楊葉 姜國弈 金明睿 李俊潔 劉志美 陳文芳
[摘要]目的 探討脂多糖(LPS)激活的中腦膠質(zhì)細(xì)胞條件性培養(yǎng)液對(duì)神經(jīng)元的損傷作用,以及淫羊藿素(ICT)是否能夠通過雌激素膜受體(GPER)和胰島素樣生長因子1受體(IGF-1R)發(fā)揮其神經(jīng)保護(hù)作用。方法 在體外原代培養(yǎng)SD大鼠中腦膠質(zhì)細(xì)胞和神經(jīng)元,分為對(duì)照組、LPS組、ICT+LPS組、G15+ICT+LPS組和JB-1+ICT+LPS組。混合培養(yǎng)中腦原代膠質(zhì)細(xì)胞,對(duì)照組給予二甲基亞砜(DMSO)處理;LPS組給予LPS(0.5 mg/L)作用24 h;ICT+LPS組在加入LPS前先用ICT(10 μmol/L)預(yù)保護(hù)1 h;G15+ICT+LPS組和JB-1+ICT+LPS組分別先加入GPER特異性阻斷劑G15(1 μmol/L)和IGF-1R特異性阻斷劑JB-1(1 mg/L)作用1 h,然后加入ICT預(yù)保護(hù)1 h,再加入LPS共同作用24 h。應(yīng)用膠質(zhì)細(xì)胞上層條件性培養(yǎng)液孵育原代中腦神經(jīng)元24 h,采用四甲基偶氮唑藍(lán)(MTT)法檢測(cè)神經(jīng)元活力。結(jié)果 與對(duì)照組比較,LPS組神經(jīng)元細(xì)胞活力明顯下降(F=15.88,q=10.040,P<0.01)。ICT預(yù)保護(hù)能明顯抑制LPS誘導(dǎo)的神經(jīng)元損傷(q=7.457,P<0.01),此作用可以被JB-1所阻斷(q=5.098,P<0.05);G15預(yù)處理對(duì)ICT的神經(jīng)保護(hù)作用有阻斷趨勢(shì),但差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。結(jié)論 ICT能夠通過抑制LPS誘導(dǎo)的中腦膠質(zhì)細(xì)胞炎癥反應(yīng)保護(hù)神經(jīng)元,其機(jī)制可能與IGF-1R信號(hào)途徑有關(guān)。
[關(guān)鍵詞]淫羊藿素;神經(jīng)元;脂多糖類;神經(jīng)膠質(zhì);炎癥;受體,IGF1型
[中圖分類號(hào)]R338.2
[文獻(xiàn)標(biāo)志碼]A
[文章編號(hào)]2096-5532(2021)02-0182-04
[ABSTRACT]Objective To investigate the neuronal damage caused by lipopolysaccharide (LPS)-activated mesencephalon glial cell-conditioned medium and whether icaritin (ICT) can exert a neuroprotective effect via G protein-coupled estrogen receptor (GPER) and insulin-like growth factor-1 receptor (IGF-1R).?Methods Primary mesencephalon glial cells and neurons of Sprague-Dawley rats were cultured in vitro and then divided into control group, LPS group, ICT+LPS group, G15+ICT+LPS group, and JB-1+ICT+LPS group. After the mixed culture of primary mesencephalon glial cells, the control group was treated with DMSO; the LPS group was treated with LPS (0.5 mg/L) for 24 h; the ICT+LPS group was pre-protected with ICT (10 μmol/L) for 1 h before LPS was added; the G15+ICT+LPS group and the JB-1+ICT+LPS group were pretreated with the GPER-specific antagonist G15 (1 μmol/L) and the IGF-1R-specific antagonist JB-1 (1 mg/L), respectively, for 1 h and then pre-protected with ICT for 1 h, followed by LPS treatment for another 24 h. Primary mesencephalon neurons were incubated with the glial cell-conditioned medium for 24 h, and MTT assay was used to measure the viability of neurons.?Results Compared with the control group, the LPS group had a significant reduction in the viability of neurons (F=15.88,q=10.040,P<0.01). ICT pre-protection significantly inhibited LPS-induced neuronal damage (q=7.457,P<0.01), and this effect was blocked by JB-1 (q=5.098,P<0.05). G15 pretreatment slightly but not significantly blocked the neuroprotective effect of ICT (P>0.05).Conclusion ICT can protect neurons by inhibiting LPS-induced inflammatory response of mesencephalon glial cells, which may be associated with the IGF-1R signaling pathway.
