劉新鋒
[摘要]目的 探討蛋白去乙?;?(HDAC9)基因?qū)χ嗵牵↙PS)誘導(dǎo)的人冠狀動(dòng)脈平滑肌細(xì)胞(HCASMC)增殖、凋亡及炎癥反應(yīng)的影響。方法 采用LPS誘導(dǎo)HCASMC,實(shí)驗(yàn)分為空白對(duì)照組、模型組、陰性對(duì)照組和轉(zhuǎn)染組。采用實(shí)時(shí)熒光定量PCR(qPCR)和Western blot方法檢測(cè)HDAC9 mRNA和蛋白表達(dá);MTT法和流式細(xì)胞術(shù)分別檢測(cè)細(xì)胞增殖和凋亡情況;ELISA檢測(cè)腫瘤壞死因子-α(TNF-α)、白細(xì)胞介素-1β(IL-1β)和白細(xì)胞介素-8(IL-8)含量。結(jié)果 與空白對(duì)照組相比,模型組細(xì)胞中HDAC9 mRNA和蛋白表達(dá)水平升高(F=91.145、185.108,q=19.403、25.646,P<0.05)、細(xì)胞活力升高(F=77.940,q=17.819,P<0.05)、凋亡率降低(F=98.321,q=15.563,P<0.05)、TNF-α與IL-1β及IL-8的含量增多(F=91.145~325.808,q=10.813~15.180,P<0.05)。敲低HDAC9能夠抑制細(xì)胞活力和炎癥反應(yīng),并促進(jìn)細(xì)胞凋亡。結(jié)論 敲低HDAC9可抑制LPS誘導(dǎo)的HCASMC增殖及炎癥反應(yīng),并促進(jìn)細(xì)胞凋亡。
[關(guān)鍵詞]組蛋白脫乙酰基酶類(lèi);基因敲低技術(shù);冠狀血管;肌細(xì)胞,平滑肌;細(xì)胞增殖;細(xì)胞凋亡;炎癥
[中圖分類(lèi)號(hào)]R345.61;R322.12
[文獻(xiàn)標(biāo)志碼]A
[文章編號(hào)]2096-5532(2021)02-0260-05
[ABSTRACT]Objective To investigate the effect of the protein deacetylase 9 (HDAC9) gene on lipopolysaccharide (LPS)-induced proliferation, apoptosis, and inflammatory response of human coronary artery smooth muscle cells (HCASMCs). ?Me-thods HCASMCs were induced by LPS, and the cells were divided into blank control group, model group, negative control group, and transfection group. Quantitative real-time PCR and Western blot were used to measure the mRNA and protein expression of HDAC9; MTT assay and flow cytometry were used to measure cell proliferation and apoptosis; ELISA was used to mea-sure the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-8 (IL-8). ?Results Compared with the blank control group, the model group had significant increases in the mRNA and protein expression levels of HDAC9 in cells (F=91.145-185.108,q=19.403-25.646,P<0.05), a significant increase in cell viability (F=77.940,q=17.819,P<0.05), a significant reduction in cell apoptosis rate (F=98.321,q=15.563,P<0.05), and significant increases in the levels of TNF-α, IL-1β, and IL-8 (F=91.145-325.808,q=10.813-15.180,P<0.05). HDAC9 knockdown inhibited cell viability and inflammatory response and promoted cell apoptosis.
Conclusion HDAC9 knockdown can inhibit LPS-induced proliferation and inflammation of HCASMCs and promote cell apoptosis.
