雷斯?陳睿?佘燕玲?周珊瑤?史華彩
【摘要】目的 探討白藜蘆醇(Res)對二氯化鈷(CoCl2)誘導(dǎo)的骨骼肌細(xì)胞缺氧損傷的保護(hù)機(jī)制。方法 將分化的小鼠骨骼肌細(xì)胞系C2C12按不同干預(yù)方法分為4組,即對照組、 CoCl2組、 Res組、 CoCl2+Res組。觀察免疫熒光染色后的細(xì)胞形態(tài),統(tǒng)計肌管融合指數(shù);采用熒光定量PCR技術(shù)檢測肌球蛋白重鏈(MyHC) mRNA水平的變化;采用蛋白免疫印跡法檢測低氧誘導(dǎo)因子-1α(HIF-1α)、 Bcl2/腺病毒E1B相互作用蛋白3(BNIP3)、微管相關(guān)蛋白1輕鏈3(LC3)以及p62和Beclin1蛋白水平。結(jié)果 CoCl2誘導(dǎo)的缺氧損傷使肌細(xì)胞形態(tài)異常、肌管分化減少,與對照組比較,CoCl2組肌管融合指數(shù)降低(P < 0.001),MyHC mRNA水平和蛋白表達(dá)量降低(P均 < 0.05),HIF-1α、BNIP3、Beclin1蛋白水平和LC3升高(P均 < 0.001),p62蛋白水平降低(P < 0.001)。加入Res處理后,細(xì)胞形態(tài)恢復(fù),肌管分化增多;與CoCl2組比較,CoCl2+Res組肌管融合指數(shù)升高,MyHC亞型(Myh7、Myh2、Myh4)的mRNA和MyHC蛋白水平升高,HIF-1α、BNIP3和Beclin1蛋白水平降低,p62蛋白水平升高(P均 < 0.05)。結(jié)論 CoCl2誘導(dǎo)的缺氧可抑制MyHC表達(dá),導(dǎo)致肌細(xì)胞分化和融合能力下降。Res可增強(qiáng)缺氧條件下成肌細(xì)胞的分化和融合能力,對肌細(xì)胞的損傷修復(fù)有保護(hù)作用,可能通過抑制HIF-1α/BNIP3信號通路誘導(dǎo)的自噬來促進(jìn)肌細(xì)胞的損傷修復(fù)。
【關(guān)鍵詞】骨骼肌細(xì)胞;缺氧;白藜蘆醇;分化;自噬
Resveratrol promotes the repair of hypoxia-induced skeletal muscle injury through HIF-1α/BNIP3 signaling pathway Lei Si, Chen Rui, She Yanling, Zhou Shanyao, Shi Huacai. Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
Corresponding author, Chen Rui, E-mail: rui.c.med@ 163. com
【Abstract】Objective To investigate the protective mechanism of resveratrol (Res) against the CoCl2-induced hypoxia injury in the skeletal muscle cells.? Methods According to different intervention methods, the murine skeletal muscle C2C12 cells were divided into the control, CoCl2, Res and CoCl2+Res groups, respectively. The cell morphology was observed after myosin heavy chain (MyHC) immunofluorescence staining. The fusion index of the myotubes was calculated. The expression level of MyHC mRNA was detected by quantitative fluorescence PCR. The expression levels of hypoxia-inducible factor-1α (HIF-1α), Bcl2/ adenovirus E1B interacting protein 3 (BNIP3), microtubule associated protein 1 light chain 3 (MAP1LC3, LC3), p62 and Beclin1 proteins were measured by Western blot. Results After CoCl2-induced hypoxia, the morphology of myotubes was abnormal and the quantity of differentiated myotubes was reduced. Compared with the control group, the fusion index of differentiated myotubes was significantly decreased (P < 0.001), the expression levels of MyHC mRNA and protein were significantly down-regulated (both P < 0.05), those of HIF-1α, BNIP3 and Beclin1 proteins and LC3 were significantly up-regulated (all P < 0.001), and that of p62 protein was significantly down-regulated (P < 0.001) in the CoCl2 group, respectively. Following the Res intervention, the cellular morphology was recovered and the quantity of differentiated myotubes was increased. Compared with the CoCl2 group, the fusion index of differentiated myotubes was significantly elevated, the expression levels of? mRNA of MyHC subtypes (Myh7, Myh2 and Myh4) and MyHC protein were significantly up-regulated, those of HIF-1α, BNIP3 and Beclin1 proteins were significantly down-regulated, and that of p62 protein was significantly up-regulated (all P < 0.05). Conclusions CoCl2-induced hypoxia can down-regulated the expression of MyHC, resulting in decreased muscle differentiation and fusion. Rescan enhance the differentiation and fusion of myoblasts under hypoxia condition, and extert protective effect upon the repair of muscle cell injury probably by suppressing the autophagy induced by the HIF-1α/BNIP3 signaling pathway, thereby accelerating the repair of muscle cell injury.
