国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

火炮后效期火藥氣體流空過程的近似計(jì)算方法

2021-08-27 10:21:36繆偉尹強(qiáng)錢林方
兵工學(xué)報(bào) 2021年7期
關(guān)鍵詞:后效炮口效期

繆偉,尹強(qiáng),錢林方,2

(1.南京理工大學(xué) 機(jī)械工程學(xué)院, 江蘇 南京 210094; 2.西北機(jī)電工程研究所, 陜西 咸陽 712099)

0 引言

膛內(nèi)后效時(shí)期是指彈丸離開炮口瞬間開始到膛內(nèi)外流動(dòng)平衡為止的這個(gè)過程[1]。準(zhǔn)確計(jì)算火藥氣體的壓力及反作用力對包括預(yù)估火炮的后坐運(yùn)動(dòng)、確定安全的開閂時(shí)機(jī)、設(shè)計(jì)炮口裝置等火炮設(shè)計(jì)的多個(gè)階段都有重要意義[2]。

早期的后效期理論建立在準(zhǔn)定常假設(shè)之上,包括Hugoniot理論[3]和斯魯霍斯基理論[4]。這些理論采用處理定常流的方法計(jì)算膛內(nèi)氣體的空間分布,用平均參數(shù)計(jì)算氣流隨時(shí)間變化的規(guī)律,而平均處理的方法各有不同,這類理論稱為準(zhǔn)定常理論。鄭建國[5]摒棄準(zhǔn)定常假設(shè),保留拉格朗日假設(shè),推導(dǎo)了火炮后效期非定常理論計(jì)算公式,其理論可視為準(zhǔn)定常理論的延續(xù)與發(fā)展。Corner[6]根據(jù)膛內(nèi)氣流的控制方程,考慮膛內(nèi)膨脹波的傳播過程,得出了膛內(nèi)氣體的溫度、壓力和速度的分布,以及膛底壓力隨時(shí)間的變化規(guī)律。由于采用了密度隨空間線性變化等假設(shè),Corner得到的結(jié)果只能近似地符合膛內(nèi)氣流的分布。此外,Corner方法僅計(jì)算到膨脹波第1次抵達(dá)膛底前的過程。上述這些方法都是解析方法,它們能夠滿足工程設(shè)計(jì)的需求,但是所假設(shè)的氣流分布與數(shù)值解不能嚴(yán)格符合,因此仍存在一定的誤差。隨著計(jì)算機(jī)硬件和計(jì)算理論的發(fā)展,計(jì)算流體力學(xué)(CFD)方法在后效期計(jì)算中得到了廣泛應(yīng)用[7-23]。CFD方法能夠得到流場的細(xì)節(jié),給出詳細(xì)的數(shù)值結(jié)果,然而計(jì)算過程通常消耗大量計(jì)算資源。

綜上所述,后效期過程的關(guān)鍵問題之一是氣流的空間分布。本文根據(jù)相似性假設(shè)得出膛內(nèi)氣流的相似分布及氣流參數(shù)隨時(shí)間的變化規(guī)律,據(jù)此得出后效期炮膛合力的計(jì)算公式,針對氣流分布向相似分布過渡的過程,給出修正方法。此外,本文根據(jù)炮膛合力公式推導(dǎo)了后效作用系數(shù)β的計(jì)算公式,并將計(jì)算公式結(jié)果與經(jīng)典理論計(jì)算結(jié)果、數(shù)值仿真結(jié)果進(jìn)行對比,以驗(yàn)證其有效性。

1 后效期膛內(nèi)氣流的相似性解

文獻(xiàn)[10]中圖4數(shù)值仿真結(jié)果表明,后效期中后期膛內(nèi)氣體的密度、速度和壓力的分布曲線形狀趨近于不變,據(jù)此假設(shè)膛內(nèi)氣流控制方程存在這樣一個(gè)相似性解(相似性假設(shè)),即氣流參數(shù)可分解為一個(gè)固定不變的空間分布函數(shù)與一個(gè)時(shí)變函數(shù)的乘積,稱此空間分布函數(shù)為后效期相似分布。

