国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

成莊煤礦4311綜放工作面礦壓顯現(xiàn)規(guī)律及覆巖垮落特征

2021-08-06 02:20楊昌永張沛杜君武郝春生

楊昌永 張沛 杜君武 郝春生

摘 要:掌握綜放工作面來壓和覆巖運(yùn)移規(guī)律對綜放工作面安全高效開采具有重要意義。以成莊煤礦4311綜放工作面為工程背景,通過物理模擬對工作面覆巖垮落特征、礦壓顯現(xiàn)規(guī)律、支架載荷分布規(guī)律和覆巖“三帶”發(fā)育特征進(jìn)行了研究。結(jié)果表明:4311工作面初次來壓步距58.5 m,周期來壓步距11.5~27 m,平均18 m。工作面覆巖垮落呈現(xiàn)明顯的“三帶”分布規(guī)律,垮落帶高度最大48 m,裂隙帶高度最大169 m,煤層頂板169 m以上為彎曲下沉帶。工作面推進(jìn)222 m后達(dá)到充分采動,最大裂采比26.20,工作面頂板來壓時(shí),支架載荷一般大于3 500 kN/架,最大為4 115 kN/架,給出了合理的支架選型工作阻力為4 372~4 938 kN,4311綜放工作面開采過程中沒有出現(xiàn)壓架現(xiàn)象。

關(guān)鍵詞:綜放工作面;礦壓規(guī)律;覆巖垮落特征;支護(hù)阻力

中圖分類號:TD 323

文獻(xiàn)標(biāo)志碼:A

文章編號:1672-9315(2021)03-0449-08

DOI:10.13800/j.cnki.xakjdxxb.2021.0309

Abstract:It is of great significance to master the law of weighting and overburden rock movement in fully-mechanized working face for safe and efficient mining.Taking the 4311 fully-mechanized working face of the fourth district of Chengzhuang coal mine as the engineering background,the caving characteristics,strata behavior law,support load distribution law and overburden “three zones” development characteristics were studied based on physical simulation.The results show that the first weighting distance of 4311 working face is 58.5 m,the periodic weighting distance is 11.5~27 m,with an average of 18 m.The overburden collapse of the working face presents an obvious distribution rule of “three zones”.The maximum height of the caving zone is 48 m,the maximum height of the fracture zone is 169 m,and the top of the coal seam is a curved subsidence zone above 169 m.After the working face is pushed through 222 m,it reaches full mining,and the maximum fissure mining ratio is 26.20,when the roof of 4311 working face is pressed,the average support resistance is more than 3 500 kN/frame,and the maximum support resistance is 4 115 kN/frame,the reasonable work resistance of bracket selection is given as 4 372~4 938 kN,in 4311 fully mechanized top coal working face,there didnt occur any support crushing during mining.Key words:fully mechanized working face;strata behavior law;overburden rock caving characteristics;support resistance

0 引 言

煤炭資源在中國能源戰(zhàn)略中占據(jù)主導(dǎo)地位,近年來,隨著開采工藝、開采設(shè)備及支架-圍巖耦合支護(hù)理論的提升,開采規(guī)模和年產(chǎn)量在不斷增加[1]。超大采高綜放開采已初步實(shí)現(xiàn)了安全高效、高回收率開采,對于綜放開采,不同地質(zhì)條件和開采條件的綜放工作面,其礦壓顯現(xiàn)規(guī)律和覆巖垮落特征存在較大差異。厚煤層放頂煤開采,由于采高大,工作面來壓和覆巖運(yùn)動劇烈。綜放工作面直接頂厚度和巖性影響著垮落后的碎脹程度,進(jìn)而影響后方采空區(qū)的充填程度和上覆巖層運(yùn)動破斷運(yùn)動形式和結(jié)構(gòu)形態(tài)[2-6]。根據(jù)現(xiàn)場實(shí)踐,綜放工作面頂板初次垮落和周期垮落規(guī)律的預(yù)判,對工作面安全高效生產(chǎn)至關(guān)重要,同時(shí)液壓支架與圍巖相互作用關(guān)系,也影響著綜放工作面的安全生產(chǎn)[7-12]。掌握綜放工作面覆巖垮落特征、“三帶”發(fā)育高度和礦壓顯現(xiàn)規(guī)律,對指導(dǎo)綜放采煤工作面安全開采具有重要意義。在保證安全生產(chǎn)的前提下,選擇合理的支架工作阻力不僅能夠保證安全生產(chǎn),而且能夠降低生產(chǎn)成本[13-19]??梢姡C放工作面礦壓顯現(xiàn)規(guī)律和覆巖運(yùn)移規(guī)律是巖層控制關(guān)注的熱點(diǎn)。