【Key words】Skeletal muscle cell;Hypoxia;Resveratrol;Differentiation;Autophagy
骨骼肌在為機(jī)體提供運動和保持姿勢等方面起著至關(guān)重要的作用。暴露在高海拔地區(qū)、肢體制動、長時間靜臥、貧血和COPD等環(huán)境和病理條件下,機(jī)體會出現(xiàn)低氧或缺氧誘導(dǎo)的肌肉萎縮現(xiàn)象[1-4]。二氯化鈷(CoCl2)可穩(wěn)定細(xì)胞內(nèi)低氧誘導(dǎo)因子-1α(HIF-1α)的表達(dá),以達(dá)到和缺氧條件類似的結(jié)果,被廣泛運用于各種研究[5]。本課題組前期采用CoCl2建立了骨骼肌細(xì)胞缺氧模型,并發(fā)現(xiàn)缺氧損傷可引起骨骼肌細(xì)胞萎縮、肌細(xì)胞蛋白降解增加[6-7]。
據(jù)報道,白藜蘆醇(Res)是一種具有多種功能的多酚類化合物,具有抗炎和抗氧化作用,能延長多種物種的壽命,預(yù)防早期動脈粥樣硬化,治療肥胖和糖尿病[8-14]。近期有研究表明,Res能夠抑制過氧化物酶體增殖蛋白激活性受體γ(PPARγ)活性和抑制核轉(zhuǎn)錄因子(NF)-κB的激活,促進(jìn)間充質(zhì)干細(xì)胞成骨分化[15]。另外,Res可以阻斷NF-κB途徑激活,上調(diào)蛋白激酶 B(Akt)mRNA表達(dá),減少骨骼肌蛋白質(zhì)分解代謝,促進(jìn)蛋白質(zhì)合成代謝[16]。然而,Res對缺氧下骨骼肌細(xì)胞損傷修復(fù)的影響尚未明確,本研究采用小鼠骨骼肌細(xì)胞系C2Cl2構(gòu)建缺氧細(xì)胞模型,觀察缺氧損傷對C2Cl2細(xì)胞的影響及Res的保護(hù)作用。充分研究缺氧環(huán)境下骨骼肌損傷的發(fā)生發(fā)展機(jī)制,對促進(jìn)肌再生修復(fù)具有重要的意義。
材料與方法
一、材 料
1. 實驗細(xì)胞系
小鼠骨骼肌細(xì)胞系C2C12購于中國科學(xué)院干細(xì)胞庫。
2. 試劑及儀器
主要試劑包括:DMEM高糖培養(yǎng)基、胎牛血清和馬血清(美國Gibco公司),Res(德國Merck Millipore公司),BCA蛋白濃度測定試劑盒(上海碧云天公司), 化學(xué)發(fā)光ECL試劑盒(德國Merck Millipore公司),肌球蛋白重鏈(MyHC)一抗(美國R&D Systems公司),DAPI染色液(江蘇凱基生物技術(shù)有限公司),熒光定量PCR試劑(日本TaKaRa公司),HIF-1α 和Bcl2/腺病毒E1B相互作用蛋白3 (BNIP3)一抗(英國abcam公司),微管相關(guān)蛋白1輕鏈3 (MAP1LC3, LC3) 一抗、Beclin1一抗、β-Tubulin一抗、辣根過氧化物酶標(biāo)記山羊抗兔、辣根過氧化物酶標(biāo)記山羊抗兔和MyHC染色熒光二抗(Alexa Fluor 594-conjugated AffiniPure Goat Anti-Mouse IgG)(美國ABclonal公司),p62一抗(美國CST公司)。主要儀器包括:二氧化碳培養(yǎng)箱(美國Thermo Fisher Scientific公司),熒光顯微鏡(德國Leica公司),電泳轉(zhuǎn)印系統(tǒng)(北京凱元信瑞儀器有限公司),化學(xué)發(fā)光成像系統(tǒng)(上海天能科技有限公司),StepOnePlus PCR儀(美國Applied Biosystems 公司)。
二、方 法