[KEY WORDS]icaritin; neurons; lipopolysaccharides; neuroglia; inflammation; receptor, IGF type 1
帕金森病(PD)的發(fā)病機(jī)制與神經(jīng)炎癥密切相關(guān)[1-2]。在微環(huán)境發(fā)生變化或病理損傷以后,小膠質(zhì)細(xì)胞迅速活化,而活化的小膠質(zhì)細(xì)胞分泌的白細(xì)胞介素1α(IL-1α)、腫瘤壞死因子α(TNF-α)以及補(bǔ)體1q(C1q)等能進(jìn)一步誘導(dǎo)星形膠質(zhì)細(xì)胞釋放炎性因子,造成神經(jīng)元的損傷[3-4]。而受損的神經(jīng)元通過釋放神經(jīng)毒性因子與死亡相關(guān)的分子,例如神經(jīng)黑色素、β肽和細(xì)胞碎片,進(jìn)一步引起膠質(zhì)細(xì)胞活化,從而在膠質(zhì)細(xì)胞的炎癥反應(yīng)以及神經(jīng)元的損傷之間形成惡性循環(huán)[5-7]。因此,有效抑制膠質(zhì)細(xì)胞的過度活化是PD防治的有效策略。研究表明,雌激素可通過雌激素核受體(ER)、雌激素膜受體(GPER)及其與胰島素樣生長因子1受體(IGF-1R)信號(hào)途徑的交互作用發(fā)揮神經(jīng)保護(hù)作用[8-10]。淫羊藿素(ICT)是提取自小檗科植物淫羊藿的一種植物雌激素,能夠與雌激素受體結(jié)合,具有抗炎、骨保護(hù)、抗癌等多種功效[11-13]。本課題組前期實(shí)驗(yàn)表明,10 μmol/L ICT能夠通過ER信號(hào)途徑,抑制星形膠質(zhì)細(xì)胞的炎癥反應(yīng)[14],但其抗炎神經(jīng)保護(hù)作用是否與GPER和IGF-1R介導(dǎo)的信號(hào)途徑有關(guān)尚不清楚。本研究在前期工作的基礎(chǔ)上,觀察脂多糖(LPS)激活的中腦膠質(zhì)細(xì)胞條件性培養(yǎng)液對(duì)神經(jīng)元的損傷作用,探討ICT抗炎神經(jīng)保護(hù)作用是否與GPER和IGF-1R信號(hào)途徑有關(guān)。
1 材料與方法
1.1 實(shí)驗(yàn)材料
ICT購自上海同田生物技術(shù)有限公司;LPS、GPER特異性阻斷劑G15以及IGF-1R特異性阻斷劑JB-1均購自美國Sigma公司;四甲基偶氮唑藍(lán)(MTT)購自Silarbio(北京)公司;新生SD大鼠購自青島即墨大任富城畜牧有限公司。
1.2 原代膠質(zhì)細(xì)胞培養(yǎng)
取新生1 d的SD大鼠,用體積分?jǐn)?shù)0.75的乙醇溶液消毒,在超凈工作臺(tái)中取出其中腦組織,置于DF12基礎(chǔ)培養(yǎng)液(冰浴)中,用槍頭將組織吹打?yàn)榫鶆蚍稚⒌募?xì)胞。離心,棄去培養(yǎng)液,加入適量含有100 kU/L青霉素、100 mg/L鏈霉素和體積分?jǐn)?shù)0.10胎牛血清(FBS)的DF12全培養(yǎng)液,置于用20 g/L多聚-D-賴氨酸(Poly D)預(yù)處理4 h以上的培養(yǎng)瓶中(培養(yǎng)瓶用高壓滅菌水清洗2~3次),在細(xì)胞培養(yǎng)箱中培養(yǎng)1周左右,每隔2~3 d換液。光鏡下觀察,星形膠質(zhì)細(xì)胞緊密相連位于底層,體積較小、折光性強(qiáng)、呈圓形的小膠質(zhì)細(xì)胞在其上層。
1.3 腹側(cè)中腦神經(jīng)元培養(yǎng)
在取神經(jīng)元的前1 d,用Poly D溶液鋪滿培養(yǎng)板底部,過夜,棄掉Poly D溶液,將培養(yǎng)板用無菌水洗3次,在超凈工作臺(tái)中晾干。選取妊娠14 d左右的大鼠,麻醉后進(jìn)行全身消毒,腹側(cè)朝上擺放大鼠,用大剪刀剪開大鼠腹部皮膚及肌肉,用鑷子夾出胎鼠,用小剪刀剪斷與大鼠之間的連接,迅速放入培養(yǎng)皿中。剪開胎衣,將胎鼠放入新的培養(yǎng)皿中。剪開羊膜,去除胎盤,放入新的培養(yǎng)皿中。