以成莊煤礦4311綜放工作面為研究背景,采用物理模擬實(shí)驗(yàn),研究成莊煤礦4311綜放工作面覆巖垮落特征、圍巖應(yīng)力分布規(guī)律、覆巖“三帶”發(fā)育特征和支架載荷分布規(guī)律,揭示了成莊煤礦4311綜放工作面礦壓顯現(xiàn)規(guī)律及覆巖垮落規(guī)律,對工作面頂板控制和來壓監(jiān)測預(yù)報(bào)提供科學(xué)依據(jù),為成莊煤礦3#煤層安全高效開采提供了理論依據(jù)。

1 工程背景

成莊煤礦4311工作面位于四盤區(qū),開采3#煤層,煤層厚度平均6.3 m,傾角3°,平均埋深480 m。工作面走向長度1 318 m,傾向長度210 m,采用綜合機(jī)械化低位放頂煤采煤法,全部垮落法管理頂板,采高3 m,放煤厚度3.3 m,兩端頭各留6 m長距離不放頂煤,采用正規(guī)循環(huán)作業(yè),每日進(jìn)度8個(gè)循環(huán),日推進(jìn)6.4 m。3#煤層為條帶狀結(jié)構(gòu),似金屬光澤,煤層普氏系數(shù)f=2~4,屬中硬煤層,直接頂為泥巖,厚度2.45 m,黑色,層理發(fā)育,植物化石豐富;基本頂為砂質(zhì)泥巖,厚度10.1 m,局部含少量砂巖,水平層理發(fā)育;直接底和老底為砂質(zhì)泥巖,總厚度11.5 m。4311工作面采用三巷布置,其中43111巷為軌道巷兼主進(jìn)風(fēng)巷,43113巷為膠帶輸送機(jī)巷,43112巷為回風(fēng)巷,43112巷和43113巷之間留設(shè)45 m煤柱。工作面采用“兩進(jìn)一回”Y型通風(fēng)方式,工作面巷道布置如圖1所示。

2 綜放工作面覆巖垮落特征物理模擬

2.1 模型設(shè)計(jì)

以成莊煤礦4311綜放工作面地質(zhì)條件為原型,采用物理相似模擬,研究4311綜放工作面覆巖垮落特征。選用3.0 m平面應(yīng)力模型架,確定模型的幾何相似比為1∶150,模型尺寸3.0 m×1.43 m

×0.2 m。剩余上覆巖層和土層載荷用鐵磚加載配重。煤巖體力學(xué)參數(shù)見表1。

按照相似理論,結(jié)合煤巖力學(xué)參數(shù),選用河沙作骨料,石膏、大白粉作膠結(jié)材料,云母粉模擬巖層節(jié)理裂隙。按照物理相似準(zhǔn)則,計(jì)算各個(gè)巖層的相似配比,物理模擬實(shí)驗(yàn)?zāi)P腿鐖D2所示。