[KEY WORDS]histone deacetylases; gene knockdown techniques; coronary vessels; myocytes, smooth muscle; cell proli-feration; apoptosis; inflammation
冠心病是由動(dòng)脈粥樣硬化(AS)引起的心腦血管疾病,嚴(yán)重影響人類(lèi)的健康和生命[1]。業(yè)已證實(shí),冠心病是一種慢性炎癥性疾病[2]。有證據(jù)表明,血管平滑肌細(xì)胞(VSMCs)增殖和凋亡失衡是AS發(fā)展的關(guān)鍵步驟[3]。蛋白去乙?;?(HDAC9)屬于HDAC家族成員,HDAC9參與心血管疾病發(fā)生和發(fā)展[4-6]。而人冠狀動(dòng)脈平滑肌細(xì)胞(HCASMC)在外界因子刺激下增殖和凋亡能夠參與AS的發(fā)病過(guò)程[7]。目前,有關(guān)HDAC9基因與HCASMC關(guān)系的研究鮮有報(bào)道。因此,本文探究HDAC9基因?qū)χ嗵牵↙PS)誘導(dǎo)HCASMC增殖、凋亡及炎癥反應(yīng)的影響,以期為冠心病的治療提供新的靶點(diǎn)?,F(xiàn)將結(jié)果報(bào)告如下。
1 材料與方法
1.1 實(shí)驗(yàn)材料
人冠狀動(dòng)脈平滑肌細(xì)胞(HCASMC)購(gòu)自美國(guó)Lifeline公司;DMEM高糖培養(yǎng)基、胎牛血清(FBS)購(gòu)自賽默飛世爾科技有限公司;噻唑藍(lán)(MTT)試劑和Lipofectamine 2000轉(zhuǎn)染試劑均購(gòu)自美國(guó)Invitrogen公司;二甲基亞砜購(gòu)自北京索萊寶科技有限公司;LPS購(gòu)自美國(guó)Sigma公司;Trizol試劑購(gòu)自北京康為世紀(jì)生物科技有限公司;逆轉(zhuǎn)錄試劑盒和SYBR premix Ex Taq PCR Kit熒光定量PCR檢測(cè)試劑盒均購(gòu)自日本TaKaRa公司;HDAC9 siRNA及陰性對(duì)照(siRNA Control)購(gòu)自上海吉瑪制藥技術(shù)有限公司;腫瘤壞死因子-α(TNF-α)、白細(xì)胞介素-1β(IL-1β)和白細(xì)胞介素-8(IL-8)ELISA檢測(cè)試劑盒均購(gòu)自南京建成生物工程研究所;Annexin V-FITC/PI凋亡檢測(cè)試劑盒及Western blot檢測(cè)所需試劑均購(gòu)自上海碧云天生物技術(shù)研究所;HDAC9抗體、β-actin抗體及辣根過(guò)氧化酶標(biāo)記的二抗均購(gòu)自美國(guó)Santa Cruz公司。
1.2 實(shí)驗(yàn)方法
1.2.1 細(xì)胞培養(yǎng) HCASMC復(fù)蘇后接種到含有體積分?jǐn)?shù)0.10 FBS的DMEM高糖培養(yǎng)基的培養(yǎng)瓶中,將其放置于體積分?jǐn)?shù)0.05 CO2、37 ℃培養(yǎng)箱中培養(yǎng),每隔1 d更換1次新鮮培養(yǎng)液,待細(xì)胞貼壁生長(zhǎng)融合度達(dá)到90%時(shí),使用胰蛋白酶消化細(xì)胞,按照1∶3進(jìn)行傳代。取對(duì)數(shù)生長(zhǎng)期的HCASMC進(jìn)行后續(xù)實(shí)驗(yàn)。
1.2.2 細(xì)胞處理和實(shí)驗(yàn)分組 取對(duì)數(shù)生長(zhǎng)期的HCASMC以胰蛋白酶消化,收集細(xì)胞接種到6孔板中,待細(xì)胞單層融合時(shí)進(jìn)行處理。實(shí)驗(yàn)分為4組:空白對(duì)照組(A組,未做處理),模型組(B組,以1 mg/L的LPS處理48 h),陰性對(duì)照組(C組,轉(zhuǎn)染siRNA Control后以1 mg/L的LPS處理48 h),轉(zhuǎn)染組(D組,轉(zhuǎn)染HDAC9 siRNA后以1 mg/L的LPS處理48 h)。每組細(xì)胞設(shè)置3個(gè)復(fù)孔。細(xì)胞轉(zhuǎn)染嚴(yán)格按照Lipofectamine 2000轉(zhuǎn)染試劑說(shuō)明書(shū)進(jìn)行,LPS處理HCASMC的濃度和時(shí)間參考文獻(xiàn)方法[8-9]及預(yù)實(shí)驗(yàn)結(jié)果,各組細(xì)胞處理48 h后進(jìn)行相應(yīng)指標(biāo)檢測(cè)。