1.細(xì)胞培養(yǎng)
將C2C12置于含10%胎牛血清的高糖DMEM培養(yǎng)基中,于含5% 二氧化碳的37℃培養(yǎng)箱中進(jìn)行培養(yǎng),隔日換液,觀察細(xì)胞生長情況[17]。當(dāng)細(xì)胞達(dá)到80% ~ 90%密度時吸去培養(yǎng)液,使用含2%馬血清的高糖DMEM培養(yǎng)基進(jìn)行誘導(dǎo)分化,隔日換液。分化72 h后將細(xì)胞分為4組,分別加入等量培養(yǎng)基(Control,對照組)、200 μmol/L CoCl2(CoCl2組)、20 μmol/L Res(Resveratrol,Res組)、200 μmol/L CoCl2+20 μmol/L Res(CoCl2+Res組)。
48 h后收集細(xì)胞,進(jìn)行后續(xù)實驗[18]。
2. MyHC免疫熒光染色
在分化的細(xì)胞中加入CoCl2、Res處理48 h后,在光學(xué)顯微鏡下觀察不同處理組細(xì)胞形態(tài)。細(xì)胞用4%多聚甲醛溶液室溫固定10 min,用山羊血清室溫封閉1 h,然后加入一抗MyHC于4℃孵育過夜。第2日于室溫孵育Alexa Fluor-594標(biāo)記的熒光二抗1 h,然后用DAPI染液室溫孵育適量時間。洗滌后用Leica熒光顯微鏡拍攝不同處理下的細(xì)胞形態(tài)圖。用ImageJ軟件統(tǒng)計隨機(jī)選取的不同視野中的肌管融合指數(shù)。
3. 蛋白免疫印跡法
在細(xì)胞中加入含蛋白酶抑制劑的細(xì)胞組織裂解液,于冰上裂解30 min,然后于4℃、12 000 轉(zhuǎn)/分離心15 min。用二喹啉甲酸法檢測蛋白濃度。取30 μg蛋白,室溫進(jìn)行電泳,再將蛋白電轉(zhuǎn)移至聚偏二氟乙烯膜上,室溫封閉1 h。加入一抗于4℃孵育過夜。洗膜后于室溫孵育二抗。洗膜后使用ECL液顯色,用全自動化學(xué)發(fā)光成像分析系統(tǒng)掃描成像。以β-Tubulin作為內(nèi)參,目的蛋白條帶與內(nèi)參比較作為條帶的相對表達(dá)值。
4. 實時熒光定量逆轉(zhuǎn)錄PCR(qRT-PCR)檢測
RNA提取按照說明書進(jìn)行。使用TaKaRa PrimeScript RT Master Mix將總RNA逆轉(zhuǎn)錄為互補(bǔ)DNA。利用TaKaRa SYBR-Green Mix和PCR系統(tǒng)檢測mRNA的豐度。以18S RNA作為內(nèi)參,2-ΔΔCt 法計算mRNA的相對表達(dá)量。
三、統(tǒng)計學(xué)處理
實驗重復(fù)3次,所得數(shù)據(jù)用SPSS 21.0分析,計量資料用表示,2組間比較采用獨立樣本t檢驗,多組間比較采用析因設(shè)計方差分析,交互效應(yīng)有統(tǒng)計學(xué)意義時行單獨效應(yīng)分析:多組間比較采用單因素方差分析,兩兩比較采用LSD-t法。融合指數(shù)多組間比較采用χ2檢驗,各組間采用Bonferroni法進(jìn)行兩兩比較;α = 0.05;用GraphPad Prism 6.0繪圖。
結(jié)果
一、Res對C2Cl2肌管形成的影響
觀察MyHC免疫熒光染色后的肌管發(fā)現(xiàn),對照組和Res組細(xì)胞分化情況良好,可見大量長條狀肌管;經(jīng)CoCl2處理缺氧損傷后,可見長條狀肌管減少、部分肌管萎縮,肌管融合指數(shù)減少(P < 0.001);而CoCl2+Res組中加入Res處理后,可逆轉(zhuǎn)CoCl2的抑制作用,細(xì)胞分化情況較CoCl2組改善,肌管形成相對增多,肌管融合指數(shù)增加, 差異有統(tǒng)計學(xué)意義(P < 0.008),見圖1、表1。