模型表面共布置5條巖移測線,分別位于頂板上方15,45,75,105,135 m處,采用全站儀監(jiān)測開挖過程中巖移規(guī)律。底板鋪裝應(yīng)力傳感器,監(jiān)測采動過程中的應(yīng)力變化,通過模擬支架監(jiān)測采動過程中的工作面頂板壓力,開挖過程中為消除邊界效應(yīng),模型左右邊界各留設(shè)70 m邊界煤柱。

2.2 覆巖垮落規(guī)律

2.2.1 直接頂垮落

當(dāng)工作面推進(jìn)至45 m時(shí),直接頂上方出現(xiàn)微小離層裂隙,開切眼處和工作面煤壁處出現(xiàn)上行裂隙。工作面推進(jìn)至46.5 m時(shí),直接頂板離層加大,煤壁處和切眼處出現(xiàn)上行裂隙進(jìn)一步擴(kuò)大。隨后,直接頂大面積垮落,垮落巖塊未形成規(guī)則鉸接結(jié)構(gòu),呈碎塊散落在采空區(qū),此時(shí)頂板垮落為直接頂初次垮落。直接頂初次垮落高度為3 m,離層裂隙發(fā)育到煤層頂板上方5.6 m處。直接頂垮落過程如圖3所示。

2.2.2 老頂?shù)某醮慰迓?/p>

工作面推進(jìn)至49.5 m時(shí),直接頂巖梁在老頂載荷和自重作用下發(fā)生彎曲下沉并產(chǎn)生離層裂隙。工作面繼續(xù)推進(jìn),離層裂隙不斷向上發(fā)育,推進(jìn)至58.5 m,老頂巖層彎曲下沉,由于頂板巖塊端部擠碎使老頂產(chǎn)生回轉(zhuǎn)失穩(wěn),在兩端產(chǎn)生拉裂隙,但破斷裂隙未貫穿整個(gè)巖層,此時(shí)對應(yīng)于老頂?shù)某醮纹茢?,初次垮落步?8.5 m。老頂初次垮落時(shí),采空區(qū)上方頂板裂隙帶發(fā)育高度16 m,離層巖梁寬度37.5 m。覆巖在切眼處的垮落角為61°,在煤壁處為59°,老頂?shù)某醮慰迓湫螒B(tài)如圖4所示。

2.2.3 頂板周期性垮落規(guī)律

1)第1次周期垮落。工作面推進(jìn)72.5 m時(shí),老頂?shù)?次周期垮落,垮落步距14 m,頂板裂隙帶高度25.2 m,離層寬度35.7 m,離層間距1.5 m??拷醒厶庬敯咫x層裂隙尚未閉合,頂板巖層形成較明顯的“砌體梁”鉸接結(jié)構(gòu),如圖5所示。

2)第2次周期垮落。隨著煤層不斷被開挖,上覆巖層離層裂隙不斷向上發(fā)育,當(dāng)工作面推進(jìn)90 m時(shí),老頂?shù)?次周期垮落,垮落步距17.5 m,裂隙帶高度29 m,離層寬度43.5 m,離層間距1.3 m,直接頂下位巖層產(chǎn)生明顯的豎向裂隙,未形成鉸接結(jié)構(gòu),直接頂垮落充分。總體上,下部巖層先垮落,上方巖層滯后垮落,如圖6所示。

3)第3,4次周期垮落。工作面推進(jìn)到104.5 m時(shí),覆巖離層裂隙進(jìn)一步向上發(fā)育,原有離層裂隙隨著上方巖層的回轉(zhuǎn)變形,逐漸趨于閉合,裂隙帶高度發(fā)育至煤層上方45 m處,老頂?shù)?次周期垮落,垮落步距14.5 m,此次垮落強(qiáng)度不大,如圖7所示。推進(jìn)到118.5 m時(shí),覆巖離層裂隙進(jìn)一步向上發(fā)育,采空區(qū)中部原有離層裂隙隨著上方巖層的回轉(zhuǎn)變形,逐漸趨于閉合。切眼處的上行裂隙和離層裂隙進(jìn)一步減小,但煤壁上方的離層裂隙變大,上行裂隙隨著后方老頂巖梁的回轉(zhuǎn)變形,不斷向上發(fā)育,覆巖裂隙帶高度發(fā)育至煤層上方55.5 m處,離層巖梁寬度51 m,離層間距1.0 m,第4次周期垮落,垮落步距14 m,頂板結(jié)構(gòu)如圖8所示。