1.2.3 實(shí)時(shí)熒光定量PCR(qPCR)檢測(cè)HDAC9 mRNA表達(dá)水平 采用Trizol試劑分別提取各組HCASMC中總RNA,以RNA為模板使用逆轉(zhuǎn)錄試劑盒合成第一鏈cDNA,再以cDNA為模板使用SYBR premix Ex Taq PCR Kit檢測(cè)試劑盒進(jìn)行qRT-PCR檢測(cè)。反應(yīng)體系包括:cDNA 2 μL,上下游引物各1 μL,2×SYBR 10 μL,ddH2O 6 μL,避光加樣。短暫離心后放置在熒光定量PCR儀中進(jìn)行反應(yīng),程序設(shè)置為:94 ℃、5 min,94 ℃、30 s,60 ℃、30 s,72 ℃、10 s,共設(shè)40個(gè)循環(huán)。以β-actin為內(nèi)參照,用相對(duì)定量2-△△CT法計(jì)算HDAC9 mRNA的相對(duì)表達(dá)水平。
1.2.4 Western blot檢測(cè)HDAC9蛋白的表達(dá)水平
收集各組處理48 h后HCASMC,加入適量細(xì)胞裂解液,置冰上裂解并提取總蛋白,使用BCA蛋白濃度檢測(cè)試劑盒對(duì)蛋白進(jìn)行定量。取40 μg蛋白樣品進(jìn)行加樣,行十二烷基硫酸鈉-聚丙烯酰胺凝膠電泳,待電泳結(jié)束后轉(zhuǎn)膜,在含50 g/L脫脂奶粉的封閉液中孵育2 h,分別加入1∶500稀釋的HDAC9一抗,4 ℃過(guò)夜雜交,再加入1∶2 000稀釋的二抗,室溫孵育2 h,采用ECL化學(xué)發(fā)光方法顯影和定影后,使用凝膠成像系統(tǒng)拍照,以β-actin進(jìn)行標(biāo)定,采用Image J軟件對(duì)各條帶灰度值進(jìn)行分析,計(jì)算各組HCASMC中HDAC9蛋白相對(duì)表達(dá)水平。
1.2.5 MTT法檢測(cè)細(xì)胞活力 取對(duì)數(shù)生長(zhǎng)期的HCASMC接種到96孔板中,按照上述1.2.2方法分組和處理,每組設(shè)置4個(gè)復(fù)孔,48 h后向各孔細(xì)胞中分別添加20 μL 的MTT溶液,37 ℃培養(yǎng)箱中繼續(xù)培養(yǎng)4 h。取出96孔板,棄上清液,再向細(xì)胞中加入150 μL二甲基亞砜,放置在震蕩儀上低速振蕩10 min,待還原物充分溶解以后,在酶標(biāo)儀上測(cè)定450 nm波長(zhǎng)處吸光度值(A值)。
1.2.6 流式細(xì)胞術(shù)檢測(cè)細(xì)胞凋亡率 處理48 h后各組HCASMC加入胰蛋白酶消化,收集細(xì)胞,首先加入Annexin V-FITC重懸細(xì)胞,然后加入PI染液,輕輕混勻,室溫下避光孵育10 min,隨機(jī)上流式細(xì)胞儀檢測(cè)細(xì)胞凋亡率。
1.2.7 ELISA檢測(cè)細(xì)胞上清液中炎癥因子TNF-α、IL-1β和IL-8的含量 各組HCASMC處理48 h后,分別收集細(xì)胞培養(yǎng)上清液,參照TNF-α、IL-1β和IL-8 ELISA檢測(cè)試劑盒說(shuō)明書(shū)測(cè)定上清液中TNF-α、IL-1β和IL-8的含量。
1.3 統(tǒng)計(jì)學(xué)分析
采用SPSS 21.0軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)學(xué)分析。計(jì)量資料數(shù)據(jù)均以x2±s表示,多組間差異比較采用單因素方差分析,兩兩組間差異比較采用SNK-q檢驗(yàn)分析。以P<0.05表示差異具有統(tǒng)計(jì)學(xué)意義。