二、Res對MyHC的保護(hù)作用
CoCl2缺氧損傷可導(dǎo)致MyHC不同亞型Myh7、Myh2、Myh4 mRNA表達(dá)均下降(P分別為0.0001、0.0004、0.0183),同時MyHC蛋白也下降(P = 0.0001),見圖2;析因設(shè)計方差分析結(jié)果表明,Myh7、Myh2、Myh4 mRNA和MyHC蛋白表達(dá)在CoCl2缺氧損傷與Res處理間的交互作用有統(tǒng)計學(xué)意義(Myh7:F = 7.677,P = 0.024;Myh2:F = 15.098,P = 0.005;Myh4: F = 5.512,P = 0.047;MyHC蛋白:F = 4.458,P = 0.042),見圖3。分析單獨效應(yīng)結(jié)果顯示Myh7、Myh2、Myh4 mRNA和MyHC蛋白在各組的表達(dá)差異有統(tǒng)計學(xué)意義(Myh7:F = 152.010,P < 0.001;Myh2:F = 98.763,P < 0.001;Myh4: F = 10.754,P < 0.001;MyHC蛋白:F = 20.779,P < 0.001),進(jìn)而對各組兩兩比較結(jié)果顯示,CoCl2+Res組的Myh7、Myh2、Myh4 mRNA和MyHC蛋白表達(dá)均高于CoCl2組(Myh7:P = 0.016;Myh2:P = 0.020;Myh4:P = 0.034;MyHC蛋白:P = 0.015),說明加入Res處理后,可逆轉(zhuǎn)CoCl2的抑制作用,上調(diào)Myh7、Myh2、Myh4 mRNA和MyHC蛋白。
三、Res對HIF-1α、BNIP3、LC3 、p62和 Beclin1的影響
蛋白免疫印跡結(jié)果顯示,在對照組和Res組中幾乎檢測不到HIF-1α,而在CoCl2組中檢測到高水平表達(dá)的HIF-1α;與之相反,CoCl2組加入Res后,HIF-1α的表達(dá)降低(P < 0.001),見圖4。析因設(shè)計方差分析結(jié)果表明,HIF-1α、BNIP3、 p62和Beclin1在CoCl2缺氧損傷與Res處理間的交互作用有統(tǒng)計學(xué)意義(HIF-1α:F = 122.539,P < 0.001; BNIP3: F = 70.937,P < 0.001;p62: F = 16.732,P = 0.001;Beclin1:F = 32.439,P < 0.001),見圖5。分析單獨效應(yīng)結(jié)果顯示,CoCl2+Res組的HIF-1α、BNIP3和 Beclin1表達(dá)均低于CoCl2組(HIF-1α:P < 0.001; BNIP3:P < 0.001;Beclin1:P < 0.001),而CoCl2+Res組的p62表達(dá)高于CoCl2組(P < 0.001),見圖4。LC3在CoCl2缺氧損傷與Res處理間的交互作用無統(tǒng)計學(xué)意義(F = 0.469,P = 0.507),CoCl2和Res處理的主效應(yīng)均有統(tǒng)計學(xué)意義,其中Res處理LC3表達(dá)稍低于對照組(F = 22.909,P < 0.001),見圖4、5。以上結(jié)果提示Res可能通過HIF-1α/BNIP3影響缺氧損傷時骨骼肌中自噬程度。
討論