剪下頭顱,放入新的帶有DF12基礎(chǔ)培養(yǎng)液(冰浴)的培養(yǎng)皿中,在體視顯微鏡下用眼科鑷將頭顱皮膚及頭蓋骨撕開剝離大腦,然后將中腦與其余部分分離,去除中腦腦膜,將中腦背側(cè)去除得到蝴蝶形的中腦腹側(cè),將中腦腹側(cè)移入新的帶有DF12基礎(chǔ)培養(yǎng)液(冰浴)的培養(yǎng)皿中,用微量移液槍輕輕吹打組織直至細(xì)胞均勻離散,移入離心管中,以1 000 r/min離心5 min。離心完成后,用吸管將上清吸除,向離心管中加入中腦腹側(cè)神經(jīng)元培養(yǎng)液,用吸管輕輕吹勻并調(diào)節(jié)細(xì)胞密度至1×109/L,之后種板。放置于細(xì)胞培養(yǎng)箱中,2~3 d換1次液,培養(yǎng)7 d后用于下一步實(shí)驗(yàn)。
1.4 實(shí)驗(yàn)分組及處理
將小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞混合接種于12孔板,置于含體積分?jǐn)?shù)0.05 CO2的37 ℃無菌培養(yǎng)箱中,應(yīng)用高糖DMEM培養(yǎng)液(含100 kU/L青霉素、100 mg/L鏈霉素和體積分?jǐn)?shù)0.10 FBS)常規(guī)培養(yǎng)。光鏡下觀察當(dāng)細(xì)胞融合度達(dá)到80%~90%時(shí)進(jìn)行分組和加藥處理。將細(xì)胞分為對(duì)照組(A組)、LPS 組(B組)、ICT+LPS 組(C組)、G15+ICT+LPS組(D組)和JB-1+ICT+LPS組(E組)。對(duì)照組細(xì)胞給予1 μL二甲基亞砜(DMSO)處理;LPS 組細(xì)胞則加入LPS(0.5 mg/L)作用24 h;ICT+LPS 組細(xì)胞加LPS前先用ICT(10 μmol/L)預(yù)保護(hù)1 h;G15+ICT+LPS組和JB-1+ICT+LPS組細(xì)胞分別先加入G15(1 mmol/L)、JB-1(1 mg/L)作用1 h,然后加入 ICT預(yù)保護(hù)1 h,再加入 LPS 共同作用24 h。將12孔板中的條件性培養(yǎng)液(100 mL)轉(zhuǎn)移至培養(yǎng)神經(jīng)元的96孔板中,作用24 h。
1.5 細(xì)胞活力檢測(cè)
采用MTT法檢測(cè)細(xì)胞活力。棄掉96孔板中的培養(yǎng)液,每孔加入5 g/L的MTT溶液20 μL,置細(xì)胞培養(yǎng)箱內(nèi)孵育 4 h,棄掉MTT溶液,每孔加入 200 μL的DMSO,用鋁箔紙包好培養(yǎng)板避光,然后放在室溫?fù)u床上約 10 min,用酶標(biāo)儀檢測(cè)吸光度。實(shí)驗(yàn)重復(fù)3次。
1.6 統(tǒng)計(jì)學(xué)分析
應(yīng)用GraphPad Prism 5.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。計(jì)量數(shù)據(jù)以x2±s表示,多組比較首先進(jìn)行單因素方差分析(One-Way ANOVA),再用Tukey法進(jìn)行兩兩比較。P<0.05表示差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié) 果
與對(duì)照組比較,LPS組神經(jīng)元細(xì)胞活力明顯下降(F=15.88,q=10.040,P<0.01),表明中腦原代膠質(zhì)細(xì)胞條件性培養(yǎng)液能夠明顯降低中腦原代神經(jīng)元的活力。ICT(10 μmol/L)預(yù)處理能夠明顯抑制LPS誘導(dǎo)的膠質(zhì)細(xì)胞炎癥反應(yīng)進(jìn)而保護(hù)中腦神經(jīng)元(q=7.457,P<0.01),此作用可以被IGF-1R特異性阻斷劑JB-1所阻斷(q=5.098,P<0.05);而GPER特異性阻斷劑G15預(yù)處理對(duì)ICT的神經(jīng)保護(hù)作用雖有阻斷趨勢(shì),但差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。見表1。
3 討 論