1.1 基本假設(shè)

在尋找相似性解之前,先給出以下有益的假設(shè):

1)身管是一根等截面的細(xì)長圓柱形管道,其左端封閉,彈丸與氣體從右端噴出(見圖1)。真實(shí)火炮的內(nèi)膛一般包括一段錐形的藥室,當(dāng)藥室擴(kuò)大系數(shù)較小時(shí)將身管簡化成等截面的圓管并不引入很大的誤差。

圖1 火炮發(fā)射過程示意圖

2)火藥在彈丸射出前即已完全燃燒,火藥燃?xì)馐抢硐霘怏w,忽略余容的影響。

3)氣體微元各自經(jīng)歷等熵過程,即忽略摩擦等因素引起的熱量損失,并且膛內(nèi)沒有出現(xiàn)激波。

4)膛內(nèi)氣體的熵值處處相等,即膛內(nèi)氣流是均熵流動(dòng)。

5)炮口截面在整個(gè)后效期內(nèi)(包括彈丸通過炮口的時(shí)刻)是臨界截面,其氣流的速度等于當(dāng)?shù)匾羲佟?/p>

6)忽略身管的后坐運(yùn)動(dòng)。身管后坐的速度比炮口處的氣流速度小兩個(gè)數(shù)量級,因此身管的后坐運(yùn)動(dòng)對氣流分布的影響很小。

1.2 氣流的控制方程及其相似解

根據(jù)1.1節(jié)假設(shè),膛內(nèi)氣流是一維可壓縮無黏流體的非定常流動(dòng),其控制方程組為

(1)

(2)

(3)

式中:ρ、u、p分別為氣流密度、速度和壓力;k為氣體的絕熱指數(shù);根據(jù)等熵假設(shè)及氣流的均熵性,K為一個(gè)不隨時(shí)間和空間變化的常數(shù)。記身管長度為L,引入無量綱坐標(biāo)s=x/L,s∈[0,1]。根據(jù)相似性假設(shè),在t時(shí)刻、s處的氣流密度、速度和壓力可以分別表示為

ρ(s,t)=ξρm,

(4)

u(s,t)=ηum,

(5)

p(s,t)=ζpm,

(6)

式中:ρm、um、pm依次是炮口截面的氣體密度、速度和壓力;ξ、η、ζ依次是密度、速度和壓力的空間分布函數(shù)。在不考慮身管后坐運(yùn)動(dòng)的假設(shè)下,膛底的氣流速度應(yīng)為0 m/s,所以在s=0處,η=0,在s=1處,ξ,η,ζ=1.炮口截面是臨界截面,此處氣流參數(shù)應(yīng)滿足臨界關(guān)系:

(7)

由氣流的均熵性可得

ζ=ξk.

(8)

(4)式~(8)式代入(1)式~(3)式并整理,得

(9)

(10)

(9)式、(10)式左端都是時(shí)間的函數(shù)而右端都是空間的函數(shù),要使這兩個(gè)等式恒成立,則等式兩端應(yīng)都是常數(shù)。令

(11)

(12)

式中:C1、C2是待定常數(shù)。(11)式和(12)式的左邊部分決定炮口氣流參數(shù)隨時(shí)間的變化規(guī)律,右邊部分則決定膛內(nèi)氣流的空間分布。

1.3 炮口氣流參數(shù)

對(11)式和(12)式左邊的等式進(jìn)行積分,得

ρm=ρm0(1+C2um0t)C1/C2,

(13)

um=um0(1+C2um0t)-1,

(14)

根據(jù)氣流的等熵關(guān)系,炮口的壓力為

pm=pm0(1+C2um0t)kC1/C2,

(15)

式中:ρm0、um0、pm0是ρm、um、pm在0 s時(shí)刻的值,一般后效期的0 s時(shí)刻取為彈底通過炮口截面的時(shí)刻。

膛內(nèi)氣體的總質(zhì)量為

(16)

(17)

整理后,有

(18)

(18)式與(11)式對比,可知

(19)

炮口氣流參數(shù)(13)式~(15)式代入臨界關(guān)系(7)式,得

(20)