2 結(jié) 果
2.1 LPS誘導(dǎo)HCASMC中HDAC9的表達(dá)
qRT-PCR和Western blot方法分別檢測(cè)各組HCASMC中HDAC9的mRNA和蛋白表達(dá)結(jié)果顯示,與空白對(duì)照組相比,模型組細(xì)胞中HDAC9 mRNA和蛋白表達(dá)水平均明顯升高(F=91.145、185.108,q=19.403、25.646,P<0.05);與模型組和陰性對(duì)照組相比,轉(zhuǎn)染組細(xì)胞中HDAC9 mRNA和蛋白表達(dá)水平均明顯下調(diào)(q=13.393~20.714,P<0.05);而模型組和陰性對(duì)照組兩組相比,細(xì)胞中HDAC9的mRNA和蛋白表達(dá)水平均無(wú)明顯變化(P均>0.05)。提示LPS能夠誘導(dǎo)HCASMC中HDAC9的表達(dá),轉(zhuǎn)染HDAC9 siRNA能夠成功敲低HCASMC中HDAC9的表達(dá)。見(jiàn)圖1和表1。
2.2 敲低HDAC9表達(dá)對(duì)LPS誘導(dǎo)HCASMC活力的影響
MTT檢測(cè)的結(jié)果表明,空白對(duì)照組、模型組、陰性對(duì)照組、轉(zhuǎn)染組細(xì)胞的A值分別為0.35±0.03、0.56±0.04、0.55±0.04和0.41±0.03。與空白對(duì)照組相比,模型組HCASMC 的A值明顯升高(F=77.940,q=17.819,P<0.05);與模型組和陰性對(duì)照組相比,轉(zhuǎn)染組HCASMC的A值明顯降低(q=12.728、11.879,P<0.05);而模型組和陰性對(duì)照組相比,HCASMC的A值無(wú)明顯改變(P>0.05)。提示LPS能夠提高HCASMC活力,敲低HDAC9基因表達(dá)能夠抑制LPS誘導(dǎo)的HCASMC活力增加。
2.3 敲低HDAC9表達(dá)對(duì)LPS誘導(dǎo)HCASMC凋亡的影響
流式細(xì)胞術(shù)檢測(cè)結(jié)果表明,空白對(duì)照組、模型組、陰性對(duì)照組、轉(zhuǎn)染組HCASMC凋亡率分別為(6.64±0.74)%、(2.37±0.26)%、(2.56±0.28)%和(7.61±1.42)%。與空白對(duì)照組細(xì)胞相比較,模型組HCASMC凋亡率明顯降低(F=98.321,q=15.563,P<0.05);與模型組和陰性對(duì)照組細(xì)胞相比,轉(zhuǎn)染組HCASMC凋亡率明顯升高(q=19.098、18.406,P<0.05);而模型組和陰性對(duì)照組相比較,HCASMC的凋亡率無(wú)顯著變化(P>0.05)。提示LPS可阻礙HCASMC凋亡,而敲低HDAC9基因表達(dá)能促進(jìn)LPS誘導(dǎo)的HCASMC凋亡。見(jiàn)圖2。
2.4 敲低HDAC9基因表達(dá)對(duì)LPS誘導(dǎo)的炎癥因子分泌的影響
ELISA檢測(cè)培養(yǎng)上清液中炎癥因子TNF-α、IL-1β和IL-8的含量顯示,與空白對(duì)照組相比,模型組上清液中TNF-α、IL-1β和IL-8的含量明顯升高(F=91.145~325.808,q=10.813~15.180,P<0.05);與模型組和陰性對(duì)照組相比較,轉(zhuǎn)染組上清液中TNF-α、IL-1β和IL-8的含量均明顯降低(q=7.826~8.941,P<0.05);而模型組和陰性對(duì)照組相比,上清液中TNF-α、IL-1β和IL-8的含量無(wú)明顯變化(P>0.05)。提示LPS可誘導(dǎo)HCASMC分泌炎癥因子,而敲低HDAC9基因表達(dá)能夠抑制LPS誘導(dǎo)的炎癥因子的表達(dá)。見(jiàn)表2。
3 討 論
