層在界面附近Fe含量呈現(xiàn)層次性梯度過渡特征,說明感應(yīng)重熔后在界面處形成了冶金結(jié)合的融合區(qū),有助于改善涂層與基體的界面結(jié)合特性。
2.4 感應(yīng)重熔前后鎳基涂層的顯微硬度
圖8所示為感應(yīng)重熔前后高能火焰噴涂鎳基涂層斷面顯微硬度分布圖。由圖8可知,2種涂層的斷面顯微硬度均呈現(xiàn)階梯狀分布,基體部分的顯微硬度均較小且基本相當(dāng);感應(yīng)重熔前,高能火焰噴涂鎳基涂層在界面過渡處的顯微硬度略低于基體,而感應(yīng)重熔后涂層在界面過渡處的顯微硬度顯著增加,且其涂層部分的顯微硬度明顯高于感應(yīng)重熔前,說明感應(yīng)重熔不僅顯著提高了涂層的顯微硬度,而且有助于涂層獲得較好的斷面顯微硬度分布,改善界面的結(jié)合特性。
3 結(jié) 論
本文對(duì)GCr15軸承鋼表面高能火焰鎳基涂層進(jìn)行了感應(yīng)重熔,對(duì)比分析了感應(yīng)重熔前后涂層表面及斷面的孔隙率、金相組織、微觀形貌與能譜以及顯微硬度的變化情況,探討了感應(yīng)重熔對(duì)涂層微觀組織以及界面特性的影響,得到如下結(jié)論。
1)感應(yīng)重熔不僅可以有效減少高速軋機(jī)軸承熱噴涂層的孔洞及裂紋缺陷,顯著降低涂層的孔隙率,改善涂層表面的組織性能,而且可以有效促使基體中的Fe元素、涂層中的Ni和Cr等元素在界面處相互向?qū)Ψ綄訑U(kuò)散,從而在界面處產(chǎn)生充分的冶金反應(yīng),獲得良好的界面結(jié)合特性。
2)高速軋機(jī)軸承熱噴涂層經(jīng)過感應(yīng)重熔后,晶粒明顯細(xì)化,F(xiàn)e7C3,F(xiàn)e23(C,B)6,(Cr,F(xiàn)e)7C3,Cr7C3,CrB4等硬質(zhì)相大幅增加,表面及斷面顯微硬度均得到顯著提高,具有較好的顯微硬度分布特征。
采用單一的感應(yīng)重熔技術(shù)對(duì)高速軋機(jī)軸承進(jìn)行表面強(qiáng)化的效果仍比較有限,未來可探討通過后熱處理工藝進(jìn)一步改善涂層的綜合性能。
參考文獻(xiàn)/References:
[1] DEMA R R,KALUGINA O B,AVDEYEV B A,et al.Plasmatic hardening application to increase operational durability of rolling mills bearing units[J].Journal of Physics:Conference Series,2018,1050:012019.
[2] 楊宏斌,劉宇杰,李官運(yùn),等.軋機(jī)減速機(jī)用大型調(diào)心滾子軸承的設(shè)計(jì)與應(yīng)用[J].機(jī)床與液壓,2019,47(4):160-162.
YANG Hongbin,LIU Yujie,LI Guanyun,et al.Design and application of spherical roller bearing used in rolling mill reducer[J].Machine Tool & Hydraulics,2019,47(4):160-162.
[3] NAZIR M H,KHAN Z A,SAEED A.Experimental analysis and modelling of C-crack propagation in Silicon nitride ball bearing element under rolling contact fatigue[J].Tribology International,2018,126:386-401.
[4] GUAN J,WANG L Q,ZHANG Z Q,et al.Fatigue crack nucleation and propagation at clustered metallic carbides in M50 bearing steel[J].Tribology International,2018,119:165-174.
[5] 張強(qiáng),孫世清,楊卯生.32Cr3MoVE滲氮軸承鋼的高應(yīng)力滾動(dòng)接觸疲勞性能[J].機(jī)械工程材料,2019,43(9):38-42.
ZHANG Qiang,SUN Shiqing,YANG Maosheng.High stress rolling contact fatigue properties of 32Cr3MoVE Nitrided bearing steel[J].Materials for Mechanical Engineering,2019,43(9):38-42.
[6] WANG F F,ZHANG F X,ZHENG L J,et al.Structure and corrosion properties of Cr coating deposited on aerospace bearing steel[J].Applied Surface Science,2017,423:695-703.
[7] THARAJAK J,SANPO N.The comparison study on abrasive and erosive resistance properties of thermal spray coatings[J].Applied Mechanics and Materials,2020,901:49-54.