PD的病理特征主要表現(xiàn)為黑質(zhì)致密帶多巴胺能神經(jīng)元變性死亡[15]。神經(jīng)炎癥一直被認(rèn)為與神經(jīng)退行性疾病的發(fā)生與發(fā)展密切相關(guān)[16]。小膠質(zhì)細(xì)胞在中樞神經(jīng)系統(tǒng)內(nèi)充當(dāng)免疫細(xì)胞的角色,是中樞神經(jīng)系統(tǒng)的第一道防線,其過度激活是發(fā)生神經(jīng)炎癥的主要原因[7,17]。小膠質(zhì)細(xì)胞活化導(dǎo)致促炎細(xì)胞因子如白細(xì)胞介素1(IL-1)、白細(xì)胞介素6(IL-6)和TNF-α等大量釋放,進(jìn)而損傷神經(jīng)元[18]。星形膠質(zhì)細(xì)胞是神經(jīng)系統(tǒng)數(shù)量最多、分布最廣的神經(jīng)膠質(zhì)細(xì)胞,可調(diào)節(jié)突觸活動(dòng)、神經(jīng)元代謝和局部血液供應(yīng)等,已有研究表明其功能失調(diào)在神經(jīng)退行性疾病發(fā)生中發(fā)揮重要作用[19-21]。星形膠質(zhì)細(xì)胞衍生的細(xì)胞外囊泡可通過傳播和放大神經(jīng)炎癥反應(yīng),充當(dāng)炎癥信號(hào)的胞間傳遞者,降低神經(jīng)元的存活率[22]。
ICT是一種黃酮類化合物,主要來源于小檗科淫羊藿屬植物,具有抗炎、抗氧化以及骨保護(hù)等功效[23-24]。已有研究表明,ICT可以通過GPER介導(dǎo)的EGFR-MAPK信號(hào)通路調(diào)節(jié)刺激SKBr3細(xì)胞增殖[25]。本課題組在前期工作中已證實(shí),IGF-1R參與了ICT在1-甲基-4-苯基-吡啶離子(MPP+)誘導(dǎo)的MES23.5細(xì)胞中的神經(jīng)保護(hù)作用[26],單獨(dú)使用GPER阻斷劑G15和IGF-1R阻斷劑JB-1并不影響小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞炎性因子的釋放,因此推測(cè)阻斷劑單用可能不影響神經(jīng)元的細(xì)胞活力。為探討ICT的抗炎神經(jīng)保護(hù)作用是否與GPER和IGF-1R有關(guān),本研究利用LPS誘導(dǎo)混合培養(yǎng)的小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞炎癥反應(yīng),觀察ICT是否能夠發(fā)揮抗炎作用進(jìn)而保護(hù)神經(jīng)元,以及GPER特異性阻斷劑G15和IGF-1R特異性阻斷劑JB-1的阻斷作用。結(jié)果顯示,LPS處理混合培養(yǎng)的小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞24 h后,其條件性培養(yǎng)液能使神經(jīng)元的細(xì)胞活力明顯下降,應(yīng)用ICT預(yù)處理能明顯對(duì)抗LPS誘導(dǎo)的神經(jīng)元損傷,此作用可以被JB-1所阻斷,雖然G15有一定的阻斷效果,但差異無統(tǒng)計(jì)學(xué)意義。文獻(xiàn)報(bào)道,IGF-1R與ER共表達(dá)并參與交聯(lián),涉及多方面的協(xié)同作用,例如,IGF-1刺激髓核細(xì)胞,能通過IGF-1R與ERα之間的相互作用調(diào)節(jié)增殖和抗炎反應(yīng)[27];淫羊藿苷刺激成骨細(xì)胞,能快速誘導(dǎo)IGF-1信號(hào)通路激活ERα和Akt,促進(jìn)成骨作用[28]。在前期工作中,本課題組應(yīng)用原代培養(yǎng)的中腦星形膠質(zhì)細(xì)胞證明ICT能夠通過ER發(fā)揮其抗炎作用,應(yīng)用中腦原代小膠質(zhì)細(xì)胞證明ICT能夠通過IGF-1R和GPER發(fā)揮抗炎作用,結(jié)合本次研究的實(shí)驗(yàn)結(jié)果,我們推測(cè)ICT的抗炎神經(jīng)保護(hù)作用可能與ER、GPER和IGF-1R等3條信號(hào)通路有關(guān),但具體機(jī)制還需進(jìn)一步研究。
綜上所述,ICT能夠通過抑制LPS誘導(dǎo)的中腦膠質(zhì)細(xì)胞炎癥反應(yīng)保護(hù)神經(jīng)元,此作用與IGF-1R介導(dǎo)的信號(hào)途徑有關(guān)。本研究結(jié)果為探究ICT抗PD的機(jī)制提供了實(shí)驗(yàn)依據(jù)。