冠心病是一種慢性炎癥性疾病。研究表明,內(nèi)皮細(xì)胞、VSMCs和炎癥細(xì)胞參與冠心病的病理過(guò)程[10-15]。VSMCs的增殖失控及凋亡抑制在內(nèi)膜增厚過(guò)程中起重要作用,是冠心病的重要致病機(jī)制。大量研究結(jié)果已證實(shí),內(nèi)皮細(xì)胞參與動(dòng)脈粥樣硬化過(guò)程[16-20]。因此,本實(shí)驗(yàn)選取HCASMC為載體,以探究冠心病的發(fā)病機(jī)制。近年來(lái)的研究結(jié)果已顯示,體外VSMCs增殖受多種生長(zhǎng)因子的刺激,如血管緊張素Ⅱ、氧化低密度脂蛋白(oxLDL)、脂多糖(LPS)、轉(zhuǎn)化生長(zhǎng)因子-β(TGF)-β和成纖維細(xì)胞生長(zhǎng)因子等[21-25]。因此,本實(shí)驗(yàn)結(jié)合以往研究以LPS誘導(dǎo)HCASMC進(jìn)行造模,以探究HDAC9基因?qū)PS誘導(dǎo)HCASMC增殖、凋亡和炎癥反應(yīng)影響。本文研究結(jié)果顯示,LPS能夠上調(diào)HCASMC活力,抑制HCASMC凋亡,促進(jìn)炎癥因子TNF-α、IL-1β和IL-8等分泌誘導(dǎo)炎癥反應(yīng),這些結(jié)果與以往研究一致。此外,LPS能夠上調(diào)HCASMC中HDAC9基因的表達(dá)。
HDAC9基因位于染色體7p21上,該基因?qū)儆贖DAC家族,在心肌、骨骼肌、胎盤(pán)等組織中均有表達(dá)。靳洲等[26]報(bào)道,HDAC9通過(guò)促進(jìn)AS在大動(dòng)脈粥樣硬化型腦梗死中發(fā)揮重要作用。成海鵬[27]的研究結(jié)果顯示,沉默HDAC9基因能夠促進(jìn)炎癥因子分泌及巨噬細(xì)胞脂質(zhì)的累積。多項(xiàng)研究表明,HDAC9基因多態(tài)性與冠心病、AS和缺血性卒中等密切相關(guān)[28-29]。本研究通過(guò)轉(zhuǎn)染特異性HDAC9 siRNA敲低LPS誘導(dǎo)的HCASMC中HDAC9的表達(dá),結(jié)果顯示,敲低HDAC9能夠部分逆轉(zhuǎn)LPS誘導(dǎo)的HCASMC活力升高及凋亡下調(diào)。炎癥反應(yīng)的激活能夠改變內(nèi)皮細(xì)胞和VSMCs生物學(xué)行為,炎癥因子可以募集更多的炎性細(xì)胞以促進(jìn)AS病變的形成[30-32]。本實(shí)驗(yàn)結(jié)果顯示,敲低HDAC9基因
可抑制LPS誘導(dǎo)的炎癥因子TNF-α、IL-1β和IL-8分泌,降低LPS誘導(dǎo)的炎癥反應(yīng)。提示HDAC9能夠通過(guò)抑制炎癥反應(yīng)的激活抑制動(dòng)脈粥樣硬化性心血管疾病的發(fā)生和進(jìn)展,但其具體作用機(jī)制仍需深入探究。
綜上所述,敲低HDAC9基因能夠抑制LPS誘導(dǎo)的HCASMC增殖及炎癥反應(yīng),促進(jìn)HCASMC凋亡。隨著對(duì)HDAC9基因研究的深入,相信其可能成為動(dòng)脈粥樣硬化性心血管疾病治療新的分子靶向,但HDAC9在動(dòng)脈粥樣硬化性心血管疾病中的作用機(jī)制目前尚不十分明確,有待進(jìn)一步深入探究。此外,本實(shí)驗(yàn)未在動(dòng)物體內(nèi)進(jìn)行探究尚顯不足,后續(xù)實(shí)驗(yàn)將對(duì)此補(bǔ)充和驗(yàn)證。
[參考文獻(xiàn)]
[1]VOLGMAN A S, PALANIAPPAN L S, AGGARWAL N T, et al. Atherosclerotic cardiovascular disease in South Asians in the United States:epidemiology, risk factors, and treatments: a scientific statement from the American heart association[J]. Circulation, 2018,138(1):e1-e34. doi:10.1161/CIR.0000000000000580.