推進(jìn)到222 m時(shí),達(dá)到充分采動,裂隙帶發(fā)育最大高度169 m。工作面開采過程中,覆巖層呈周期性垮落。物理模擬開采結(jié)束后,得到了12次頂板周期垮落特征和裂隙發(fā)育高度,4311綜放工作面,初次來壓步距58.5 m,周期來壓步距一般為11.5~27 m,平均18 m。覆巖垮落規(guī)律及礦壓顯現(xiàn)特征見表2。

2.3 覆巖裂隙發(fā)育規(guī)律

開挖結(jié)束后,裂隙帶發(fā)育高度最大169 m。模擬最大采高6.45 m,最大裂采比26.20。裂隙帶高度與工作面推進(jìn)關(guān)系如圖9所示。

從圖9可知,工作面推進(jìn)到104 m時(shí),覆巖裂隙帶高度一般為垮落帶高度的1.5倍左右。工作面推進(jìn)到110 m,覆巖垮落帶高度維持在48 m左右,推進(jìn)到

120 m左右時(shí),覆巖裂隙帶發(fā)育迅速。當(dāng)工作面推進(jìn)到222 m,覆巖裂隙帶發(fā)育充分,達(dá)到充分采動,裂隙帶隨著工作面的推進(jìn),基本保持169 m左右,此時(shí)覆巖裂隙帶高度一般為垮落帶高度的3.5倍。

3 工作面礦壓顯現(xiàn)及覆巖運(yùn)動規(guī)律

3.1 工作面來壓規(guī)律

根據(jù)物理模擬過程中覆巖垮落形態(tài),應(yīng)用無線應(yīng)力傳感器監(jiān)測工作面推進(jìn)過程中支架載荷情況,得到不同工作面推進(jìn)距離的受力情況。工作面開采礦壓顯現(xiàn)規(guī)律如圖10所示。

當(dāng)工作面推進(jìn)到46.5 m時(shí),直接頂初次垮落,支架壓力不大,為2 814 kN,老頂初次垮落時(shí),支架壓力明顯上升,支架載荷3 602 kN,來壓劇烈,頂板垮落充分。老頂?shù)?次周期來壓,支架載荷為3 192 kN;第2次周期來壓,支架載荷為3 644 kN;第4次周期來壓,支架載荷為3 696 kN,此次周期來壓劇烈,老頂?shù)?次周期來壓強(qiáng)度4 115 kN/架,此次來壓最為強(qiáng)烈,覆巖垮落劇烈,上覆巖層離層裂隙加大,上行裂隙發(fā)育充分。

從圖10可得,開采過程中,上覆巖層來壓時(shí)支架載荷一般大于3 500 kN/架,最大可達(dá)4 115 kN/架?,F(xiàn)場實(shí)踐中,為保證安全生產(chǎn),工作面支架應(yīng)該有15%~20%的富余量,因此安全的支架選型應(yīng)該為4 732~4 938 kN。4311綜放工作面采用ZZPE4800/17/33型放頂煤支架,支架工作阻力4 800 kN,安全閥開啟率為5%,沒有出現(xiàn)壓架等現(xiàn)象。

3.2 覆巖運(yùn)移規(guī)律

3.2.1 覆巖移動規(guī)律

對布置在模型表面5個(gè)層位(煤層頂板上方15,45,75,105,135 m)上的測點(diǎn)用全站儀記錄覆巖垂直位移。在開挖過程中,對每次頂板周期垮落后對各個(gè)測線的測點(diǎn)位移變化量進(jìn)行觀測,得到不同層位覆巖垂直位移變化規(guī)律如圖11所示。