[參考文獻(xiàn)]
[1]GELDERS G, BAEKELANDT V, VAN DER PERREN A. Linking neuroinflammation and neurodegeneration in Parkinsons disease[J]. Journal of Immunology Research, 2018, 2018:4784268.
[2]VIVEKANANTHAM S, SHAH S, DEWJI R, et al. Neuroinflammation in Parkinsons disease: role in neurodegeneration and tissue repair[J]. The International Journal of Neuroscience, 2015,125(10):717-725.
[3]SUBHRAMANYAM C S, WANG C, HU Q D, et al. Microglia-mediated neuroinflammation in neurodegenerative diseases[J]. Seminars in Cell & Developmental Biology, 2019,94:112-120.
[4]LIDDELOW S A, GUTTENPLAN K A, CLARKE L E, et al. Neurotoxic reactive astrocytes are induced by activated microglia[J]. Nature, 2017,541(7638):481-487.
[5]LEE Y, LEE S, CHANG S C, et al. Significant roles of neuroinflammation in Parkinsons disease: therapeutic targets for PD prevention[J]. Archives of Pharmacal Research, 2019,42(5):416-425.
[6]JHA M K, JO M, KIM J H, et al. Microglia-astrocyte crosstalk: an intimate molecular conversation[J]. Neuroscientist, 2019,25(3):227-240.
[7]KAUSHIK D K, BASU A. A friend in need may not be a friend indeed: role of microglia in neurodegenerative diseases[J]. CNS & Neurological Disorders Drug Targets, 2013,12(6):726-740.
[8]CHAKRABARTI M, DAS A, SAMANTARAY S, et al. Molecular mechanisms of estrogen for neuroprotection in spinal cord injury and traumatic brain injury[J]. Rev Neurosci, 2016,27(3):271-281.
[9]TANG H X, LIAO Y D, CHEN G, et al. Estrogen upregulates the IGF-1 signaling pathway in lung cancer through estrogen receptor-Β[J]. Medical Oncology (Northwood, London, England), 2012,29(4):2640-2648.
[10]EMMERSON E, CAMPBELL L, DAVIES F C, et al. Insulin-like growth factor-1 promotes wound healing in estrogen-deprived mice: new insights into cutaneous IGF-1R/ERα cross talk[J]. J Invest Dermatol, 2012,132(12):2838-2848.