考慮到臨界關(guān)系(7)式對包括t=0 s時(shí)刻在內(nèi)的整個(gè)后效期都成立,對比(20)式兩端的指數(shù),可得

(21)

于是

(22)

則炮口截面的氣流參數(shù)為

(23)

(24)

(25)

1.4 膛內(nèi)氣流的分布

C1、C2代入(11)式、(12)式,得到描述分布函數(shù)形狀的積分微分方程組:

(26)

(27)

邊界條件為

(28)

這組積分微分方程及邊界條件構(gòu)成了膛內(nèi)氣流分布的邊值問題。方程組的解曲線ξ(s)、η(s)分別屬于兩個(gè)曲線族,曲線族的形狀因子只有絕熱指數(shù)k,因而Iξ是k的函數(shù)。從方程組(26)式和(27)式中解出導(dǎo)數(shù)項(xiàng),有

(29)

(30)

當(dāng)k=1時(shí),方程組(29)式、(30)式存在以下滿足邊界條件的特解:

(31)

(32)

對應(yīng)的積分為

(33)

當(dāng)k≠1時(shí),方程組沒有顯式解,因此尋求數(shù)值解。

在右邊界處,邊界條件ξ=η=1使得方程組的分母為0,因此分布函數(shù)在右邊界具有奇性。數(shù)值求解時(shí)采用變步長法從左邊界向右進(jìn)行數(shù)值積分。由于右邊界處存在奇性,取積分步長充分小處作為近似的積分終點(diǎn)。在得到解之前ξ(0)和Iξ是未知的,所以積分過程需要以迭代的方式進(jìn)行。數(shù)值求解的步驟如下:

圖2繪制了k=1.333時(shí)ξ和η的計(jì)算收斂過程,停止條件取|εm|≤1.0×10-12時(shí)僅需要進(jìn)行6次積分即可收斂。

圖2 k=1.333時(shí)密度和速度分布函數(shù)的收斂過程

圖3 膛內(nèi)氣流密度和速度的分布函數(shù)

ξ=exp(a1η4+a2η2+a3),

(34)

s=a4η5+a5η3+a6η,

(35)

式中:擬合系數(shù)a1~a6是i的函數(shù),如表1所示。更進(jìn)一步地,系數(shù)a1~a6對i的關(guān)系可以擬合成為

表1 分布函數(shù)的擬合系數(shù)a1~a6

(36)

式中:系數(shù)pj、qj、rj如表2所示。

表2 系數(shù)pj、qj、rj

由(30)式可得

(37)

擬合關(guān)系(35)式代入(37)式,有

Iξ=a6.

(38)

需要特別說明的是,相似性要求膛內(nèi)氣流分布的形狀在后效期內(nèi)保持不變。而實(shí)際上,在后效期開始的瞬間,膛內(nèi)氣流服從內(nèi)彈道末期的氣流分布。在后效期初期,氣流分布從內(nèi)彈道末期的分布逐漸過渡到后效期相似分布,這一過程是由膛內(nèi)臨近炮口截面處產(chǎn)生的原發(fā)膨脹在膛內(nèi)傳播與反射實(shí)現(xiàn)的。因此不能直接用內(nèi)彈道時(shí)期結(jié)束時(shí)的炮口參數(shù)作為炮口氣流參數(shù)(23)式~(25)式中的初值,而應(yīng)該根據(jù)守恒律計(jì)算ρm0、um0和pm0.此外,內(nèi)彈道時(shí)期的膛內(nèi)氣流通常不能嚴(yán)格滿足均熵性,因此對K進(jìn)行平均處理。本文采用基于密度的加權(quán)平均法,則K的平均值為

(39)

式中:mP為發(fā)射藥的裝藥量;ρ0和p0分別為內(nèi)彈道時(shí)期結(jié)束時(shí)膛內(nèi)的密度和壓力。于是炮口截面的氣流參數(shù)的初值為

(40)

(41)

(42)