MyHC是肌細(xì)胞分化標(biāo)志物之一,是決定肌纖維快慢類型的主要因素[19]。在本研究中,課題組建立CoCl2缺氧模型后,采用MyHC免疫熒光染色發(fā)現(xiàn)C2C12形態(tài)學(xué)異常,肌管融合指數(shù)減少,同時MyHC表達(dá)量下降;課題組前期研究也顯示,缺氧誘導(dǎo)的自噬可以抑制肌細(xì)胞分化標(biāo)志物Myog生成,進(jìn)而抑制肌分化[7]。據(jù)報道,Res處理小鼠成肌細(xì)胞,可以使MyHC蛋白和肌管直徑增加[20]。本研究顯示,CoCl2缺氧損傷與Res處理間存在交互效應(yīng),Res可使肌管融合指數(shù)增加、MyHC表達(dá)量升高,提示Res在骨骼肌缺氧損傷中發(fā)揮促融合和分化的保護(hù)作用。
HIF-1α和BNIP3在低氧環(huán)境中發(fā)揮重要作用。1992年Semenza和Wang[21]首先發(fā)現(xiàn)HIF-1α,
只有在缺氧條件下HIF-1α才可穩(wěn)定表達(dá)。BNIP3是HIF-1α的靶分子,可被缺氧誘導(dǎo)。有報道稱BNIP3可能在調(diào)控自噬體-溶酶體融合中發(fā)揮重要作用[22]。BNIP3是線粒體自噬的受體,通過直接結(jié)合LC3誘導(dǎo)自噬。既往研究表明,HIF-1α/BNIP3信號通路可以誘導(dǎo)腫瘤和腎細(xì)胞自噬[23-24]。本研究顯示,在CoCl2誘導(dǎo)的骨骼肌細(xì)胞缺氧損傷過程中,HIF-1α、BNIP3、 LC3和Beclin1均升高,提示HIF-1α和BNIP3可能誘導(dǎo)自噬,導(dǎo)致肌分化能力降低。
研究表明,Res可能通過不同機(jī)制發(fā)揮多種調(diào)控作用。Res可能通過降低NF-κB和肌肉特異性環(huán)指蛋白1活性來抑制腫瘤誘導(dǎo)的心臟萎縮[25]。Res通過改善自噬通量延緩肌肉細(xì)胞衰老[26]。骨骼肌急性鈍挫傷后,Res可通過上調(diào)堿性成纖維細(xì)胞生長因子、胰島素樣生長因子1來促進(jìn)骨骼肌修復(fù)[27]。目前Res對低氧或缺氧誘導(dǎo)肌肉損傷的影響尚未明確。在本研究中,我們通過CoCl2誘導(dǎo)的C2C12缺氧損傷模型推測Res可能是通過抑制HIF-1α和BNIP3介導(dǎo)的自噬,發(fā)揮促進(jìn)肌細(xì)胞損傷修復(fù)的保護(hù)作用。
本研究初步探討了Res在CoCl2誘導(dǎo)的肌細(xì)胞缺氧損傷中的作用,實驗結(jié)果顯示Res可以提高肌管MyHC融合指數(shù),促進(jìn)MyHC的表達(dá),減弱HIF-1α和BNIP3誘導(dǎo)的自噬,上述結(jié)果提示Res可能通過抑制自噬在骨骼肌細(xì)胞損傷修復(fù)中發(fā)揮促分化作用。本研究可為臨床治療缺氧損傷提供新的潛在靶點,為促進(jìn)肌再生修復(fù)提供理論依據(jù)。
參 考 文 獻(xiàn)
[1] Farre-Garros R, Lee JY, Natanek SA, Connolly M, Sayer AA, Patel H, Cooper C, Polkey MI, Kemp PR. Quadriceps miR-542-3p and -5p are elevated in COPD and reduce function by inhibiting ribosomal and protein synthesis. J Appl Physiol (1985), 2019, 126(6): 1514-1524.