從圖11可以得出:

1)15 m層位頂板最大下沉值位于工作面推進(jìn)到140 m位置,最大下沉為5.9 m。從距離開切眼到停采線前50 m處的頂板全部位移垮落帶內(nèi),位于垮落帶的頂板范圍為210 m左右。采空區(qū)中部的下沉值大,頂板表現(xiàn)為同步下沉,不均勻下沉系數(shù)小??拷醒厶幒屯2删€處的頂板下沉量小,但頂板不均勻下沉系數(shù)大。

2)45 m層位頂板最大下沉值位于工作面中部,最大下沉值為4.9,200 m范圍內(nèi)的頂板位于覆巖垮落帶。采空區(qū)中部150 m范圍內(nèi)頂板下沉值基本在4.0~4.9 m。

3)75 m層位頂板最大下沉值為3.7,180 m范圍左右的頂板位下沉值在3.1~3.7 m,不均勻下沉系數(shù)為0.16。采空區(qū)上方覆巖頂板同步下沉盆地范圍較15 m和45 m層位小。

4)105 m層位頂板下沉值最大為2.8 m,150 m左右的頂板下沉量在2.4~2.8 m,采空區(qū)中部下沉盆地整體下沉量較小,不均勻下沉系數(shù)為0.14??拷罕谔幍牟痪鶆蛳鲁料禂?shù)為0.53,靠近停采線位置的覆巖不均勻沉降系數(shù)為0.78。

5)135 m層位頂板下沉量最大為2.2 m,100 m左右的頂板下沉量在2.1~2.2 m,共同下沉盆地內(nèi)覆巖的不均勻下沉系數(shù)為0.05,整體表現(xiàn)為均勻沉降,此時(shí)的位于采空區(qū)內(nèi)部的上覆巖層離層裂隙趨于閉合,切眼處和停采線處的上行裂隙和離層裂隙減小。

6)采空區(qū)煤層頂板下位巖層下沉盆地的下沉量大于上位巖層的下沉量,隨著覆巖與煤層頂板的距離增大,頂板受采動影響程度逐漸減小。

7)靠近切眼處的覆巖不均勻下沉系數(shù)一般為0.45~0.56,靠近停采線處的覆巖不均勻下沉系數(shù)一般為0.67~0.78,覆巖下沉盆地內(nèi)的不均勻系數(shù)一般為0.05~0.12。

8)由于巖體具有碎脹性,上覆巖層受采動影響,巖體碎脹性不斷疊加,導(dǎo)致覆巖上方的離層裂隙隨著工作面推進(jìn)不斷減小或閉合。下位巖層受采動影響的程度大于上位巖層,下位巖層裂隙發(fā)育,垮落充分,下位巖層的離層巖梁跨度和離層間距大于上位巖層。

3.2.2 覆巖“三帶”分布特征

4311工作面開采結(jié)束后,上覆巖層呈現(xiàn)明顯的“三帶”分布規(guī)律,根據(jù)模擬實(shí)驗(yàn)觀測數(shù)據(jù),覆巖垮落帶高度最大發(fā)育至48 m左右,覆巖裂隙帶高度發(fā)育至169 m左右,煤層頂板169 m以上為彎曲下沉帶,覆巖裂隙帶高度一般為垮落帶高度的3.5倍左右,3#煤層開采最大裂采比為26.20,覆巖“三帶”分布特征如圖12所示。

4 結(jié) 論

1)4311工作面初次來壓步距58.5 m,周期來壓步距11.5~27 m,平均18 m。來壓時(shí)支架載荷一般大于3 500 kN/架,最大4 115 kN/架?,F(xiàn)場實(shí)踐中,為保證安全生產(chǎn),考慮支架15%~20%的富余量,支架選型4 732~4 938 kN。