[11]YANG X J, XI Y M, LI Z J. Icaritin: a novel natural candidate for hematological malignancies therapy[J]. BioMed Research International, 2019, 2019:4860268.
[12]HUANG L, WANG X, CAO H, et al. A bone-targeting delivery system carrying osteogenic phytomolecule icaritin prevents osteoporosis in mice[J]. Biomaterials, 2018,182:58-71.
[13]HAO H, ZHANG Q, ZHU H, et al. Icaritin promotes tumor T-cell infiltration and induces antitumor immunity in mice[J]. Eur J Immunol, 2019,49(12):2235-2244.
[14]張文娣,張梅,白金月,等. 淫羊藿素對(duì)LPS誘導(dǎo)原代星形膠質(zhì)細(xì)胞COX-2和iNOS基因表達(dá)影響[J]. 青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2019,55(1):32-34,39.
[15]HOMAYOUN H. Parkinson disease[J]. Annals of Internal Medicine, 2018,169(5):ITC33-ITC48.
[16]KEMPURAJ D, THANGAVEL R, NATTERU P A, et al. Neuroinflammation induces neurodegeneration[J]. J Neurol Neurosurg Spine, 2016,1(1):1003.
[17]HICKMAN S, IZZY S, SEN P, et al. Microglia in neurodegeneration[J]. Nature Neuroscience, 2018,21(10):1359-1369.
[18]RAMIREZ A I, DE HOZ R, SALOBRAR-GARCIA E, et al. The role of microglia in retinal neurodegeneration: Alzhei-mers disease, Parkinson, and glaucoma[J]. Front Aging Neurosci, 2017,9:214.
[19]ACOSTA C, ANDERSON H D, ANDERSON C M. Astrocyte dysfunction in Alzheimer disease[J]. Journal of Neuroscience Research, 2017,95(12):2430-2447.
[20]COLOMBO E, FARINA C. Astrocytes: key regulators of neuroinflammation[J]. Trends in Immunology, 2016,37(9):608-620.
[21]BLANCO-SUREZ E, CALDWELL A L M, ALLEN N J. Role of astrocyte-synapse interactions in CNS disorders[J]. The Journal of Physiology, 2017,595(6):1903-1916.
[22]IBEZ F, MONTESINOS J, UREA-PERALTA J R, et al. TLR4 participates in the transmission of ethanol-induced neuroinflammation via astrocyte-derived extracellular vesicles[J]. Journal of Neuroinflammation, 2019,16(1):136.
[23]LIU L, ZHAO Z, LU L, et al. Icariin and icaritin ameliorated hippocampus neuroinflammation via inhibiting HMGB1-related pro-inflammatory signals in lipopolysaccharide-induced inflammation model in C57BL/6J mice[J]. Int Immuno-pharmacol, 2019,68:95-105.
[24]WU X, WU J, XIA S, et al. Icaritin opposes the development of social aversion after defeat stress via increases of GR mRNA and BDNF mRNA in mice [J]. Behav Brain Res, 2013,256:602-608.
[25]MA H R, WANG J, CHEN Y F, et al. Icariin and icaritin stimulate the proliferation of SKBr3 cells through the GPER1-mediated modulation of the EGFR-MAPK signaling pathway[J]. Int J Mol Med, 2014,33(6):1627-1634.
[26]JIANG M C, CHEN X H, ZHAO X, et al. Involvement of IGF-1 receptor signaling pathway in the neuroprotective effects of Icaritin against MPP(+)-induced toxicity in MES23.5 cells[J]. Eur J Pharmacol, 2016,786:53-59.
[27]CHEN R S, ZHANG X B, ZHU X T, et al. The crosstalk between IGF-1R and ER-α in the proliferation and anti-inflammation of nucleus pulposus cells[J]. Eur Rev Med Pharmacol Sci, 2020,24(11):5886-5894.
[28]ZHOU L, POON C C, WONG K Y, et al. Icariin ameliorates estrogen-deficiency induced bone loss by enhancing IGF-Ⅰ signaling via its crosstalk with non-genomic ERα signaling[J]. Phytomedicine, 2021,82:153413.
(本文編輯 馬偉平)
青島大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2021年2期