[8] THOMMANDRA K,RAJ A V,BADE S,et al.Comparison analysis and parameter study for roll separation force to avoid bearing failure in tube mills[J].Materials Today:Proceeding,2018,5(2):8495-8503.
[9] AHMADI M S,SHOJA RAZAVI R,VALEFI Z,et al.Evaluation of hot corrosion behavior of plasma sprayed and laser glazed YSZ-Al2O3 thermal barrier composite[J].Optics & Laser Technology,2019,111:687-695.
[10]DARAM P,BANJONGPRASER C.The influence of post treatments on the microstructure and corrosion behavior of thermally sprayed NiCrMoAl alloy coating[J].Surface and Coatings Technology,2020,384:125116.
[11]陳松,董天順,李國祿,等.熱噴涂層的重熔技術(shù)及其發(fā)展現(xiàn)狀[J].焊接技術(shù),2016,45(5):76-79.
CHEN Song,DONG Tianshun,LI Guolu,et al.Remelting technology and development status of thermal spray coating[J].Welding Technology,2016,45(5):76-79.
[12]YUAN J M,DONG T S,F(xiàn)U B G,et al.Effect of tungsten inert gas arc remelting on microstructure and wear properties of plasma-sprayed NiCr-Cr3C2 coating[J].Journal of Materials Engineering and Performance,2019,28(10):6320-6329.
[13]蹤雪梅,李穩(wěn),王井,等.FeCrBSiWNb噴涂層的鎢極氬弧擺動(dòng)重熔處理[J].表面技術(shù),2017,46(7):195-200.
ZONG Xuemei,LI Wen,WANG Jing,et al.TIG weaving remelting of FeCrBSiWNb coating by HVAS[J].Surface Technology,2017,46(7):195-200.
[14]WU Y Z,LIAO W B,WANG F,et al.Effect of electron beam remelting treatments on the performances of plasma sprayed zirconia coatings[J].Journal of Alloys&Compounds,2018,756:33-39.
[15]NIU S Q,YIN K X,YOU Q F,et al.The alloying elements dispersion and its mechanisms in a Ni-based superalloy during electron beam remelting[J].Vacuum,2019,166:107-113.
[16]王幸福,司永禮,韓福生,等.激光重熔處理對(duì)超音速火焰噴涂NiCr-Cr3C2涂層組織及性能的影響[J].金屬熱處理,2018,43(10):185-191.
WANG Xingfu,SI Yongli,HAN Fusheng,et al.Effect of laser re-melting treatment on microstructure and properties of high velocity oxy-fuel sprayed NiCr-Cr3C2 coating[J].Heat Treatment of Metals,2018,43(10):185-191.
[17]ZHANG Y A,GAO X F,LIANG X B,et al.Effect of laser remelting on the microstructure and corrosion property of the arc-sprayed AlFeNbNi coatings[J].Surface and Coatings Technology,2020,398:126099.
[18]DONG T S,LIU L,F(xiàn)U B G,et al.Investigation of rolling/sliding contact fatigue behaviors of induction remelted Ni-based coating[J].Surface and Coatings Technology,2019,372:451-462.
[19]YANG X T,LI X Q,YANG Q B,et al.Effects of WC on microstructure and corrosion resistance of directional structure Ni60 coatings[J].Surface and Coatings Technology,2020.doi:10.1016/j.surfcoat.2020.125359.
[20]解芳,翟長生,王迎春,等.等溫淬火處理對(duì)感應(yīng)重熔鎳基合金涂層摩擦學(xué)性能的影響[J].表面技術(shù),2020,49(4):205-212.
XIE Fang,ZHAI Changsheng,WANG Yingchun,et al.Effect of isothermal quenching on tribological properties of induction remelting nickel-based alloy coatings[J].Surface Technology,2020,49(4):205-212.
[21]解芳,張遙,翟長生,等.高效穩(wěn)定涂層預(yù)制備火焰噴涂槍的研制[J].機(jī)械設(shè)計(jì)與制造,2019(1):122-125.
XIE Fang,ZHANG Yao,ZHAI Changsheng,et al.Design of flame spraying gun for prefabricating high efficiency and stable coating[J].Machinery Design & Manufacture,2019(1):122-125.
[22]翟長生,王迎春,解芳,等.GCr15基體表面感應(yīng)重熔-等溫淬火鎳基涂層的制備及摩擦學(xué)行為[J].材料熱處理學(xué)報(bào),2019,40(11):166-176.
ZHAI Changsheng,WANG Yingchun,XIE Fang,et al.Preparation and tribological behavior of induction cladding-isothermal quenching nickel-based alloy coatings on GCr15 substrate surface[J].Transactions of Materials and Heat Treatment,2019,40(11):166-176.