2)采空區(qū)頂板下位巖層下沉盆地的下沉量大于上位巖層的下沉量,隨著覆巖與煤層頂板的距離增大,頂板受采動影響程度逐漸減小??拷醒厶幒兔罕谔幍母矌r上行裂隙和離層裂隙發(fā)育充分,采空區(qū)下沉盆地內(nèi)的離層裂隙基本閉合。

3)4311工作面開采后,覆巖呈現(xiàn)明顯“三帶”分布規(guī)律,覆巖垮落帶高度最大48 m,裂隙帶高度169 m,煤層頂板169 m以上為彎曲下沉帶。工作面充分采動后,裂隙帶發(fā)育趨于穩(wěn)定,達(dá)到169 m,最大裂采比26.20。

參考文獻(xiàn)(References):

[1] 王國法,龐義輝,李明忠,等.超大采高工作面液壓支架與圍巖耦合作用關(guān)系[J].煤炭學(xué)報(bào),2017,42(2):518-526.WANG Guofa,PANG Yihui,LI Mingzhong,et al.Hydraulic support and coal wall coupling relationship in ultra large height mining face[J].Journal of China Coal Society,2017,42(2):518-526.

[2]常聚財(cái),謝廣祥,楊科.較薄厚煤層開采頂煤巖運(yùn)移破壞特征研究[J].煤炭科學(xué)技術(shù),2008,36(4):13-15.CHANG Jucai,XIE Guangxiang,YANG Ke.Research on movement and displacement failure features of top coal and strata in fully mechanized top caving mining in thinner thick seam[J].Coal Science and Technology,2008,36(4):13-15.

[3]張振龍,常少峰,崔振東.綜放工作面初次垮落前強(qiáng)制放頂研究[J].山東煤炭科技,2020(1):56-57,64.

ZHANG Zhenlong,CHANG Shaofeng,CUI Zhendong.Study on forced caving before the first pressure in fully mechanized top coal caving face[J].Shandong Coal Science and Technology,2020(1):56-57,64.

[4]李化敏,蔣東杰.放頂煤液壓支架承載特性及其適應(yīng)性分析[J].煤炭科學(xué)技術(shù),2015,43(6):23-28,70.

LI Huamin,JIANG Dongjie.Analysis on loading features and suitability of hydraulic powered caving supports[J].Coal Science and Technology,2015,43(6):23-28,70.

[5]趙寶峰.工作面開采覆巖移動規(guī)律的數(shù)值模擬研究[J].煤炭技術(shù),2016,35(9):25-26.ZHAO Baofeng.Study on movement rule of overlying strata after working face exploitation based on numerical simulation[J].Coal Technology,2016,35(9):25-26.

[6]李樹剛,徐培耘,趙鵬翔,等.綜采工作面覆巖壓實(shí)區(qū)演化采高效應(yīng)分析及應(yīng)用[J].煤炭學(xué)報(bào),2018,43(S1):112-120.LI Shugang,XU Peiyun,ZHAO Pengxiang,et al.Analysis and application on the mining height effect of evolving law of compaction area at fully mechanized face[J].Journal of China Coal Society,2018,43(S1):112-120.

[7]王國法,龐義輝.特厚煤層大采高綜采綜放適應(yīng)性評價(jià)和技術(shù)原理[J].煤炭學(xué)報(bào),2018,43(1):33-42.WANG Guofa,PANG Yihui.Fully-mechanized coal mining and caving mining method evaluation and key technology for thick coal seam[J].Journal of China Coal Society,2018,43(1):33-42.

[8]王金華,黃志增,于雷.特厚煤層綜放開采頂煤體“三帶”放煤理論與應(yīng)用[J].煤炭學(xué)報(bào),2017,42(4):809-816.WANG Jinhua,HUANG Zhizeng,YU Lei.“Three plies in top coal”theory and its application in top coal caving mining for ultra-thick coal seams[J].Journal of China Coal Society,2017,42(4):809-816.