[2]LAWAL A O. Air particulate matter induced oxidative stress and inflammation in cardiovascular disease and atherosclerosis: the role of Nrf2 and AhR-mediated pathways[J]. Toxicology Letters, 2017,270:88-95.
[3]JIANG D H, YANG Y, LI D Y. Lipopolysaccharide induced vascular smooth muscle cells proliferation: a new potential therapeutic target for proliferative vascular diseases[J]. Cell Proliferation, 2017,50(2):e12332. doi:10.1111/cpr.12332.
[4]岳洪華,何國(guó)偉,劉曉程. 組蛋白去乙?;概c心血管疾病的研究進(jìn)展[J]. 醫(yī)學(xué)綜述, 2017,23(6):1104-1108.
[5]LINO CARDENAS C L, KESSINGER C W, CHENG Y, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm[J]. Nat Commun. 2018,9(1):1009.
[6]SHROFF N, ANDER B P, ZHAN X H, et al. HDAC9 polymorphism alters blood gene expression in patients with large vessel atherosclerotic stroke[J]. Translational Stroke Research, 2019,10(1):19-25.
[7]LIU M, KARAGIANNIS A, SIS M, et al. THree-dimensio-nal co-cultures of human coronary artery endothelial and smooth muscle cells: a novel in-vitro experimental model of atherosclerosis[J]. Atherosclerosis, 2017,263:e77-e78. doi:10.1016/j.atherosclerosis. 2017.06.257.
[8]李紅梅,王顯. 基于脂多糖誘導(dǎo)人冠狀動(dòng)脈平滑肌細(xì)胞炎性活化的熱毒生風(fēng)型絡(luò)風(fēng)內(nèi)動(dòng)細(xì)胞模型構(gòu)建[J]. 中華中醫(yī)藥雜志, 2016,31(8):3057-3062.
[9]李紅梅,王顯. 紫杉醇水蛭素支架涂層復(fù)合物對(duì)LPS誘導(dǎo)的HCASMC炎性活化過(guò)程中核轉(zhuǎn)錄因子NF-κ B p65及其下游炎癥因子的調(diào)控作用[J]. 中國(guó)循證心血管醫(yī)學(xué)雜志, 2018,10(2):203-206,217.
[10]KOVANEN P T, BOT I. Mast cells in atherosclerotic cardiovascular disease-Activators and actions[J]. European Journal of Pharmacology, 2017,816:37-46.
[11]NORDSTRM M, PAUS B, RETTERSTL K, et al. The prevalence of metabolic risk factors of atherosclerotic cardiovascular disease in Williams syndrome, Prader-Willi syndrome, and Down syndrome[J]. Journal of Intellectual & Developmental Disability, 2016,41(3):187-196.
[12]JIE Z Y, XIA H H, ZHONG S L, et al. The gut microbiome in atherosclerotic cardiovascular disease[J]. Nature Communications, 2017,8(1):845.
[13]PATEL J. The gut microbiome: a novel cardio-metabolic target[J]? Cardiovascular Research, 2019,115(9):e82-e84.
[14]DE JONG R J, OHNMACHT C. Defining dysbiosis in inflammatory bowel disease[J]. Immunity, 2019,50(1):8-10.
[15]KUIPERS F, DE BOER J F, STAELS B. Microbiome modulation of the host adaptive immunity through bile acid modification[J]. Cell Metabolism, 2020,31(3):445-447.
[16]KARBASFORUSH S, NOURAZARIAN A, DARABI M, et al. Docosahexaenoic acid reversed atherosclerotic changes in human endothelial cells induced by palmitic acid in vitro[J]. Cell Biochemistry and Function, 2018,36(4):203-211.