[2] Zhang Z, Zhang L, Zhou Y, Li L, Zhao J, Qin W, Jin Z, Liu W. Increase in HDAC9 suppresses myoblast differentiation via epigenetic regulation of autophagy in hypoxia. Cell Death Dis, 2019, 10(8): 552.
[3] Arentson-Lantz EJ, Fiebig KN, Anderson-Catania KJ, Deer RR, Wacher A, Fry CS, Lamon S, Paddon-Jones D. Countering disuse atrophy in older adults with low-volume leucine supplementation. J Appl Physiol (1985), 2020, 128(4): 967-977.
[4] Fox DK, Ebert SM, Bongers KS, Dyle MC, Bullard SA, Dierdorff JM, Kunkel SD, Adams CM. p53 and ATF4 mediate distinct and additive pathways to skeletal muscle atrophy during limb immobilization. Am J Physiol Endocrinol Metab, 2014, 307(3): E245-E261.
[5] Bensaid S, Fabre C, Fourneau J, Cieniewski-Bernard C. Impact of different methods of induction of cellular hypoxia: focus on protein homeostasis signaling pathways and morphology of C2Cl2 skeletal muscle cells differentiated into myotubes. J Physiol Biochem, 2019,75(3): 367-377.
[6] Chen R, Xu J, She Y, Jiang T, Zhou S, Shi H, Li C. Necrostatin-1 protects C2C12 myotubes from CoCl2-induced hypoxia. Int J Mol Med, 2018, 41(5): 2565-2572.
[7] Chen R, Jiang T, She Y, Xu J, Li C, Zhou S, Shen H, Shi H, Liu S. Effects of cobalt chloride, a hypoxia-mimetic agent, on autophagy and atrophy in skeletal C2Cl2 myotubes. Biomed Res Int, 2017, 2017: 1-9.
[8] Abbas H, Kamel R, El-Sayed N. Dermal anti-oxidant, anti-inflammatory and anti-aging effects of Compritol ATO-based Resveratrol colloidal carriers prepared using mixed surfactants. Int J Pharm, 2018, 541(1-2): 37-47.
[9] Abd EA, Fahim AT, Sadik N, Ali BM. Resveratrol and curcumin ameliorate di-(2-ethylhexyl) phthalate induced testicular injury in rats. Gen Comp Endocrinol, 2016, 225: 45-54.
[10] Lim YP, Go MK, Raida M, Inoue T, Wenk MR, Keasling JD, Chang MW, Yew WS. Synthetic enzymology and the fountain of youth: repurposing biology for longevity. ACS Omega, 2018, 3(9): 11050-11061.
[11] Abolaji AO, Adedara AO, Adie MA, Vicente-Crespo M, Farombi EO. Resveratrol prolongs lifespan and improves 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced oxidative damage and behavioural deficits in Drosophila melanogaster. Biochem Biophys Res Commun, 2018, 503(2): 1042-1048.
[12] Azorín-Ortu?o M, Ya?éz-Gascón MJ, Pallarés FJ, Rivera J, González-Sarrías A, Larrosa M, Vallejo F, García-Conesa MT, Tomás-Barberán F, Espín JC. A Dietary resveratrol-rich grape extract prevents the developing of atherosclerotic lesions in the aorta of pigs fed an atherogenic diet. J Agric Food Chem, 2012, 60(22): 5609-5620.
[13] Alexandre EC, Calmasini FB, Sponton A, de Oliveira MG, Andre DM, Silva FH, Delbin MA, Monica FZ, Antunes E. Influence of the periprostatic adipose tissue in obesity-associated mouse urethral dysfunction and oxidative stress: effect of resveratrol treatment. Eur J Pharmacol, 2018, 836: 25-33.