至此便可以計(jì)算后效期內(nèi)任意時(shí)刻和任意位置處膛內(nèi)氣流的參數(shù)。

以上所述膛內(nèi)氣流相似性解的計(jì)算步驟可歸納為一個(gè)流程框圖(見圖4)。本文提出的相似性解包括炮口氣流參數(shù)和氣流空間分布函數(shù)兩部分,其中炮口氣流參數(shù)隨時(shí)間變化的規(guī)律(23)式~(25)式具有解析的形式,空間分布函數(shù)(34)式、(35)式是數(shù)值解的擬合公式,因此本文提出的方法屬于半解析解法。

圖4 氣流參數(shù)計(jì)算流程圖

2 后效期炮膛合力與后效作用系數(shù)β

火炮氣體在后效期對炮身作用的沖量約占火炮后坐總動(dòng)量的20%,因此,準(zhǔn)確地計(jì)算后效期內(nèi)炮膛合力的變化規(guī)律,對于火炮的受力和運(yùn)動(dòng)計(jì)算有著十分重要的意義[24]。

2.1 無炮口裝置時(shí)的炮膛合力

對于等截面的身管,其不裝炮口裝置時(shí)在后效期內(nèi)所受的炮膛合力主要來自膛底的氣體壓力,身管內(nèi)外表面及炮口端面所受的力很小。膛底的氣體作用力為

Fb=Ap|s=0=pmAζ|s=0=

(43)

式中:ζ0=ζ(0)。用擬合公式(34)式近似壓力的分布函數(shù)ξ,則ζ0=ξ(0)k=exp(ka3)。當(dāng)k取1.333時(shí),ζ0=1.755.

2.2 考慮膨脹波傳播的修正

由1.4節(jié)可知,后效期內(nèi)膛內(nèi)氣流從內(nèi)彈道末期的分布向后效期相似分布的過渡是逐漸完成的。在此過程中,炮口產(chǎn)生的原發(fā)膨脹在膛底和炮口之間往復(fù)反射。數(shù)值仿真結(jié)果表明,在膨脹波第1次抵達(dá)膛底時(shí),膛內(nèi)氣流的分布已經(jīng)十分接近后效期相似分布,此后膨脹波的傳播不會對氣流分布產(chǎn)生很大的影響。因此本文將后效期分成兩個(gè)階段:第1階段,膛內(nèi)氣流被膨脹波前分成兩部分,靠近炮口的部分經(jīng)歷了膨脹波的擾動(dòng),而靠近膛底的部分則沒有;第2階段,膛內(nèi)氣流完全服從相似分布。

在第1階段,膨脹波前面的氣體未受擾動(dòng),因此它們的運(yùn)動(dòng)規(guī)律完全由初值決定,這部分氣體將延拓內(nèi)彈道過程。對于一般的槍械和火炮,假設(shè)彈丸在穿過炮口后沿著一段虛擬的身管繼續(xù)內(nèi)彈道運(yùn)動(dòng),在后效期時(shí)間內(nèi)其速度的增量很小。因此,為了簡化計(jì)算,認(rèn)為彈丸在穿過炮口后以速度φv0勻速運(yùn)動(dòng)。v0是彈丸穿過炮口時(shí)的速度,φ是速度補(bǔ)償系數(shù),其值略大于1.對于初速高的彈丸,φ應(yīng)取得小一些,對于初速低的彈丸,φ應(yīng)取得大一些。這是因?yàn)槌跛俚偷膹椡柙谏鲜黾傧氲倪\(yùn)動(dòng)中獲得的速度增量相對更大。這里的初速高低指初速相對彈丸極限速度的大小。綜上所述,在膨脹波第1次抵達(dá)膛底前,炮膛合力是內(nèi)彈道過程的延拓,在此之后炮膛合力服從(43)式。

在經(jīng)典內(nèi)彈道理論中[25],彈后空間中氣體的密度就是平均密度:

(44)

由等熵關(guān)系可以得到彈后氣流的平均壓力為

(45)

(46)

式中:φ1為次要功系數(shù);mS為彈丸質(zhì)量。由(44)式~(46)式,膨脹波第1次抵達(dá)膛底前的膛底氣體作用力為

(47)