[17]ESCOULA Q, BELLENGER S, NARCE M, et al. Docosahexaenoic and eicosapentaenoic acids prevent altered-Muc2 secretion induced by palmitic acid by alleviating endoplasmic Reticulum stress in LS174T goblet cells[J]. Nutrients, 2019,11(9):E2179.
[18]LIU Y, YU X J, ZHAO J X, et al. The role of MUC2 mucin in intestinal homeostasis and the impact of dietary components on MUC2 expression[J]. International Journal of Biological Macromolecules, 2020,164:884-891
[19]METHEREL A H, REZAEI K, LACOMBE R J S, et al. Plasma unesterified eicosapentaenoic acid is converted to docosahexaenoic acid (DHA) in the liver and supplies the brain with DHA in the presence or absence of dietary DHA[J]. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, 2021,1866(8):158942.
[20]GOETZL E J, SCHWARTZ J B, MUSTAPIC M, et al. Altered cargo proteins of human plasma endothelial cell-derived exosomes in atherosclerotic cerebrovascular disease[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2017,31(8):3689-3694.
[21]LI W F, ZHI W B, LIU F, et al. Atractylenolide I restores HO-1 expression and inhibits Ox-LDL-induced VSMCs proli-feration, migration and inflammatory responses in vitro[J]. Experimental Cell Research, 2017,353(1):26-34.
[22]JI Y Y, LIU J T, WANG Z D, et al. Angiotensin Ⅱ induces inflammatory response partly via toll-like receptor 4-dependent signaling pathway in vascular smooth muscle cells[J]. Cellular Physiology and Biochemistry, 2009,23(4-6):265-276.
[23]DAI F, JIANG T, BAO Y Y, et al. Fenofibrate improves high-fat diet-induced and palmitate-induced endoplasmic Reti-culum stress and inflammation in skeletal muscle[J]. Life Sciences, 2016,157:158-167.
[24]DU S H, DONG-FANG Q, CHEN C X, et al. Toll-like receptor 4 mediates methamphetamine-induced neuroinflammation through caspase-11 signaling pathway in astrocytes[J]. Frontiers in Molecular Neuroscience, 2017,10:409.
[25]WANG X H, NORTHCUTT A L, COCHRAN T A, et al. Methamphetamine activates toll-like receptor 4 to induce central immune signaling within the ventral tegmental area and contributes to extracellular dopamine increase in the nucleus accumbens shell[J]. ACS Chemical Neuroscience, 2019,10(8):3622-3634.
[26]靳洲,李其富,馬琳,等. HDAC9與大動(dòng)脈粥樣硬化型腦梗死關(guān)系的研究進(jìn)展[J]. 臨床誤診誤治, 2017,30(1):112-115.
[27]成海鵬. miR-182沉默HDAC9對(duì)巨噬細(xì)胞脂質(zhì)蓄積和炎癥因子分泌的影響及機(jī)制[D]. 衡陽(yáng):南華大學(xué), 2017.
[28]GUO Q X, ZHANG Y, XU J N, et al. Association between the gene polymorphisms of HDAC9 and the risk of atherosclerosis and ischemic stroke[J]. Pathology & Oncology Research, 2016,22(1):103-107.
[29]WANG X B, HAN Y D, SABINA S, et al. HDAC9 variant Rs2107595 modifies susceptibility to coronary artery disease and the severity of coronary atherosclerosis in a Chinese Han population[J]. PLoS One, 2016,11(8):e0160449. doi:10.1371/journal.pone.0160449.
[30]DONG Q. HDAC9 regulates ox-LDL-induced endothelial cell apoptosis by participating in inflammatory reactions[J]. Frontiers in Bioscience, 2016,21(5):907-917.
[31]YANG D, SUN C, ZHANG J, et al. Proliferation of vascular smooth muscle cells under inflammation is regulated by NF-κB p65/microRNA-17/RB pathway activation[J]. International Journal of Molecular Medicine, 2017:43-50. doi:10.3892/ijmm.2017.3212.
[32]GORENNE I, KAVURMA M, SCOTT S, et al. Vascular smooth muscle cell senescence in atherosclerosis[J]. Cardiovascular Research, 2006,72(1):9-17.
(本文編輯 于國(guó)藝)
青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2021年2期