[9]于雷,閆少宏,劉全明.特厚煤層綜放開采支架工作阻力的確定[J].煤炭學(xué)報(bào),2012,37(5):737-742. YU Lei,YAN Shaohong,LIU Quanming.Determining support working resistance of top coal caving in extra thick coal seam[J].Journal of China Coal Society,2012,37(5):737-742.

[10]于雷,閆少宏.特厚煤層綜放開采頂板運(yùn)動形式及礦壓規(guī)律研究[J].煤炭科學(xué)技術(shù),2015,43(8):40-44,59.YU Lei,YAN Shaohong.Roof structure moving type and its influence on ground pressure of top coal caving in extra thick coal seam[J].Coal Science and Technology,2015,43(8):40-44,59.

[11]楊登峰,張凌凡,柴茂,等.基于斷裂力學(xué)的特厚煤層綜放開采頂板破斷規(guī)律研究[J].巖土力學(xué),2016,37(7):2033-2039. YANG Dengfeng,ZHANG Lingfan,CHAI Mao,et al.Study of roof breaking law of fully mechanized top coal caving mining in ultra-thick coal seam based on fracture mechanics[J].Rock and Soil Mechanics,2016,37(7):2033-2039.

[12]劉貴,張華興,劉治國,等.河下綜放開采覆巖破壞發(fā)育特征實(shí)測及模擬研究[J].煤炭學(xué)報(bào),2013,38(6):987-993. LIU Gui,ZHANG Huaxing,LIU Zhiguo,et al.Observation and simulation research on development features of overlying strata failure in conditions of fully-mechanized top-coal caving mining under river[J].Journal of China Coal Society,2013,38(6):987-993.

[13]張宏偉,朱志潔,霍利杰,等.特厚煤層綜放開采覆巖破壞高度[J].煤炭學(xué)報(bào),2014,39(5):816-821. ZHANG Hongwei,ZHU Zhijie,HUO Lijie,et al.The overburden failure height of superhigh seam by fully-mechanized caving method[J].Journal of China Coal Society,2014,39(5):816-821.

[14]閆少宏.特厚煤層大采高綜放開采支架外載的理論研究[J].煤炭學(xué)報(bào),2009,34(5):590-593.YAN Shaohong.Theory study on the load on support of long wall with top coal caving with great mining height in extra thick coal seam[J].Journal of China Coal Society,2009,34(5):590-593.

[15]袁永,屠世浩,王瑛,等.大采高綜采技術(shù)的關(guān)鍵問題與對策探討[J].煤炭科學(xué)技術(shù),2010,38(1):4-8.YUAN Yong,TU Shihao,WANG Ying,et al.Discussion on key problems and countermeasures of fully mechanized mining technology with high mining height[J].Coal Science and Technology,2010,38(1):4-8.

[16]李春杰,劉銀先,高紅彬,等.“三軟”煤層采場覆巖運(yùn)動及應(yīng)力分布規(guī)律[J].西安科技大學(xué)學(xué)報(bào),2015,27(2):187-191.

LI Chunjie,LIU Yinxian,GAO Hongbin,et al.Overlying strata movement and stress distribution law in the“three-soft”coal seam[J].Journal of Xian University of Science and Technology,2015,27(2):187-191.

[17]湯鑄,李樹清,黃壽卿,等.厚松散層礦區(qū)綜放開采地表移動變形規(guī)律[J].煤礦安全,2018,49(6):210-212,216.TANG Zhu,LI Shuqing,HUANG Shouqing,et al.Re-search on surface movement law for fully-mechanized top coal caving under thick unconsolidated layers[J].Safety in Coal Mines,2018,49(6):210-212,216.