[14] Szkudelska K, Deniziak M, Sassek M, Szkudelski I, Noskowiak W, Szkudelski T. Resveratrol affects insulin signaling in type 2 diabetic Goto-Kakizaki Rats. Int J Mol Sci, 2021, 22(5): 2469.
[15] Thiel G, Rossler OG. Resveratrol regulates gene transcription via activation of stimulus-responsive transcription factors. Pharmacol Res, 2017, 117: 166-176.
[16] 周瑾. 白藜蘆醇和精氨酸對高住低訓(xùn)大鼠骨骼肌萎縮的影響及機(jī)制研究. 北京:北京體育大學(xué), 2016.
[17] 周珊瑤, 陳睿, 譚夕, 佘燕玲, 雷斯. Nec-1對模擬缺氧條件下骨骼肌細(xì)胞損傷修復(fù)的作用研究. 新醫(yī)學(xué), 2018, 49(6): 386-391.
[18] Kaminski J, Lan?on A, Aires V, Limagne E, Tili E, Michaille J, Latruffe N. Resveratrol initiates differentiation of mouse skeletal muscle-derived C2C12 myoblasts. Biochem Pharmacol, 2012, 84(10): 1251-1259.
[19] Toniolo L, Maccatrozzo L, Patruno M, Pavan E, Caliaro F, Rossi R, Rinaldi C, Canepari M, Reggiani C, Mascarello F. Fiber types in canine muscles: myosin isoform expression and functional characterization. Am J Physiol Cell Physiol, 2007, 292(5): C1915-C1926.
[20] Montesano A, Luzi L, Senesi P, Mazzocchi N, Terruzzi I. Resveratrol promotes myogenesis and hypertrophy in murine myoblasts. J Transl Med, 2013, 11(1): 310.
[21] Semenz GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol, 1992, 12(12): 5447-5454.
[22] Ma Z, Chen C, Tang P, Zhang H, Yue J, Yu Z. BNIP3 induces apoptosis and protective autophagy under hypoxia in esophageal squamous cell carcinoma cell lines: BNIP3 regulates cell death. Dis Esophagus, 2017, 30(9): 1-8.
[23] Qureshi-Baig K, Kuhn D, Viry E, Pozdeev VI, Schmitz M, Rodriguez F, Ullmann P, Koncina E, Nurmik M, Frasquilho S, Nazarov PV, Zuegel N, Boulmont M, Karapetyan Y, Antunes L, Val D, Mittelbronn M, Janji B, Haan S, Letellier E. Hypoxia-induced autophagy drives colorectal cancer initiation and progression by activating the PRKC/PKC-EZR (ezrin) pathway. Autophagy, 2020, 16(8): 1436-1452.
[24] Chen B, Yang B, Zhu J, Wu J, Sha J, Sun J, Bao E, Zhang X. Hsp90 relieves heat stress-induced damage in mouse kidneys: involvement of antiapoptotic PKM2-AKT and autophagic HIF-1α signaling. Int J Mol Sci, 2020, 21(5): 1646.
[25] Shadfar S, Couch ME, McKinney KA, Weinstein LJ, Yin X, Rodríguez JE, Guttridge DC, Willis M. Oral resveratrol therapy inhibits cancer-induced skeletal muscle and cardiac atrophy in vivo. Nutr Cancer, 2011, 63(5): 749-762.
[26] Chang Y, Liu H, Chen Y, Chen Y, Chen Y, Chang S. Resveratrol protects muscle cells against palmitate-induced cellular senescence and insulin resistance through ameliorating autophagic flux. J Food Drug Anal, 2018, 26(3): 1066-1074.
[27] 劉杏, 魏曉菡, 鄧潔, 李仲銘. 白藜蘆醇上調(diào)堿性成纖維細(xì)胞生長因子、胰島素樣生長因子1表達(dá)治療骨骼肌損傷. 中國組織工程研究, 2020, 24(14): 2184-2191.
(收稿日期:2021-02-18)
(本文編輯:洪悅民)