為了保證膛底氣體作用力的連續(xù)性,膨脹波第1次抵達(dá)膛底的時(shí)刻tR由(48)式隱式地確定:

(48)

修正后的膛底氣體作用力公式為

(49)

2.3 無炮口裝置時(shí)的后效作用系數(shù)β

后效作用系數(shù)是反映火藥燃?xì)鈴奶趴诟咚倭鞒鲞\(yùn)動(dòng)對炮身運(yùn)動(dòng)影響大小的系數(shù),是火炮設(shè)計(jì)中的重要參數(shù)。它包括內(nèi)彈道部分和后效期部分:

(50)

(51)

若依據(jù)修正的炮膛合力計(jì)算公式(49)式,因?yàn)楹笮诒环殖蓛蓚€(gè)階段,則

(52)

2.4 帶炮口裝置時(shí)的炮膛合力

與無炮口裝置時(shí)相比,加裝炮口裝置后炮口流場被改變,氣流對后坐部分的作用力也隨之發(fā)生變化。為了保證彈丸安全地飛出,炮口裝置的截面總是比身管內(nèi)膛的截面大,因此加裝炮口裝置后,炮口截面仍然是臨界截面。炮口之外的膨脹擾動(dòng)不能穿過臨界截面?zhèn)鞑サ教艃?nèi),所以炮口裝置不改變膛內(nèi)氣流的流空過程,膛底的氣流作用力與無炮口裝置時(shí)的情形并無不同,因此后坐部分受力的改變完全來自炮口裝置。

無炮口裝置時(shí)炮膛合力[4]又可以寫為

(53)

(54)

若考慮2.2節(jié)的修正,則將Fb替換為Fb,m.

3 算例

本文以37 mm高射炮[10]和122 mm榴彈炮[16]為例驗(yàn)證本文公式的有效性,這兩種火炮分別代表兩類火炮,以彈底氣流的當(dāng)?shù)匾羲儆?jì)算,37 mm高射炮的彈丸初速是超音速的,而122 mm榴彈炮的彈丸初速是亞音速的。本文參照王楊等[10]的計(jì)算方法,用商用流體力學(xué)分析軟件Fluent的AUSM+格式計(jì)算后效期的炮膛流空過程,以數(shù)值仿真結(jié)果作為對比基準(zhǔn)。計(jì)算域的構(gòu)成如圖5所示。計(jì)算所用參數(shù)如表3所示,膛內(nèi)氣流初始條件根據(jù)文獻(xiàn)[10,16]中的曲線圖擬合得到(見表4和表5),膛外大氣環(huán)境的初始條件為海平面標(biāo)準(zhǔn)大氣。

圖5 計(jì)算域示意圖

表3 計(jì)算參數(shù)

表4 37 mm高射炮后效期膛內(nèi)氣流初始條件

表5 122 mm榴彈炮后效期膛內(nèi)氣流初始條件

在斯魯霍斯基及鄭建國的理論中,火藥氣體的密度在膛內(nèi)是均勻分布,速度從膛底到炮口是線性分布。圖6中是用本文公式和CFD數(shù)值方法計(jì)算氣流分布的對比,其中數(shù)值仿真結(jié)果取37 mm高射炮在后效期15 ms時(shí)的氣流分布,此時(shí)膛內(nèi)氣流已充分發(fā)展。由圖6中可以看出,本文公式求解的相似分布與數(shù)值求解的氣流分布最接近。

圖6 本文公式與數(shù)值方法計(jì)算氣流分布的對比

圖7繪制了炮膛內(nèi)平均密度和平均壓力隨時(shí)間變化的曲線。由圖7可以看出,本文公式所計(jì)算的平均密度和平均壓力介于斯魯霍斯基公式與鄭建國公式[5]的結(jié)果之間,37 mm高射炮的結(jié)果在5 ms之后、122 mm榴彈炮的結(jié)果在整個(gè)后效期內(nèi)與數(shù)值解符合得很好。圖8對比了37 mm高射炮的炮口壓力與數(shù)值解、實(shí)驗(yàn)測量值[26],三者在后效期內(nèi)基本符合。上述對比結(jié)果表明本文的計(jì)算方法有效。