[18]王紅勝,張東升,王旭鋒,等.綜放面近距離跨采下山分區(qū)加固技術(shù)[J].西安科技大學(xué)學(xué)報(bào),2007,27(4):559-564.WANG Hongsheng,ZHANG Dongsheng,WANG Xu-feng,et al.Close quarters overhead mining diphead sub area reinforcement technique in top-caving mining coalface and its application[J].Journal of Xian University of Science and Technology,2007,27(4):559-564.

[19]于斌,朱帝杰,陳忠輝.基于隨機(jī)介質(zhì)理論的綜放開采頂煤放出規(guī)律[J].煤炭學(xué)報(bào),2017,42(6):1366-1371.YU Bin,ZHU Dijie,CHEN Zhonghui.Top-coal drawing law of LTCC mining based on stochastic medium theory[J].Journal of China Coal Society,2017,42(6):1366-1371.

[20]張宏偉,朱志潔,霍利杰,等.特厚煤層綜放開采覆巖破壞高度[J].煤炭學(xué)報(bào),2014,39(5):816-821. ZHANG Hongwei,ZHU Zhijie,HUO Lijie,et al.The overburden failure height of superhigh seam by fully-mechanized caving method[J].Journal of China Coal Society,2014,39(5):816-821.

[21]李化敏,蔣東杰,李東印.特厚煤層大采高綜放工作面礦壓及頂板破斷特征[J].煤炭學(xué)報(bào),2014,39(10):1956-1960. LI Huamin,JIANG Dongjie,LI Dongyin.Analysis of ground pressure and roof movement in fully-mechanized top coal caving with large mining height in ultra-thick seam[J].Journal of China Coal Society,2014,39(10):1956-1960.

[22]馮宇峰,歐陽振華,鄧志剛,等.含夾矸特厚煤層綜放工作面頂煤破碎機(jī)理分析[J].煤炭科學(xué)技術(shù),2016,44(1):120-125. FENG Yufeng,OUYANG Zhenhua,DENG Zhigang,et al.Analysis on top coal breaking mechanism of fully-mechanized caving mining face in ultra thick seam with parting[J].Coal Science and Technology,2016,44(1):120-125.

[23]王金華.綜放開采是解決厚煤層開采難題的有效途徑[J].煤炭科學(xué)技術(shù),2005,33(2):1-6.WANG Jinhua.Fully mechanized top coal caving mining is the effective access to solve difficult problems in thick seam mining[J].Coal Science and Technology,2005,33(2):1-6.

[24]王金華.特厚煤層大采高綜放開采關(guān)鍵技術(shù)[J].煤炭學(xué)報(bào),2013,38(12):2089-2098.WANG Jinhua.Key technology for fully-mechanized top coal caving with large mining height in extra-thick coal seam[J].Journal of China Coal Society,2013,38(12):2089-2098.

[25]于斌,朱衛(wèi)兵,高瑞,等.特厚煤層綜放開采大空間采場覆巖結(jié)構(gòu)及作用機(jī)制[J].煤炭學(xué)報(bào),2016,41(3):571-580.YU Bin,ZHU Weibing,GAO Rui,et al.Strata structure and its effect mechanism of large space stope for fully-mechanized sublevel caving mining of extremely thickcoal seam[J].Journal of China Coal Society,2016,41(3):571-580.

金寨县| 房山区| 视频| 无棣县| 玉环县| 霍林郭勒市| 邢台市| 湘阴县| 浦东新区| 博客| 仙桃市| 肇州县| 铜梁县| 宽甸| 东至县| 贵阳市| 南投市| 彩票| 纳雍县| 育儿| 光泽县| 江源县| 集贤县| 林西县| 海兴县| 富宁县| 永新县| 宁晋县| 天门市| 连云港市| 喀喇| 湖州市| 平定县| 祥云县| 丰都县| 台湾省| 塔城市| 华蓥市| 布拖县| 云浮市| 贵阳市|