圖7 膛內(nèi)平均密度和平均壓力隨時(shí)間的變化曲線

圖8 37 mm高射炮的炮口壓力

圖9繪制了用不同方法計(jì)算的后效期炮膛合力。由圖9可以看出,CFD方法得到的炮膛合力曲線明顯地分成兩段。(43)式計(jì)算的結(jié)果偏離第1段曲線,但是與第2段曲線很好地符合,反映出后效期過渡階段的存在。

圖9 后效期炮膛合力隨時(shí)間的變化

考慮膨脹波的傳播過程并對其進(jìn)行修正后,由(49)式計(jì)算的后效期內(nèi)炮膛合力與CFD仿真結(jié)果的對比如圖10所示。在計(jì)算時(shí),對于37 mm高射炮和122 mm榴彈炮,本文將速度補(bǔ)償系數(shù)分別取為φ=1.05和φ=1.10.通過對比可得,修正后炮膛合力計(jì)算結(jié)果與數(shù)值解的符合程度得到提升。采用不同方法計(jì)算后效作用系數(shù)β,結(jié)果如表6所示。由表6中可以看出:斯魯霍斯基公式和鄭建國公式計(jì)算的后效作用系數(shù)均小于CFD結(jié)果;而修正前的(51)式過高地估計(jì)了后效期氣體沖量,其β值偏大,據(jù)此進(jìn)行火炮設(shè)計(jì)則偏保守;修正后的本文公式計(jì)算β與數(shù)值仿真結(jié)果很接近,相對誤差為0.38%~1.80%.

圖10 修正后的后效期炮膛合力隨時(shí)間的變化

表6 不同方法計(jì)算的后效作用系數(shù)β

4 結(jié)論

本文根據(jù)后效期膛內(nèi)氣流控制方程的一組相似性解提出了后效期炮膛合力與后效作用系數(shù)β的計(jì)算公式,并將計(jì)算結(jié)果與經(jīng)典公式及數(shù)值方法的結(jié)果進(jìn)行對比。與經(jīng)典公式相比,本文公式有以下優(yōu)點(diǎn):

1)本文提出的氣流相似分布與充分發(fā)展的膛內(nèi)氣流分布更接近。

2)本文提出的炮膛合力計(jì)算公式能夠與后效期中后期的炮膛合力變化規(guī)律很好地符合。

3)考慮膨脹波的傳播,修正后的炮膛合力計(jì)算公式與后效期炮膛合力變化規(guī)律的符合程度得到提升。

4)修正后的本文公式計(jì)算的后效作用系數(shù)β與數(shù)值仿真結(jié)果很接近,相對誤差為0.38%~1.80%.

猜你喜歡
后效炮口效期
炮口制退器研究現(xiàn)狀及發(fā)展趨勢
綜合錄井氣測后效影響因素分析
藥品效期管理:有效期≠失效期
一種新型后效射孔技術(shù)及應(yīng)用
漫談藥品效期
后效資料在德惠斷陷氣層解釋中的應(yīng)用研究
品管圈活動(dòng)在藥房減少近效期藥品工作中的應(yīng)用
炮口結(jié)構(gòu)參數(shù)對炮口性能的影響分析
貨架效期內(nèi)3種酮康唑制劑抑菌效力測試與評價(jià)
炮口制退器效率計(jì)算方法分析
拜泉县| 漳平市| 宁津县| 新干县| 青河县| 荔浦县| 建平县| 延安市| 南阳市| 澜沧| 福建省| 德阳市| 沧源| 娱乐| 太仆寺旗| 荥阳市| 东安县| 大冶市| 陆河县| 沅陵县| 曲阜市| 星子县| 乐山市| 龙海市| 德兴市| 云霄县| 陈巴尔虎旗| 卢氏县| 瑞昌市| 日土县| 朔州市| 大英县| 西藏| 缙云县| 朝阳区| 兴国县| 弥勒县| 平顺县| 克什克腾旗| 南阳市| 金华市|